(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (43) Дата публикации заявки 2019.05.31
- (22) Дата подачи заявки 2017.12.21

(51) Int. Cl. *G01N 27/36* (2006.01) *G01N 33/20* (2006.01) *C03C 3/32* (2006.01)

(54) СОСТАВ МЕМБРАНЫ ХИМИЧЕСКОГО СЕНСОРА ДЛЯ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ИОНОВ РТУТИ В ВОДНЫХ РАСТВОРАХ

- (31) 2017140823
- (32) 2017.11.23
- (33) RU
- (71) Заявитель:
 ФЕДЕРАЛЬНОЕ
 ГОСУДАРСТВЕННОЕ
 БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ
 УЧРЕЖДЕНИЕ ВЫСШЕГО
 ОБРАЗОВАНИЯ "САНКТПЕТЕРБУРГСКИЙ
 - ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" (СП6ГУ) (RU)
- (72) Изобретатель:
 Ермоленко Юрий Евгеньевич,
 Калягин Дмитрий Сергеевич,
 Колодников Василий Викторович,
 Еремин Вячеслав Валентинович,
 Кротов Сергей Алексеевич, Пронин
 Евгений Викторович (RU)
- (74) Представитель: Матвеев А.А., Матвеев Т.И., Леонов И.Ф. (RU)

(57) Изобретение относится к физико-химическим методам анализа, в частности к потенциометрическому способу определения концентрации ионов ртути в растворах. Технический результат заявленного изобретения - увеличение ресурса и улучшение стабильности работы химического сенсора на ионы ртути в кислых средах. Чувствительным элементом сенсора на ртуть является мембрана, изготовленная из халькогенидного стекла. Технический результат достигается новым количественным составом халькогенидного стекла, апробированного в Санкт-Петербургском государственном университете в режиме реального времени, на основе полученных результатов, в качестве соединения с высокой ионной проводимостью выбран селенид серебра, в качестве стеклообразователя селенид мышьяка, а в качестве электродноактивного вещества иодид ртути, что обеспечивает высокую устойчивость мембранного материала и, как следствие, лучшие характеристики чувствительности и точности определения ионов ртути. Соотношение компонентов халькогенидного стекла, содержащее, мол.%: иодид ртути 15-35 - потенциалопределяющее вещество; селенид серебра 15-35 соединение с высокой ионной проводимостью; селенид мышьяка 50 - стеклообразователь.

41

01700577

МПК: G01N 31/22

Состав мембраны химического сенсора для определения концентрации ионов ртути в водных растворах

Изобретение относится к физико-химическим методам анализа, в частности, к способу определения концентрации ионов ртути в растворах.

Известны химические сенсоры (ионоселективные электроды) с прессованными поликристаллическими мембранами на основе смеси 45-65 мол.% $Hg_2Cl_2-35-55$ мол.% Ag_2S , полученной методом смешения солей с последующей гомогенизацией и горячим прессованием [1].

В настоящее время известен состав прессованных мембран ионоселективных электродов для определения ионов ртути, где в качестве чувствительного вещества используют Hg_2O , полученную термическим разложением раствора нитрата ртути на титановой подложке [2]. К недостатку данных электродов является то, что они работают только в узкой области рH от 3 до 8.

Наиболее близким к предлагаемому техническому решению является мембранный материал, где в качестве чувствительного (электродноактивного) вещества используют суперионный проводник ($Ag_8HgS_2I_6$) в смеси с Ag_2S в соотношении 40-60 вес.% [3], который принят в качестве прототипа.

Недостатком известного мембранного материала является низкий предел обнаружения, который не превышает 10^{-4} - 10^{-5} М, что определяется, в частности, относительно низкой стабильностью суперионного проводника в водных растворах и частичным его разложением даже в слабокислых средах (pH \geq 2,5). К недостаткам вышеназванных составов мембран для ртутьселективных сенсоров можно отнести также относительно невысокий срок службы около 6 месяцев.

Значительно лучшими характеристиками обладают сенсорные мембранные материалы на основе халькогенидных стекол.

Технический результат заявленного способа состоит в существенном увеличении ресурса работы и повышении стабильности работы химического сенсора на ионы ртути в кислых средах.

Указанный технический результат достигается тем, что в качестве соединения с высокой ионно-электронной проводимостью выбран селенид серебра, в качестве стеклообразователя селенид мышьяка, а в качестве электродноактивного вещества иодид ртути, что обеспечивает высокую устойчивость мембранного материала и, как следствие, лучшие характеристики чувствительности и точности определения ионов ртути, при этом соотношение компонентов халькогенидного стекла, содержащего: иодид ртути (15 – 35 мол.%) — потенциалопределяющее вещество; селенид серебра (15 – 35 мол.%) — соединение с высокой ионной проводимостью; селенид мышьяка (40 – 60 мол.%) - стеклообразователь.

