(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2023.12.13

(21) Номер заявки

202292530

(22) Дата подачи заявки

2022.10.03

(51) Int. Cl. A61K 31/422 (2006.01) **A61K 31/345** (2006.01)

A61K 31/437 (2006.01)

A61K 33/44 (2006.01)

A61K 36/00 (2006.01)

A61K 35/02 (2015.01) **A61P 1/12** (2006.01)

A61P 31/04 (2006.01)

КОМПОЗИЦИЯ ДЛЯ КУПИРОВАНИЯ ДИАРЕИ БАКТЕРИАЛЬНОГО, ВИРУСНО-БАКТЕРИАЛЬНОГО И ФУНКЦИОНАЛЬНОГО ГЕНЕЗА

(43) 2023.12.12

(96) 2022000090 (RU) 2022.10.03

(71)(73) Заявитель и патентовладелец: ДИКОВСКИЙ АЛЕКСАНДР

ВЛАДИМИРОВИЧ (СҮ)

(72) Изобретатель:

Диковский Александр Владимирович, Сергеев Артемий Александрович, **Щанкина Вера Геннадьевна (RU)**

(74) Представитель:

(57)

Квашнин В.П. (RU)

CN-A-102657680 RU-C1-2003336 (56)

RU-C1-2325166

RU-C2-2591791

RU-C2-2427389

EA-B1-025645

ПОСОХОВА А. В. "Экспериментальное обоснование пищевого медико-биологическое использования гумата натрия". Автореферат диссертации на соискание ученой степени кандидата медицинских наук, Владивосток 2004, [онлайн] [найдено 2023-02-03]

Найдено https://www.dissercat.com/ content/eksperimentalnoe-mediko-biologicheskoehchevogo-ispolzovaniya-gumataobosnovanie-pis

natriya>; cTp.4

Изобретение относится к области медицины и касается композиции, пригодной для лечения

больных диареей бактериального и вирусно-бактериального генеза, в том числе, при

жизнедеятельности с одновременной абсорбцией избытков жидкости в просвете ЖКТ в заявленных

МАШКОВСКИЙ М.Д. Лекарственные средства, 14-е издание, том 1. Москва, 2002, стр.11

неидентифицированных и/или неуточненных кишечных инфекциях, содержащей кишечный антисептик в сочетании с энтеросорбентом в эффективных количествах, где антисептик выбран из группы, представляющей нифуроксазид, нифурател, рифаксимин, а сорбент выбран из группы, представляющей лигнин гидролизный, активированный уголь, диоксид кремния, дисмектит. Также изобретение относится к области медицины и касается композиции, применяемой для лечения диареи функционального генеза при синдроме раздраженного кишечника диарейного типа, в том числе, при сопутствующем синдроме избыточного бактериального роста, содержащей кишечный антисептик в сочетании с энтеросорбентом в эффективных количествах, обеспечивающих терапевтически эффективную суточную дозу композиции. Технический результат заключается в достижении неожиданного синергетического эффекта за счет реализации механизма одновременного антибактериального воздействия кишечного антисептика на патогенные или условно патогенные микроорганизмы и сорбционно-очищающего действия энтеросорбента в отношении патогенных или условно патогенных микроорганизмов, а также продуктов их

эффективных количествах, способных нормализовывать частоту и консистенцию кала.

Описание

Изобретение относится к области медицины и касается композиции, пригодной для лечения больных диареей бактериального и вирусно-бактериального генеза, в том числе, при неидентифицированных и/или неуточненных кишечных инфекциях, содержащей кишечный антисептик в сочетании с энтеросорбентом в эффективных количествах, обеспечивающих терапевтически эффективную суточную дозу композиции. Также изобретение относится к области медицины и касается композиции, применяемой для лечения диареи функционального генеза при синдроме раздраженного кишечника диарейного типа, в том числе, при сопутствующем синдроме избыточного бактериального роста, содержащей кишечный антисептик в сочетании с энтеросорбентом в эффективных количествах, обеспечивающих терапевтически эффективную суточную дозу композиции.

