(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2023.08.30

(21) Номер заявки

202292660

(22) Дата подачи заявки

2021.03.12

(51) Int. Cl. *C07C 11/02* (2006.01) **C07C 1/20** (2006.01) **B01J 29/85** (2006.01)

(**56**) CN-A-101279872 CN-A-107540493

CN-A-101293802

(54) СПОСОБ ПРЕВРАЩЕНИЯ МЕТАНОЛА В ОЛЕФИНЫ

(31) 202010193702.1

(32)2020.03.19

(33) \mathbf{CN}

(43) 2022.11.10

(86) PCT/CN2021/080409

(87) WO 2021/185168 2021.09.23

(71)(73) Заявитель и патентовладелец:

ЧАЙНА ПЕТРОЛЕУМ ЭНД КЕМИКАЛ КОРПОРЕЙШН; ШАНХАЙ РЕСЕРЧ ИНСТИТЬЮТ ОФ ПЕТРОКЕМИКАЛ ТЕКНОЛОДЖИ, СИНОПЕК (CN)

(72) Изобретатель:

Цзун Хунюань, Ци Гочжэнь, Цао Цзин, Ван Хунтао, Юй Чжинань, Чжэн Ицзюнь (CN)

(74) Представитель:

Медведев В.Н. (RU)

(57) Изобретение относится к способу превращения метанола в олефины, включающему подачу сырья, содержащего метанол, в реактор с псевдоожиженным слоем для контактирования с катализаторами с получением олефинового продукта, причем способ, по меньшей мере, частично деактивирует катализаторы с образованием, по меньшей мере, частично деактивированных катализаторов; подачу отработанных катализаторов, по меньшей мере, из частично деактивированных катализаторов в регенератор для регенерации с получением в результате регенерированных катализаторов и возвращение активированных катализаторов из регенерированных катализаторов в реактор через линию регенерированных катализаторов, отличающемуся тем, что на линии регенерированных катализаторов объемное содержание кислорода в компоненте газовой фазы на выпускном отверстии линии регенерированных катализаторов контролируют так, чтобы оно было меньше чем 0,1%, предпочтительно меньше чем 0,05% и более предпочтительно меньше чем 0,01%.

Область техники

Настоящее изобретение относится к способу превращения метанола в олефины (МТО).

Уровень техники

Низшие олефины включают главным образом этилен и пропилен, которые являются двумя важными базовыми сырьевыми материалами, а потребность в низших олефинах постоянно растет. Этилен используют для производства разных полиэтиленовых пластиков, винилхлорида, этиленоксида, этилбензола и этанола. Пропилен используют для производства разных полипропиленовых пластиков, акрилонитрила и пропиленоксида. Для получения низших олефинов помимо крекинга нефтяных продуктов одним из предпочтительных способов превращения является способ превращения оксигената в олефины. Когда в качестве исходного оксигената используют метанол, этот способ называют процессом МТО (methanol-to-olefine).

В реакторе МТО при определенных условиях превращения метанол или смесь метанола и разбавителя вводят в контакт с катализатором МТО для превращения в низшие олефины. Одним из предпочтительных катализаторов МТО является катализатор на основе силикоалюмофосфатного (SAPO) молекулярного сита, особенно SAPO-34, из-за его высокой селективности по этилену и пропилену. Документ US 4499327 предлагает подробные исследования по применению катализатора на основе силикоалюмофосфатного молекулярного сита в процессе получения олефинов преобразованием метанола и предлагает SAPO-34 в качестве предпочтительного катализатора для процесса МТО. Катализатор SAPO-34 обладает высокой селективностью и активностью по низшим олефинам и может гарантировать, что продолжительность реакции преобразования метанола в низший олефин будет составлять меньше чем 10 с, даже до достижения интервала продолжительности реакции лифт-реактора.

Документ US 6166282 раскрывает технологию и реактор для превращения метанола в низшие олефины, где используется реактор с "быстрым" псевдоожиженным слоем, причем после введения газовый фазы в реакцию в реакционной зоне с плотной фазой, имеющей более низкую скорость газа, газовая фаза поднимается в зону быстрого разделения, имеющую сильно уменьшенный внутренний диаметр, и специальное устройство разделения газ/(твердое вещество) используют прежде всего для отделения большей части захваченных катализаторов. Поскольку после реакции газообразный продукт и катализатор быстро разделяют, возникновение вторичной реакции эффективно предотвращается. С помощью моделирующего расчета можно увидеть, что в сравнении с традиционным реактором с барботажным псевдоожиженным слоем внутренний диаметр реактора с "быстрым" псевдоожиженным слоем и требуемый запас катализатора сильно снижаются. В пересчете на углерод выход низшего олефина в этом способе обычно составляет приблизительно 77%.

В документе CN 101357874 В раскрыт способ производства низших олефинов из метанола или диметилового эфира, который включает следующие стадии:

- а) предоставление реактора с "быстрым" псевдоожиженным слоем;
- b). подача сырьевого материала, содержащего метанол или диметиловый эфир, в реакционную зону реактора с быстрым слоем для контактирования с катализатором и превращения сырьевого материала в поток продукта, содержащего этилен и пропилен, при эффективных условиях;
- с) после отделения потока продукта подача большей части катализаторов во вторую отпарную зону плотной фазы;
- d) контактирование катализаторов, поступающих во вторую отпарную зону плотной фазы, с отпарной средой для удаления потока захваченного продукта;
- е) разделение подвергнутых отпарке горячих катализаторов по меньшей мере на две части, где по меньшей мере первую часть возвращают в нижнюю часть реакционной зоны с быстрым слоем и по меньшей мере вторую часть подают в регенератор.