Санкт-Петербургском было апробировано Заявленное изобретение этом были в режиме реального времени. При государственном университете использованы: иономер (Mettler Toledo S40) с входным сопротивлением 10^{11} Ом для измерения потенциалов ячейки. В качестве растворов для построения градуировочных графиков применяли: а) $10^{-1}-10^{-6}$ моль \cdot л⁻¹ Hg(NO₃)₂, б) $10^{-1}-10^{-6}$ моль \cdot л⁻¹ Hg(NO₃)₂ с постоянной ионной силой равной 0.1 по HNO₃. Определение коэффициента селективности для Нд-селективных сенсоров проводились методом биионных потенциалов в смешанных растворах. Для этого использовались раствор 0,1 М Hg(NO₃)₂ и 0,1 М растворы, содержащие мешающие ионы тяжелых металлов: $Cu(NO_3)_2$, $Zn(NO_3)_2$, $Cd(NO_3)_2$, $Pb(NO_3)_2$.

Результаты апробаций представлены в виде конкретных примеров реализации в реальных лабораторных условиях. После проведения калибровок, сенсоры на ионы ртути (Φ иг.1) были использованы для измерения в ряде лабораторных сред, при этом погрешности измерений составляли 3–5%, для растворов 10^{-5} – 10^{-6} М, погрешность не превышала 10–15%.

Пример 1.

Стекла системы HgI_2 - Ag_2Se - As_2Se_3 были синтезированы из исходных веществ Ag_2Se и HgI_2 квалификации (х.ч.) и синтезированного нами As_2Se_3 .

Селенид мышьяка As_2Se_3 был синтезирован по следующей методике. Ампулу с навесками мышьяка и селена общей массой 25–40 г. нагревали до 400–450 $^{\circ}$ С. При этой температуре расплав выдерживали не менее суток для прохождения гетерогенной реакции взаимодействия мышьяка с селеном. Затем температуру повышали до 900° С, при этой температуре выдерживали в течение 12 часов. Закалку проводили от 850° С на воздухе.

Все стекла трех составов (навески - 3гр., в кварцевых ампулах, при остаточном давлении $\approx 0.1~\Pi a.$) получали в следующем режиме: температуру печи с образцами медленно поднимали до 450^{0} С, ампулы выдерживали 8 ч., после чего температуру повышали до 950^{0} С, при которой расплав выдерживали около суток и периодически перемешивали. Далее температуру снижали до 650^{0} С и расплав выдерживали в ампулах в течении 4-5 ч. Закалку проводили от 650^{0} С со скоростью $60-100^{0}$ С/сек. Контроль стеклообразного состояния осуществляли с помощью рентгенофазового анализа.

Таким образом, были получены ртутьсодержащие халькогенидные стекла трех составов со следующим содержанием HgI_2 , Ag_2Se и As_2Se_3 в мол%, соответственно: 1) 15–35–50; 2) 25–25–50; 3) 35–15–50.

Исследование температурных зависимостей электропроводности образцов выполнено методом импедансной спектроскопии на установке «Novocontrol Concept 40». Диапазон частот 20 М Γ ц-10 Γ ц, для температурного интервала 0-120 0 C.

Пример 2. Заявленное изобретение поясняется Фиг.1, на которой представлена зависимость электродной функции ртутьселективного сенсора с мембраной на основе халькогенидного стекла в системе HgI_2 - Ag_2Se - As_2Se_3 .

Пример 3. Заявленное изобретение поясняется Таблицей 1, на которой представлены результаты определения коэффициентов селективности ртутьселективных сенсоров с халькогенидными стеклянными мембранами на основе $HgI_2-Ag_2Se-As_2Se_3$.