Известно, что частота распространения острых кишечных инфекций (ОКИ) по данным ВОЗ составляет от 1 до 1,2 млрд. регистрируемых ежегодно. ОКИ это полиэтиологическая группа инфекционных заболеваний, сопровождающаяся нарушением моторики желудочно-кишечного тракта (ЖКТ) с развитием диарей различного генеза.

Диарея бактериального и вирусно-бактериального генеза - это симптом, проявляющийся у больного, как учащённая (более 2 раз в сутки) дефекация, с водянистым стулом, который имеет объём более 200 мл и часто сопровождающаяся болевыми ощущениями в области пупка, экстренными позывами и анальным недержанием на фоне бактериальной или вирусно-бактериальной кишечной инфекции.

Диарея при синдроме раздраженного кишечника диарейного типа - симптом, который развивается на фоне функциональных нарушений моторики кишечника, изменения баланса микрофлоры кишечника, изменения рецепторного состава слизистой кишечника, проявляющийся в том, что у пациентов более чем в 25% дефекаций, форма кала соответствует типам 6-7 по Бристольской шкале (жидкий стул) и менее чем в 25% - типам 1-2 или пациент сообщает, что у него наблюдается преимущественно диарея (типы 6-7 по Бристольской шкале). Симптомы возникают в течение последних 3 месяцев при общей продолжительности наблюдения не менее 6 мес.

Таким образом, задачей настоящего изобретения являлось создание новой композиции для лечения больных диареей бактериального, вирусно-бактериального и функционального генеза, а также диарей, характерных для синдрома раздраженного кишечника диарейного типа, в том числе, с синдромом избыточного бактериального роста.

Новая композиция содержит кишечный антисептик и энтеросорбент, обладает высокой стабильностью, без ограничения использования по отношению ко всем возрастным и специфическим группам пациентов. Композиция может применяться в виде пероральной дозированной единичной лекарственной форме, обеспечивая терапевтически эффективную суточную дозу.

Кишечные антисептики представляют собой вещества антисептического действия, минимально влияющие на симбиотическую микрофлору, но при этом устраняя патогенных возбудителей. Так, в данном изобретении, кишечные антисептики относятся к группе "невсасывающихся" и представляют собой нифуроксазид, нифурател и рифаксимин.

Нифуроксазид представляет собой производное 5-нитрофурана, относящееся к группе кишечных антисептиков. Нифуроксазид ингибирует активность альдолаз, дегидрогеназ, транскетолаз и синтез определенных макробелковых комплексов. В результате действия нифуроксазида нарушаются процессы роста и деления бактериальной клетки, репарации клеточной мембраны бактерий. Эффективность нифуроксазида не обусловлена рН-средой в просвете кишки и не зависит от чувствительности бактерий к антибиотикам. В рамках проведенных исследований минимальная подавляющая концентрация нифуроксазида в отношении условно-патогенных микроорганизмов не изменяется при повторном его применении. Таким образом, использование нифуроксазида позволяет подавить рост и жизнедеятельность бактерий, вызывающих диарею при кишечной инфекции, без значимого влияния на полезную микрофлору ЖКТ.

Нифурател также является производным нитрофурана, действие которого направлено на устранение инфекционных и воспалительных заболеваний и обладает схожими с нифуроксазидом действием - подавление роста и жизнедеятельности бактерий, вызывающих диарею при кишечной инфекции, без оказания значимого влияния на микрофлору ЖКТ.

Рифаксимин - производное рифамицина, неабсорбируемый кишечный антисептик широкого спектра действия. Обладает широким спектром противомикробной активности, который включает большинство грамотрицательных и грамположительных, аэробных и анаэробных бактерий.

Энтеросорбенты - вещества, которые обладают высокими сорбционными свойствами. Так, в данном изобретении в качестве энтеросорбентов используются активированный уголь, оксид кремния, дисмектит и лигнин гидролизный.

Активированный уголь - вещество природного происхождения, которое используется в медицине благодаря его пористой структуре, которая имеет отрицательный электрический заряд, он помогает притягивать положительно заряженные молекулы, такие как токсины.