Документ CN 1723262 А раскрывает многоступенчатый лифт-реактор, оборудованный центральным контуром катализатора для способа превращения оксидов в низшие олефины, который включает множество лифт-реакторов, зону разделения газ/(твердое вещество), множество элементов сдвига и т.п., причем каждый лифт-реактор имеет отверстие для введения катализаторов, а зона разделения отделяет катализатор от газообразного продукта. Выход низших олефинов в пересчете на углерод в этом способе обычно составляет 75-80%.

Однако с ростом на рынке потребности в этилене и пропилене к технологии производства низших олефинов предъявляются более высокие требования.

Сущность изобретения

Заявители изобретения обнаружили, что в процессе реакция-регенерация во время превращения метанола в низшие олефины из-за разных сред в реакционном процессе и процессе регенерации, наличия циркуляции катализатора и пористой природы твердого вещества катализатора неизбежен перенос одной среды в другую, что в результате оказывает влияние на реакционный процесс или процесс регенерации. Например, избыточное количество кислорода, поданного в реактор, может вызывать рост количества побочных продуктов алкина, диалкена, оксигената и т.п., а избыточное образование этих примесей может сильно повлиять на процесс разделения. Избыточное количество пара, поступившего в высокотемпературный регенератор (температура регенерации обычно превышает 650°С), может приводить к тому,

что объем пара в поровом канале катализатора резко вырастает из-за чрезмерной разницы температур, так что катализатор разрушается, содержание мелкодисперсного порошка увеличивается и растут потери катализатора. Заявители изобретения в результате многочисленных исследований установили, что проблемы могут быть решены за счет размещения устройства регулирования расхода катализаторов на линии отработанных катализаторов и на линии регенерированных катализаторов, которые соединяют реактор и регенератор и за счет разумного размещения устройства отпарки или дегазации, продувочной или разрыхляющей среды выше по потоку от впускного отверстия устройства регулирования расхода катализаторов, усиления эффектов отпарки и дегазации, а также строго контроля количества кислорода, поступающего в реактор, и количества пара, поступающего в регенератор.

Настоящее изобретение реализовано на основе этих открытий.

В целом, например, изобретение предлагает способ превращения метанола в олефины, и этот способ включает регенерацию, по меньшей мере, частично деактивированных катализаторов, произведенных в процессе превращения, в регенераторе и возвращение регенерированных катализаторов, полученных в результате этого, в указанный реактор через линию регенерированных катализаторов; причем второе устройство регулирования расхода катализаторов размещают на линии регенерированных катализаторов, и второе устройство регулирования расхода катализаторов контролирует объемное содержание кислорода в компоненте газовой фазы на выпускном отверстии линии регенерированных катализаторов так, чтобы оно составляло меньше чем 0.1%.

Предпочтительно в приведенном выше способе, по меньшей мере, частично деактивированные катализаторы подают в регенератор для регенерации через линию отработанных катализаторов, и линия отработанных катализаторов снабжена первым устройством регулирования расхода катализаторов, которое контролирует объемное содержание пара в компоненте газовой фазы на выпускном отверстии первого устройства регулирования расхода катализаторов так, чтобы оно составляло меньше чем 0,1%.

Также предпочтительно в приведенном выше способе отводная линия отпарки для отпарной среды расположена на линии между впускным отверстием линии отработанных катализаторов и первым устройством регулирования расхода катализаторов и отводная линия дегазации для дегазирующей среды расположена на линии между впускным отверстием линии регенерированных катализаторов и вторым устройством регулирования расхода катализаторов.

Применительно к настоящему изобретению термин "по меньшей мере, частично деактивированный катализатор" охватывает катализаторы, которые были полностью деактивированы, и, следовательно, в изобретении его используют взаимозаменяемо с термином "деактивированный катализатор".

Если говорить конкретно, то настоящее изобретение предлагает, например, следующие варианты осуществления.

- 1. Способ превращения метанола в олефины, включающий подачу сырья, содержащего метанол, в реактор с псевдоожиженным слоем для контактирования с катализаторами с получением олефинового продукта, причем способ, по меньшей мере, частично деактивирует катализаторы с образованием, по меньшей мере, частично деактивированных катализаторов; подачу отработанных катализаторов, по меньшей мере, частично из деактивированных катализаторов в регенератор для регенерации с получением в результате регенерированных катализаторов и возвращение активированных катализаторов из регенерированных катализаторов в реактор через линию регенерированных катализаторов; отличающийся тем, что на линии регенерированных катализаторов объемное содержание кислорода в компоненте газовой фазы на выпускном отверстии линии регенерированных катализаторов контролируют так, чтобы оно было меньше чем 0,1%, предпочтительно меньше чем 0,05% и более предпочтительно меньше чем 0,01%.
- 2. Способ по варианту осуществления 1, в котором отработанные катализаторы регенерируют путем подачи отработанных катализаторов через линию отработанных катализаторов в регенератор, где на линии отработанных катализаторов объемное содержание пара в компоненте газовой фазы на выпускном отверстии линии отработанных катализаторов контролируют так, чтобы оно было меньше чем 0,1%, предпочтительно меньше чем 0,05% и более предпочтительно меньше чем 0,01%.
- 3. Способ в соответствии с вариантом осуществления 2, отличающийся тем, что дополнительную отпарку проводят на линии между впускным отверстием линии отработанных катализаторов и первым устройством регулирования расхода катализаторов и/или дополнительную дегазацию проводят на линии между впускным отверстием линии регенерированных катализаторов и вторым устройством регулирования расхода катализаторов.
- 4. Способ в соответствии с вариантом осуществления 3, отличающийся тем, что регулирование расходов сред проводят соответственно на каждой линии из отводной линии отпарки для отпарной среды и отводной линии дегазации для дегазирующей среды предпочтительно с помощью регулирующего клапана или дроссельной диафрагмы.
 - 5. Способ по любому из предыдущих вариантов осуществления, отличающийся тем, что