Таблица 1

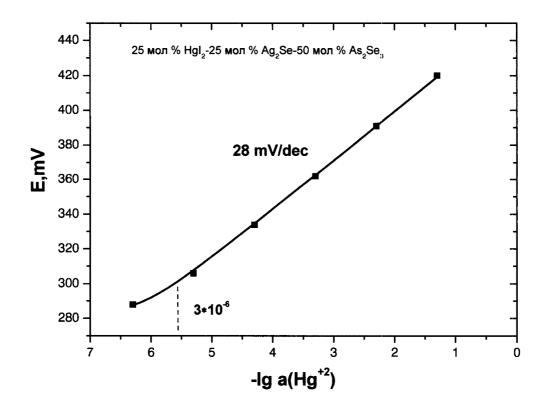
Образе $\psi/K_{A/B}$	15 мол% HgI ₂	25 мол% HgI ₂	35мол% HgI ₂
K_{Hg}^{2+}/C_{u}^{2+}	7.3•10 ⁻⁴	4.2•10 ⁻⁴	6.5•10-4
K_{Hg}^{2+}/P_{b}^{2+}	3.5•10 ⁻⁴	4.7•10 ⁻⁴	5.1•10-4
$K_{\mathrm{Hg}}^{2+}/\mathrm{Cd}^{2+}$	8.6•10 ⁻⁴	1.2•10 ⁻³	1.8•10-3
K_{Hg}^{2+2	2.0•10-4	3.4•10 ⁻⁴	1.6•10-4
${K_{ m Hg}}^{2+}_{/{ m Zn}}^{2+}$	2.0•10-4	3.4•10-4	1.6•10-4

Пример 4. Заявленное изобретение поясняется Фиг.2, на которой представлена зависимость потенциала Е (мВ), ртутьселективного сенсора, состава мембраны 25 мол%

 HgI_2 –25 мол% Ag_2Se_50 мол% As_2Se_3 , от pH исследуемого раствора при постоянных концентрациях потенциалопределяющего иона(моль π^{-1}): 10^{-1} $Hg(NO_3)_2$; 10^{-2} $Hg(NO_3)_2$.

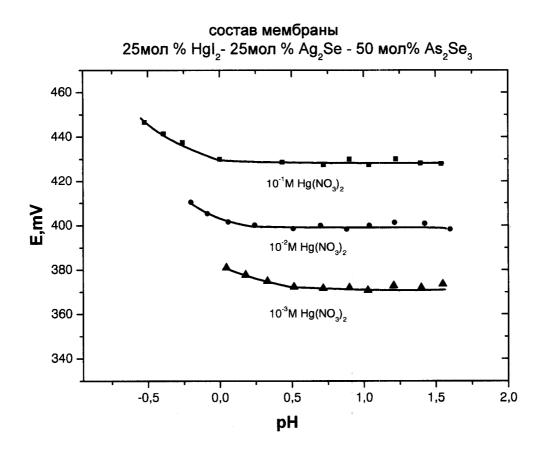
Технико-экономическая значимость заявленного изобретения состоит в возможности измерения концентрации ионов ртути в пробе раствора в течение 5–10 мин.; возможно определение ионов ртути в растворах в полевых условиях, т.к. портативный комплект для измерений состоит из сенсора на ртуть, электрода сравнения, калибровочных растворов и иономера — общий вес комплекта составляет 3 кг. Надо отметить, что разработанного сенсора нет в комплектах ни зарубежных, ни отечественных производителей в настоящее время.

Источники информации, принятые во внимание при экспертизе:


- 1. Власов Ю.Г., Колодников В.В., Ермоленко Ю.Е., Бычков Е.А., Осипова С.А. Состав мембраны ионоселективного электрода для определения активности ионов ртути /I/ и /II/. Авторское свидетельство СССР № 1081520 от 13 декабря 1982 г.
- 2. Колесников В.А., Кокарев Г.А., Жилова М.Г., Громова Е.В. Способ изготовления мембраны ионоселективного электрода для определения концентрации ионов ртути /II//. Авторское свидетельство СССР № 1436050 от 07 ноября 1988 г.
- 3. Власов Ю.Г., Ермоленко Ю.Е., Колодников В.В., Меркулов Е.В. и др. Состав мембраны ионоселективного электрода для определения активности ионов ртути /2/. Авторское свидетельство СССР № 1274455 от 28 декабря 1984 г (прототип)

Состав мембраны химического сенсора для определения концентрации ионов ртути в водных растворах

Формула изобретения


Состав мембраны химического сенсора для определения концентрации ионов ртути в водных растворах, включающий халькогенидное стекло, состоящее из потенциалопределяющего вещества, соединение с высокой ионно-электронной проводимостью и стеклообразователя, отличающийся тем, что в качестве потенциалопределяющего вещества использован иодид ртути в количестве 15 – 35 мол.%, в качестве соединения с высокой ионной проводимостью использован селенид серебра в количестве 15 – 35 мол.%, а в качестве стеклообразователя селенид мышьяка в количестве 40 - 60 мол.%.