Дисмектит - вещество природного происхождения, которое стабилизирует слизистый барьер, образует поливалентные связи с гликопротеинами слизи, увеличивает количество слизи, улучшает её гастро-

протекторные свойства (в отношении отрицательного действия ионов водорода соляной кислоты, желчных солей, микроорганизмов и их токсинов). Оно бладает сорбционными свойствами, которые объясняются его дискоидно-кристаллической структурой, адсорбирует находящиеся в просвете желудочно-кишечного тракта микроорганизмы.

Диоксид кремния - обладает высокой сорбционной емкостью и при попадании в жидкие среды присоединяет к себе гидроксильные группы и формирует сложную пространственную структуру, особенностью которой является то, что сорбция молекул токсинов, избыточных продуктов обмена веществ, антигенов, микроорганизмов происходит на поверхности частиц, в местах связи оксида кремния с гидроксильными группами. Диоксид кремния содействует снижению метаболической нагрузки и детоксикации.

Лигнин гидролизный обладает адсорбционными и абсорбционными свойствами, благодаря своей химической и пространственной природе, способен сорбировать широкий спектр молекул различных размеров, начиная от ионов тяжелых металлов, воды до белковых молекул, гормонов, а также бактериальных клеток и вирусов, связывает и выводит из организма патогенные бактерии и бактериальные токсины, лекарственные препараты, яды, соли тяжелых металлов. Свойства лигнина гидролизного связаны с его природной пористой химической структурой, способной абсорбировать и адсорбировать вещества и микроорганизмы, очищать слизистую кишечника. Лигнин гидролизный не всасывается, не токсичен, полностью выводится в неизмененном виде через кишечник в течение суток. Применение лигнина в комплексной терапии диарей эффективно, в том числе, за счет его способности связывания свободной жидкости и укрепления консистенции кала.

Вследствие своей природной структуры, используемые в заявляемой комбинации энтеросорбенты, являются источником нерастворимых веществ, формирующих балк содержимого кишечника, который воздействуя на слизистую кишечника в процессе его движения по кишечнику, очищает мукозальный слой слизистой кишечника от части микроорганизмов, клеточного дебриса и токсинов.

Таким образом, использование энтеросорбентов в заявляемой комбинации позволяет снизить бактериальную, антигенную и токсическую нагрузки на слизистую кишечника, уменьшить содержание свободной жидкости в кишечнике, повысить эффективность антибактериального действия кишечного антисептика.

Созданная новая композиция обладает разнонаправленными антибактериальными, сорбционноочищающими свойствами, которые в совокупности обеспечивают более эффективное устранение симптома диареи, повышая эффективность терапии заявленной композицией. Входящие в состав композиции компоненты хорошо сочетаются при совместном применении, не вызывают межлекарственных взаимодействий. Композиция обладает высокой стабильностью без ограничения использования по отношению ко всем возрастным и специфическим группам пациентов.

Композиция может применяться в виде пероральной дозированной единичной лекарственной формы, а также может применяться для лечения диарей бактериального, вирусно-бактериального генеза при неидентифицированных и/или неуточненных кишечных инфекциях, функционального генеза при диареях, связанных с синдромом раздраженного кишечника диарейного типа, включая синдром избыточного бактериального роста (СИБР).

Уровень техники

Из патентного документа RU 2737891 C2 известно применение рифаксимина в комбинации с одновременным применением штамма бифидобактерий для лечения острых и хронических кишечных инфекций. В качестве штамма бифидобактерий используется Bifidobacterium longum W11.

Из патентного документа RU 2519649 C2 известно применение рифаксимина для лечения заболевания кишечника, в частности синдрома раздраженного кишечника (СРК) в дозе 1650 мг/сутки в течение 14 дней.

Из патентного документа RU 2325166 C1 известна фармацевтическая композиция антибиотиков и лактулозы для профилактики энтеральных дисбиозов в процессе антибиотикотерапии. Композиция содержит антибиотики, в том числе, нитрофуранового ряда.

Из патентного документа RU 2427389 C2, известно применение лигнина гидролизного в количестве 1 грамм в комбинации с живыми клетками штамма дрожжей для профилактики и лечения инфекционных и неинфекционных диарей. Данная комбинация оказывает сорбирующий и выраженный антимикробный и противовирусный эффект, или, по меньшей мере, нормализующее действие на моторную функцию (при диарее неинфекционного происхождения).