по меньшей мере, частично деактивированные катализаторы подвергают отпарке паром с помощью по меньшей мере одной ступени паровой отпарной среды в отпарном аппарате с получением отработанных катализаторов;

отработанные катализаторы подают в регенератор через линию отработанных катализаторов для регенерации с получением регенерированных катализаторов;

регенерированные катализаторы дегазируют в емкости дегазации за счет использования по меньшей мере одной ступени дегазирующей среды с получением активированных катализаторов;

активированные катализаторы возвращают в реактор через линию регенерированных катализаторов,

где отпарной средой является пар и дегазирующей средой является пар или азот.

6. Способ по варианту осуществления 5, отличающийся тем, что

линия отработанных катализаторов работает при условиях: температура 200-500°С, предпочтительно 250-450°С; плотность катализатора 50-500 кг/м 3 , предпочтительно 150-400 кг/м 3 ; объемное отношение пара к отработанным катализаторам 0,001-0,5, предпочтительно 0,01-0,1; и

линия регенерированных катализаторов работает при условиях: температура 300-700°C, предпочтительно 400-650°C; плотность катализатора 50-500 кг/м 3 , предпочтительно 150-400 кг/м 3 ;

объемное отношение дегазирующей среды к регенерированным катализаторам от 0,001 до 0,5, предпочтительно от 0,01 до 0,1.

- 7. Способ по варианту осуществления 1, отличающийся тем, что активным компонентом катализатора является силикоалюмофосфатное молекулярное сито, содержащее SAPO-34.
- 8. Установка для проведения способа превращения метанола в олефины по любому из предыдущих вариантов, включающая:

реактор с псевдоожиженным слоем для приема метанольного сырья и его контактирования с катализаторами с получением олефинового продукта, причем способ, по меньшей мере, частично деактивирует катализаторы с получением, по меньшей мере, частично деактивированных катализаторов;

регенератор для регенерации отработанных катализаторов из реактора с псевдоожиженным слоем с получением регенерированных катализаторов;

линию регенерированных катализаторов для возвращения через нее активированных катализаторов в реактор;

второе устройство регулирования расхода катализаторов, расположенное на линии регенерированных катализаторов, которое выполнено с возможностью контролировать объемное содержание кислорода в компоненте газовой фазы на выпускном отверстии линии регенерированных катализаторов, чтобы оно было меньше чем 0.1%, предпочтительно меньше чем 0.05%, более предпочтительно меньше чем 0.01%.

- 9. Установка в соответствии с вариантом осуществления 8, дополнительно включающая линию отработанных катализаторов для подачи деактивированных катализаторов в регенератор для регенерации, где линия отработанных катализаторов снабжена первым устройством регулирования расхода катализаторов, которое выполнено с возможностью контролировать объемное содержание пара компонента газовой фазы на выпускном отверстии линии отработанных катализаторов так, чтобы оно было меньше чем 0,1%, предпочтительно меньше чем 0,05%, более предпочтительно меньше чем 0,01%.
- 10. Установка в соответствии с вариантом осуществления 9, отличающаяся тем, что отводная линия отпарки для отпарной среды расположена на линии между впускным отверстием линии отработанных катализаторов и первым устройством регулирования расхода катализаторов для проведения дополнительной отпарки; и отводная линия дегазации для дегазирующей среды расположена на линии между впускным отверстием линии регенерированных катализаторов и вторым устройством регулирования расхода катализаторов для проведения дополнительной дегазации.
 - 11. Установка по варианту осуществления 9, дополнительно включающая:

отпарной аппарат для проведения по меньшей мере одной ступени отпарки с помощью отпарной среды, по меньшей мере, частично на деактивированном катализаторе с получением отработанных катализаторов;

емкость дегазации для дегазации регенерированных катализаторов в емкости дегазации с помощью по меньшей мере одной ступени дегазирующей среды с получением активированных катализаторов,

отличающаяся тем. что

впускное отверстие отпарного аппарата соединено с зоной разделения реактора и выпускное отверстие отпарного аппарата соединено с впускным отверстием линии отработанных катализаторов;

впускное отверстие емкости дегазации соединено с секцией разбавленной фазы регенератора и выпускное отверстие емкости дегазации соединено с впускным отверстием линии регенерированных катализаторов.

В типичном варианте осуществления изобретения отпарной аппарат расположен внутри реактора. В другом типичном варианте изобретения отпарной аппарат расположен снаружи реактора.

В типичном варианте осуществления изобретения емкость дегазации расположена внутри регенератора. В другом типичном варианте изобретения емкость дегазации расположена снаружи регенератора.

В предпочтительном варианте осуществления по меньшей мере один слой перегородки предусмотрен в отпарном аппарате и по меньшей мере один слой перегородки предусмотрен в емкости дегазации,

где дегазирующую среду подают в емкость дегазации по секциям.