Состав мембраны химического сенсора для определения концентрации ионов ртути в водных растворах

Фиг.1

Состав мембраны химического сенсора для определения концентрации ионов ртути в водных растворах

Фиг.2

ОТЧЕТ О ПАТЕНТНОМ ПОИСКЕ

(статья 15(3) ЕАПК и правило 42 Патентной инструкции к ЕАПК) Номер евразийской заявки:

201700577

Лата полачи:	21 декабря 2017 (21.12.2017) Дата испрашиваемого приоритета: 23 ноября 2017	(23.11.2017)				
Название изобретения: Состав мембраны химического сенсора для определения концентраций ионов ртути в						
	водных растворах					
Заявитель:						
	ВЫСШЕГО ОБРАЗОВАНИЯ "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ"					
	(СПБГУ)					
Некотор	Некоторые пункты формулы не подлежат поиску (см. раздел І дополнительного листа)					
Единств	о изобретения не соблюдено (см. раздел II дополнительного листа)					
А. КЛАССИ	ФИКАЦИЯ ПРЕДМЕТА ИЗОБРЕТЕНИЯ: G01N 27/36 (2006.01)					
	G01N 33/20 (2006.01)					
	C03C 3/32 (2006.01)					
Согласно Меж	дународной патентной классификации (МПК) или национальной классификации и МПК					
Б. ОБЛАСТІ	ь поиска:					
Минимум про	смотренной документации (система классификации и индексы МПК)					
G01N 27/36,	27/00, 33/20, 33/00, C03C 3/32, 3/00					
	оенная документация в той мере, в какой она включена в область поиска:					
	НТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ					
Категория*	Ссылки на документы с указанием, где это возможно, релевантных частей	Относится к пункту №				
	DOVEDNIE A LOCAL CALL AND A CALL CALL					
Y	BOIDIN R. et al. Study of the pseudo-ternary Ag ₂ S-As ₂ S ₃ -Hgl ₂ vitreous system.	1				
	Journal of Solid State Chemistry, 2013, vol. 199, pp. 264-270, реферат, табл. 1,					
	с. 264, кол. 2, абзацы 3, 4					
Y	BABANLY M.B. et al. Thermodynamic Study of the Ag-As-Se and Ag-S-I Systems	1				
1	Using the EMF Method with a Solid Ag ₄ RbI ₅ Electrolyte. Russian Journal of	1				
	Electrochemistry, 2009, Vol. 45, No. 4, pp. 399-404, pedepar, dur. 1, 3					
	Вієсноспеннізну, 2009, Vol. 43, No. 4, pp. 399-404, реферат, фиг. 1, 3					
A	VLASOV Yu G. et al. Electrochemical ion-selective sensors based on chalcogenide	1				
	glasses. Sensors and Actuators, 1987, V. 12, pp. 275-283, pedepar, c. 276, adsau 1,					
	с. 278-280					
Α	VLASOV Yu. G. et al. Copper ion-selective chalogenide glass electrodes. Analytical	1				
	Characteristics and Sensing Mechanism. Analytica Chimica Acta, 1986, V. 185,					
	рр. 137-158, реферат					
х последующи	ве документы указаны в продолжении графы В Данные о патентах-аналогах указаны в прилож					
	рии ссылочных документов: "Т" более поздний документ, опубликованный пос					
	"А" документ, определяющий общий уровень техники приоритета и приведенный для понимания изобретения "Е" более ранний документ, но опубликованный на дату "X" документ, имеющий наиболее близкое отношение к предмету					
подачи евразийской заявки или после нее поиска, порочащий новизну или изобретательский уровень, "О" документ, относящийся к устному раскрытию, экспони-						
"О" документ, о рованию и т.,	чие у прелиети					
		"Y" документ, имеющий наиболее близкое отношение к предмету поиска, порочащий изобретательский уровень в сочетании с				
заявки, но по						
"D" документ, приведенный в евразийской заявке "&" документ, являющийся патентом-аналогом "L" документ, приведенный в других целях						
Дата действит	ельного завершения патентного поиска: 14 августа 2018 (14.08.2018)	4 августа 2018 (14.08.2018)				
Наименование	и адрес Международного поискового органа: Уполномоченное лицо:					
Федерал	Федеральный институт					
_	ной собственности Л. В. Андреева					
	осква, Г-59, ГСП-3, Бережковская наб.,					
д. 30-1.Факс: (499) 243-3337, телетайп: 114818 ПОДАЧА Телефон № (499) 240-25-91						

ОТЧЕТ О ПАТЕНТНОМ ПОИСКЕ

Номер евразийской заявки:

201700577

ЛОКУМЕНТ	і ГЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ (продолжение графы І	R)	
Категория*	Ссылки на документы с указанием, где это возможно, релевантн		Относится к пункту №
A	US 4549953 A (HNU SYSTEMS, INC) 29.10.1985		1
A	SU 630576 A (ЛЕНИНГРАДСКИЙ УНИВЕРСИТЕТ ИМ. А.А. Ж 21.09.1978	(ДАНОВА)	1