- 12. Установка в соответствии с вариантом осуществления 11, отличающаяся тем, что верх отпарного аппарата снабжен выпускным отверстием газовой фазы, соединенным с зоной разделения реактора, и верх емкости дегазации снабжен выпускным отверстием газовой фазы, соединенным с секцией разбавленной фазы регенератора или линией топочного газа выпускного отверстия регенератора.
- 13. Установка по варианту осуществления 9, отличающаяся тем, что первое устройство регулирования расхода катализаторов и второе устройство регулирования расхода катализаторов, каждое независимо, представляют собой пневматический или гидравлический односторонний золотниковый клапан.
- 14. Установка по варианту осуществления 8, отличающаяся тем, что реактор с псевдоожиженным слоем имеет форму слоя с плотной фазой, форму турбулентного слоя или форму быстрого псевдоожиженного слоя.

Технические эффекты

В соответствии со способом по изобретению продукт имеет меньше примесей. В соответствии со способом по изобретению потери катализатора небольшие.

Описание чертежей

Фигура представляет собой схематичную блок-схему способа в соответствии с настоящим изобретением. На фигуре позиции означают следующее:

- 1 сырье реактора;
- 2 реакционная зона реактора;
- 3 зона быстрого разделения газ/(твердое вещество);
- 4 отпарной аппарат;
- 5 наклонная труба внешней циркуляции реактора;
- 6 распределитель сырья;
- 7 зона регенерации регенератора;
- 8 циклонный сепаратор газ/(твердое вещество) реактора;
- 9 зона разделения реактора;
- 10 газосборная камера;
- 11 выпускная линия газообразного продукта;
- 12 секция разбавленной фазы регенератора;
- 13 впускная линия регенерирующей среды;
- 14 линия отработанных катализаторов (или наклонная линия отработки);
- 15 внешнее устройство отведения тепла регенератора;
- 16 циклонный сепаратор газ/(твердое вещество) регенератора;
- 17 выпускная линия регенерированного топочного газа;
- 18 внешнее устройство отведения тепла реактора;
- 19 линия регенерированных катализаторов (или наклонная труба регенерации);
- 20 линия введения пара в реактор;
- 21 регенератор;
- 22 реактор;
- 23 впускная линия жидкого котельного топлива;
- 24 нижняя линия загрузки/выгрузки катализатора регенератора;
- 25 вспомогательная нагревательная печь;
- 26 второе устройство регулирования расхода катализаторов (золотниковый клапан наклонной линии регенерации);
- 27 первое устройство регулирования расхода катализаторов (золотниковый клапан наклонной линии отработки);
 - 28 емкость дегазации;
 - 29 отводная линия отпарки для отпарной среды;
 - 30 отводная линия дегазации для дегазирующей среды.

Варианты осуществления изобретения

Ниже настоящее изобретение дополнительно проиллюстрировано более подробно, при этом следует понимать, что объем изобретения не ограничен этими вариантами осуществления, а определяется прилагаемой формулой изобретения.

Все публикации, патентные заявки, патенты и другие ссылки, упомянутые в данном описании, включены в настоящий документ посредством ссылки во всей их полноте. Если не определено конкретно, все технические и научные термины, используемые здесь, имеют то же значение, которое обычно понимают специалисты в области техники, к которой относится данное изобретение. В случае конфликта настоящее описание, включая определения, будет иметь преимущественную силу.

Когда в настоящем описании упоминается материал, вещество, метод, стадия, устройство или компонент и т.д. с производными словами "известный специалистам в данной области техники", "известный уровень техники" и т.п., производный термин предназначен для охвата терминов, которые обычно используют в области настоящего изобретения, но также охватывает термины, которые в настоящее время

не известны и в то же время станут известны в данной области техники как пригодные для аналогичных пелей.

В контексте данного описания способы получения молекулярных сит SAPO или катализаторов на основе молекулярного сита SAPO хорошо известны в данной области техники.

В контексте данного описания термин "по меньшей мере, частично деактивированный катализатор" или "деактивированный катализатор" используют для обозначения катализаторов, активность которых, по меньшей мере, частично снижена после прохождения через реакционную зону.

В контексте данного описания термин "отработанный катализатор" используют для обозначения катализатора, который подают из реактора (например, через линию отработанных катализаторов) в регенератор для регенерации.

В контексте данного описания термин "регенерированный катализатор" используют для обозначения катализатора, полученного после регенерации (например, путем выжигания кокса) в реакционной зоне регенератора.

В контексте данного описания термин "активированный катализатор" используют для обозначения катализатора, который направляют (например, через линию регенерированных катализаторов) в реактор для взаимодействия после регенерации и необязательной дополнительной обработки (т.е. после завершения регенерации) в регенераторе.

Все проценты, части, соотношения и т.п., приведенные в данном описании, указаны по массе, а давление является манометрическими, если явно не указано иное.

В контексте этого описания любые два или более варианта осуществления изобретения могут быть объединены с формированием варианта осуществления, и полученный вариант осуществления представляет собой часть первоначального раскрытия данного описания и находится в пределах объема охраны изобретения.

Типичный вариант осуществления А по настоящему изобретению показан на фигуре. Что качается фигуры, то поток, содержащий метанольное сырье, подают через линию подачи сырья 1 и необязательно через распределитель сырья 6 в реакционную зону 2 реактора 22 и вводят в контакт с катализаторами на основе молекулярных сит для взаимодействия с получением продукта, содержащего низшие олефины, причем катализаторы, по меньшей мере, частично деактивируются. По меньшей мере, частично деактивированные катализаторы подают в зону разделения 9 реактора через область быстрого разделения газ/(твердое вещество) 3, где большую часть, по меньшей мере, частично деактивированных катализаторов, отделенных с помощью устройства быстрого разделения газ/(твердое вещество) 3, подают в отпарной аппарат 4, а газофазный продукт, отделенный с помощью устройства быстрого разделения газ/(твердое вещество) 3, и часть, по меньшей мере, частично деактивированных катализаторов, не отделенных с помощью устройства быстрого разделения газ/(твердое вещество), подают в циклонный сепаратор 8 для дополнительного разделения. По меньшей мере, частично деактивированные катализаторы, отделенные с помощью циклона 8, также возвращают в отпарной аппарат 4 через опускную трубу циклона 8. Газофазный продукт, отделенный с помощью устройства быстрого разделения газ/(твердое вещество) 3, и газофазный продукт, отделенный с помощью циклонного сепаратора 8, подают в рабочую секцию последующего разделения через газосборную камеру 10 и выпускную линию 11.

По меньшей мере, частично деактивированные катализаторы, отделенные с помощью зоны быстрого разделения газ/(твердое вещество) 3 и с помощью циклонного сепаратора 8, подвергают отпарке с получением отработанных катализаторов, которые делят на две части, где одну часть возвращают в нижнюю часть реакционной зоны 2 через наклонную линию внешней циркуляции катализатора 5; а другую часть подают в регенератор 21 через линию отработанных катализаторов 14. Линия отработанных катализаторов 14 снабжена первым устройством регулирования расхода катализаторов 27, выполненным с возможностью контролировать объемное содержание пара компонента газовой фазы на выпускном отверстии линии отработанных катализаторов так, чтобы оно было меньше чем 0,1%, предпочтительно меньше чем 0,05%, более предпочтительно меньше чем 0,01%.

Отработанные катализаторы регенерируют в реакционной зоне 7 регенератора 21, где используемая регенерирующая среда может представлять собой среду, традиционно используемую в данной области техники, такую как воздух, кислород и др. Регенерацию предпочтительно проводят путем выжигания кокса с получением регенерированных катализаторов. Топочный газ, образованный при выжигании кокса, пропускают через циклонный сепаратор 16 и затем подают в последующую систему рекуперации энергии через выпускную линию топочного газа 17. Регенерированные катализаторы подают в емкость дегазации 28, соединенную с секцией разбавленной фазы 12 у верхней части регенератора 21, и дегазируют в емкости дегазации 28 с помощью по меньшей мере одной ступени дегазирующей среды с получением активированных катализаторов. Активированные катализаторы возвращают в реакционную зону 2 реактора по линии регенерированных катализаторов 19. Линия регенерированных катализаторов 19 снабжена вторым устройством регулирования расхода катализаторов 26, выполненным с возможностью контролировать объемное содержание кислорода компонента газовой фазы на выпускном отверстии линии регенерированных катализаторов так, чтобы оно было меньше чем 0,1%, предпочтительно меньше чем 0,05%, более предпочтительно меньше чем 0,01%.

В приведенном выше варианте осуществления А предпочтительно линия 20 для введения пара в реактор снабжена вспомогательной нагревательной печью 25, причем эту линию 20 объединяют с линией подачи сырья 1 и затем подают в реактор 22. В соответствии с изобретением, например, одна из функций пара, поданного через паровую линию 20, состоит в том, чтобы обеспечивать пусковое нагревание; соответственно, вспомогательная печь 25 способствует достижению температуры запуска реакции во время загрузки.

В приведенном выше варианте осуществления А предпочтительно наклонная линия внешней циркуляции катализатора 5 реактора 22 снабжена внешним устройством отведения тепла 5(18??) для отведения тепла, генерируемого реакцией в реакторе, чтобы достигать цели регулирования температуры реакции, требуемой для реакционной зоны.

В приведенном выше варианте осуществления А предпочтительно нижняя часть регенератора 21 оборудована линией загрузки/выгрузки катализатора 24 для введения катализатора в регенератор во время запуска или нормальной работы или для выгрузки катализатора из регенератора во время остановки.

В приведенном выше варианте осуществления А предпочтительно регенерирующую среду добавляют в регенератор 21 через впускную линию регенерирующей среды 13 и жидкое котельное топливо добавляют в регенератор 21 через впускную линию жидкого котельного топлива 23.

В приведенном выше варианте осуществления А предпочтительно регенератор 21 снабжен внешним устройством отведения тепла регенератора 15 для отведения тепла, генерируемого реакцией в регенераторе 21, чтобы достигать цели регулирования температуры регенерации, требуемой в регенераторе.

В одном варианте осуществления изобретения необязательно группа отводных линий паровой отпарки оборудована с интервалами на линии между впускным отверстием линии отработанных катализаторов и устройством регулирования расхода катализаторов, и каждая группа отводных линий паровой отпарки расположена радиально вокруг линии.

В одном варианте осуществления изобретения необязательно группа отводных линий дегазации для дегазирующей среды оборудована с интервалами на линии между впускным отверстием линии регенерированных катализаторов и устройством регулирования расхода катализаторов, и каждая группа отводных линий дегазации для дегазирующей среды расположена радиально вокруг линии.

В одном варианте изобретения необязательно как отводная линия паровой отпарки, так и отводная линия дегазации для дегазирующей среды снабжены дроссельными диафрагмами. Размеры дроссельных диафрагм выбирают в зависимости от конструкции. Поток среды в каждом отводе фиксируют без ручной настройки. Каждая отводная линия снабжена переключающим клапаном.

В одном варианте изобретения отводная линия отпарки для отпарной среды и отводная линия дегазации для дегазирующей среды необязательно имеют не только функцию разрыхления, но также функцию дополнительной отпарки или дегазации.

Ниже настоящее изобретение описано с помощью примеров, которые не накладывают ограничения на объем изобретения.

Пример 1.

Согласно фигуре используют типичный вариант осуществления А настоящего изобретения.

Активным компонентом катализатора является силикоалюмофосфатное молекулярное сито, содержащее SAPO-34, а реактор с псевдоожиженным слоем находится в режиме "быстрого" псевдоожижения. Устройство регулирования расхода катализаторов представляет собой пневматический односторонний золотниковый клапан. По меньшей мере, частично деактивированные катализаторы в реакторе отпаривают с помощью одноступенчатой отпарной среды. Отработанные катализаторы подают в регенератор для регенерации через линию отработанных катализаторов. Регенерированные катализаторы дегазируют с помощью дегазирующей среды. Регенерированные активированные катализаторы возвращают в реактор через линию регенерированных катализаторов. Отпарной средой является пар, и дегазирующей средой является пар. Процесс отпарки паром проводят в паровом отпарном аппарате, причем впускное отверстие парового отпарного аппарата соединено с реактором, а выпускное отверстие парового отпарного аппарата соединение с впускным отверстием линии отработанных катализаторов. Процесс дегазации проводят в емкости дегазации, которая размещена внутри регенератора. Впускное отверстие емкости дегазации соединено с регенератором, а выпускное отверстие емкости дегазации соединено с впускным отверстием линии регенерированных катализаторов. Отводная линия отпарки паром расположена на линии между впускным отверстием линии отработанных катализаторов и устройством регулирования расхода катализаторов, и отводная линия отпарки паром расположена радиально вокруг линии. Отводная линия дегазации для дегазирующей среды расположена на линии между впускным отверстием линии регенерированных катализаторов и устройством регулирования расхода катализаторов, и отводная линия дегазации для дегазирующей среды расположена радиально вокруг линии. Как отводная линия отпарки паром, так и отводная линии дегазации для дегазирующей среды снабжены дроссельными диафрагмами, и каждая отводная линия снабжена переключающим клапаном. Отпарной аппарат снабжен 5 слоями перегородок, которые размещены в шахматном порядке. Емкость дегазации снабжена 2 слоями перегородок, и дегазирующую среду подают в емкость дегазации в две секции. Верх отпарного аппарата снабжен выпускным отверстием газовой фазы, соединенным с основным корпусом реактора, а верх емкости дегазации снабжен выпускным отверстием газовой фазы, соединенным с секцией разбавленной фазы регенератора.

Линия отработанных катализаторов работает при условиях: температура 200° C, плотность катализатора 50 кг/m^3 и объемное отношение пара к отработанным катализаторам 0.5.

Линия регенерированных катализаторов работает при условиях: температура 300°С, плотность катализатора 50 кг/м и объемное отношение дегазирующей среды к регенерированным катализаторам 0,5.

Объемное содержание пара в компоненте газовой фазы на выпускном отверстии устройства регулирования расхода катализаторов на линии отработанных катализаторов составляет 0,05%, и объемное содержание кислорода в компоненте газовой фазы на выпускном отверстии устройства регулирования расхода катализаторов на линии регенерированных катализаторов составляет 0,005%.

Согласно анализу газообразный продукт на выходе из реактора содержит, в массовых долях, меньше чем 100 ч./млн оксигенатов (сумма альдегида, кетона и кислоты) и меньше чем 1 ч./млн ацетилена, а потери катализатора за 3 месяца снижены на 4%.

Пример 2.

По существу следуют условиям и методикам, описанным в примере 1, за исключением тех, которые конкретно указаны ниже. Реактор с псевдоожиженным слоем находится в режиме псевдоожиженной плотной фазы. Устройство регулирования расхода катализаторов представляет собой гидравлический односторонний золотниковый клапан. По меньшей мере, частично деактивированные катализаторы в реакторе отпаривают с помощью двухступенчатых отпарных сред. Дегазирующей средой является азот. Отпарной аппарат снабжен 2 слоями перегородок, которые расположены в шахматном порядке. Емкость дегазации снабжена 4 слоями перегородок, и дегазирующую среду подают в емкость дегазации в две секции. Верх емкости дегазации снабжен выпускным отверстием газовой фазы, соединенным с выпускным отверстием линии топочного газа регенератора.

Линия отработанных катализаторов работает при условиях: температура 490° C, плотность катализатора 480 кг/m^3 и объемное отношение пара к отработанным катализаторам $0{,}002$.

Линия регенерированных катализаторов работает при условиях: температура 680° C, плотность катализатора 460 кг/м и объемное отношение дегазирующей среды к регенерированным катализаторам 0.003.

Объемное содержание пара в компоненте газовой фазы на выпускном отверстии устройства регулирования расхода катализаторов на линии отработанных катализаторов составляет 0,03%, и объемное содержание кислорода в компоненте газовой фазы на выпускном отверстии устройства регулирования расхода катализаторов на линии регенерированных катализаторов составляет 0,008%.

Согласно анализу газообразный продукт на выходе из реактора содержит, в массовых долях, меньше чем 50 ч./млн оксигенатов и меньше чем 1 ч./млн ацетилена, а потери катализатора за 3 месяца снижены на 6%.

Пример 3.

Следуют условиям и методикам, описанным в примере 1.

Линия отработанных катализаторов работает при условиях: температура 400° C, плотность катализатора 380 кг/m^3 и объемное отношение пара к отработанным катализаторам 0,01.

Линия регенерированных катализаторов работает при условиях: температура 630° С, плотность катализатора 380~ кг/м и объемное отношение дегазирующей среды к регенерированным катализаторам 0.01

Объемное содержание пара в компоненте газовой фазы на выпускном отверстии устройства регулирования расхода катализаторов на линии отработанных катализаторов составляет 0,01%, и объемное содержание кислорода в компоненте газовой фазы на выпускном отверстии устройства регулирования расхода катализаторов на линии регенерированных катализаторов составляет 0,01%.

Согласно анализу газообразный продукт на выходе из реактора содержит, в массовых долях, меньше чем 150 ч./млн оксигенатов и меньше чем 1 ч./млн ацетилена, а потери катализатора за 3 месяца снижены на 10%.

Пример 4.

Следуют условиям и методикам, описанным в примере 1.

Линия отработанных катализаторов работает при условиях: температура 480° C, плотность катализатора 450 кг/m^3 и объемное отношение пара к отработанным катализаторам $0{,}005$.

Линия регенерированных катализаторов работает при условиях: температура 670° C, плотность катализатора 380~ кг/м и объемное отношение дегазирующей среды к регенерированным катализаторам 0,005.

Объемное содержание пара в компоненте газовой фазы на выпускном отверстии устройства регулирования расхода катализаторов на линии отработанных катализаторов составляет 0,001%, и объемное содержание кислорода в компоненте газовой фазы на выпускном отверстии устройства регулирования расхода катализаторов на линии регенерированных катализаторов составляет 0,0004%.

Согласно анализу газообразный продукт на выходе из реактора содержит, в массовых долях, мень-

ше чем 40 ч./млн оксигенатов и меньше чем 1 ч./млн ацетилена, а потери катализатора за 3 месяца снижены на 15%.

Сравнительный пример 1.

Следуют методикам, описанным в примере 1. Объемное содержание пара в компоненте газовой фазы на выпускном отверстии устройства регулирования расхода катализаторов на линии отработанных катализаторов составляет 0,21%, и объемное содержание кислорода в компоненте газовой фазы на выпускном отверстии устройства регулирования расхода катализаторов на линии регенерированных катализаторов составляет 0,18%.

Газообразный продукт на выходе из реактора содержит, в массовых долях, вплоть до 308 ч./млн оксигенатов и вплоть до 3 ч./млн ацетилена.

Очевидно, что способ по настоящему изобретению может достичь цели повышения выхода низших олефинов и, следовательно, его можно использовать для промышленного производства низших олефинов.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ превращения метанола в олефины, включающий:

подачу сырья, содержащего метанол, в реактор с псевдоожиженным слоем для контактирования с катализаторами с получением олефинового продукта, причем способ, по меньшей мере, частично деактивирует катализаторы с образованием, по меньшей мере, частично деактивированных катализаторов;

подачу отработанных катализаторов, по меньшей мере, из частично деактивированных катализаторов в регенератор для регенерации с образованием в результате регенерированных катализаторов и

возвращение активированных катализаторов из регенерированных катализаторов в реактор через линию регенерированных катализаторов,

отличающийся тем, что на линии регенерированных катализаторов объемное содержание кислорода в компоненте газовой фазы на выпускном отверстии линии регенерированных катализаторов контролируют так, чтобы оно было меньше чем 0.1%.

- 2. Способ по п.1, в котором объемное содержание кислорода в компоненте газовой фазы на выпускном отверстии линии регенерированных катализаторов контролируют так, чтобы оно было меньше чем 0,05%, предпочтительно меньше чем 0,01%.
- 3. Способ по п.1, в котором отработанные катализаторы регенерируют путем подачи отработанных катализаторов через линию отработанных катализаторов в регенератор, причем на линии отработанных катализаторов объемное содержание пара в компоненте газовой фазы на выпускном отверстии линии отработанных катализаторов контролируют так, чтобы оно было меньше чем 0,1%, предпочтительно меньше чем 0,05% и более предпочтительно меньше чем 0,01%.
- 4. Способ по п.3, отличающийся тем, что дополнительную отпарку проводят на линии между впускным отверстием линии отработанных катализаторов и первым устройством регулирования расхода катализаторов и/или дополнительную дегазацию проводят на линии между впускным отверстием линии регенерированных катализаторов и вторым устройством регулирования расхода катализаторов.
- 5. Способ по п.4, отличающийся тем, что регулирование расходов сред проводят соответственно на каждой линии из отводной линии отпарки для отпарной среды и отводной линии дегазации для дегазирующей среды предпочтительно с помощью регулирующего клапана или дроссельной диафрагмы.
 - 6. Способ по любому из предыдущих пунктов, отличающийся тем, что

по меньшей мере, частично деактивированные катализаторы подвергают отпарке паром с помощью по меньшей мере одной ступени паровой опарной среды в паровом отпарном аппарате с получением отработанных катализаторов;

отработанные катализаторы подают в регенератор через линию отработанных катализаторов для регенерации с получением регенерированных катализаторов;

регенерированные катализаторы дегазируют в емкости дегазации за счет использования по меньшей мере одной ступени дегазирующей среды с получением активированных катализаторов;

активированные катализаторы возвращают в реактор через линию регенерированных катализаторов,

где отпарной средой является пар и дегазирующей средой является пар или азот.

7. Способ по п.6, отличающийся тем, что

линия отработанных катализаторов работает при условиях: температура $200\text{-}500^{\circ}\text{C}$, предпочтительно $250\text{-}450^{\circ}\text{C}$; плотность катализатора 50-500 кг/м³, предпочтительно 150-400 кг/м³ и объемное отношение пара к отработанным катализаторам 0,001-0,5, предпочтительно 0,01-0,1; и

линия регенерированных катализаторов работает при условиях: температура $300-700^{\circ}$ С, предпочтительно $400-650^{\circ}$ С; плотность катализатора 50-500 кг/м³, предпочтительно 150-400 кг/м³; объемное отношение дегазирующей среды к регенерированным катализаторам от 0,001 до 0,5, предпочтительно от 0,01 до 0,1.

8. Способ по п.1, отличающийся тем, что активным компонентом катализатора является силикоа-

люмофосфатное молекулярное сито, содержащее SAPO-34.

9. Установка для проведения способа превращения метанола в олефины по любому из предыдущих пунктов, включающая:

реактор с псевдоожиженным слоем для приема метанольного сырья и его контактирования с катализаторами с получением олефинового продукта, причем способ, по меньшей мере, частично деактивирует катализаторы с получением, по меньшей мере, частично деактивированных катализаторов;

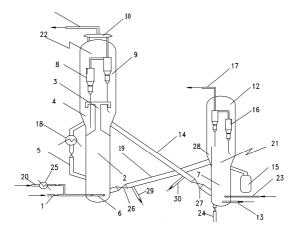
регенератор для регенерации отработанных катализаторов из реактора с псевдоожиженным слоем с получением регенерированных катализаторов;

линию регенерированных катализаторов для возвращения через нее активированных катализаторов в реактор;

второе устройство регулирования расхода катализаторов, расположенное на линии регенерированных катализаторов, которое выполнено с возможностью контролировать объемное содержание кислорода в компоненте газовой фазы на выпускном отверстии линии регенерированных катализаторов так, чтобы оно было меньше чем 0,1%.

- 10. Установка по п.9, где второе устройство регулирования расхода катализаторов, расположенное на линии регенерированных катализаторов, которое выполнено с возможностью контролировать объемное содержание кислорода в компоненте газовой фазы на выпускном отверстии линии регенерированных катализаторов так, чтобы оно было меньше чем 0,05%, предпочтительно меньше чем 0,01%.
- 11. Установка по п.9, дополнительно включающая линию отработанных катализаторов для подачи деактивированных катализаторов в регенератор для регенерации, причем линия отработанных катализаторов снабжена первым устройством регулирования расхода катализаторов, которое выполнено с возможностью контролировать объемное содержание пара компонента газовой фазы на выпускном отверстии линии отработанных катализаторов так, чтобы оно было меньше чем 0,1%, предпочтительно меньше чем 0,05%, более предпочтительно меньше чем 0,01%.
- 12. Установка по п.11, отличающаяся тем, что отводная линия отпарки для отпарной среды расположена на линии между впускным отверстием линии отработанных катализаторов и первым устройством регулирования расхода катализаторов для проведения дополнительной отпарки и отводная линия дегазации для дегазирующей среды расположена на линии между впускным отверстием линии регенерированных катализаторов и вторым устройством регулирования расхода катализаторов для проведения дополнительной дегазации.
 - 13. Установка по п.11, дополнительно включающая:

отпарной аппарат для проведения по меньшей мере одной ступени отпарки с помощью отпарной среды, по меньшей мере, на частично деактивированном катализаторе с получением отработанных катализаторов;


емкость дегазации для дегазации регенерированных катализаторов в емкости дегазации с помощью по меньшей мере одной ступени дегазирующей среды с получением активированных катализаторов;

отличающаяся тем, что

впускное отверстие отпарного аппарата соединено с зоной разделения реактора и выпускное отверстие отпарного аппарата соединено с впускным отверстием линии отработанных катализаторов;

впускное отверстие емкости дегазации соединено с секцией разбавленной фазы регенератора и выпускное отверстие емкости дегазации соединено с впускным отверстием линии регенерированных катализаторов.

- 14. Установка по п.13, отличающаяся тем, что верх отпарного аппарата снабжен выпускным отверстием газовой фазы, соединенным с зоной разделения реактора, и верх емкости дегазации снабжен выпускным отверстием газовой фазы, соединенным с секцией разбавленной фазы регенератора или линией топочного газа выпускного отверстия регенератора.
- 15. Установка по п.11, отличающаяся тем, что первое устройство регулирования расхода катализаторов и второе устройство регулирования расхода катализаторов каждое независимо представляет собой пневматический или гидравлический односторонний золотниковый клапан.
- 16. Установка по п.9, отличающаяся тем, что реактор с псевдоожиженным слоем имеет форму слоя с плотной фазой, форму турбулентного слоя или форму быстрого псевдоожиженного слоя.

Евразийская патентная организация, ЕАПВ

Россия, 109012, Москва, Малый Черкасский пер., 2