Из патентного документа US 20090163427 известны фармацевтические составы энтеросорбента и пребиотиков, лекарственные формы и способ профилактики и лечения заболеваний желудочно-кишечного тракта. Фармацевтическая композиция представляет собой комбинацию гидролитического лигнина с влажностью от 55% до 65%, состоящую из частиц размером от 0,15 мм до 0,55 мм, водного раствора лактулозы от 45% до 55% и водного раствора олигосахарида от 50% до 55% при следующем соотношении ингредиентов (массовые проценты): водный раствор лактулозы: 10÷60; олигосахариды: 10÷50; гидролитический лигнин: количество достаточное. Последовательно добавляют гидролитиче-

ский лигнин, лактулозу и олигосахариды фруктозы и смешивают с помощью роторного смесителя. Композицию вводят перорально в течение не менее 14 дней и не более 30 дней, от двух до четырех раз в сутки, в зависимости от веса и возраста пациента. Композиция используется в качестве лекарственного средства для лечения желудочно-кишечных заболеваний, включая бактериальные, вирусные, протозойные кишечные инфекции, пищевые отравления, антибиотикотерапия, химиотерапия и лучевая терапия.

В патенте RU 2651752 C2 раскрыт способ лечения стертых форм дизентерии. Для этого вводят нифуроксазид по 200 мг 4 раза в день в течение 7 дней, полиоксидоний 6 мг в/м в течение 5 дней и бифиформ по 2 капсулы 3 раза в день в течение 10 дней. Указанный способ позволяет повысить эффективность лечения стертых форм дизентерии за счет подавления роста микроорганизмов, регулирования иммунитета, а также процессов воспаления и регенерации поврежденных тканей.

Использование антибактериальных средств при лечении диарей приводит к разрушению или нарушению функции патогенных или условно патогенных бактерий, однако, продукты разрушения таких клеток или продукты их жизнедеятельности (эндо и экзотоксины) могут оказывать самостоятельное токсическое, воспалительное действие на слизистую кишечника, что способствует диарейному симптому.

К тому же, антибактериальные средства не оказывают противовирусного действия и соответственно не могут влиять на диарею ими вызванную.

Использование энтеросорбентов, не смотря на способность снижения токсической нагрузки в кишечнике, вызванной бактериальными токсинами или разрушенными фрагментами бактерий, частичной сорбции бактерий, вирусов и избытка жидкости, не способно подавлять жизнеспособность патогенных и условно-патогенных микроорганизмов, что также делает борьбу с диарейным симптомом менее эффективным.

Известные из уровня техники композиции не решали задач, связанных с созданием комбинации в единой пероральной дозированной форме, обладающей антибактериальными, сорбционно-очищающими свойствами, которые в совокупности обеспечивают более эффективное устранение симптомов диареи различного генеза, тем самым повышая эффективность терапии.

Сущность изобретения

Изобретение относится к композици, созданной на основе кишечного антисептика и энтеросорбента для совместного применения в пероральной дозированной единой лекарственной форме за счет разнонаправленного действия.

Неожиданно было обнаружено, что при совместном применении комбинации кишечного антисептика и энтеросорбента при лечении диареи происходит синергетическое воздействие каждого из компонентов.

Так, кишечный антисептик подавляет жизнеспособность и жизнедеятельность патогенных и условно патогенных бактерий, а энтросорбент сорбирует образованные бактериями токсины, антигены и фрагменты разрушенных бактерий и клеток, путем воздействия сорбентсодержащего балка на поверхность слизистой кишечника происходит очищение ее мукозального слоя, что приводит к снижению воспаления слизистой и восстановлению функциональных характеристик кишечника, прекращению диареи. При этом оценка активности каждого из компонентов в составе данной комбинации показала отсутствие снижения их активности за счет влияния друг на друга.

Таким образом, настоящее изобретение относится к композиции для купирования диареи бактериального, вирусно-бактериального и функционального генеза, содержащая кишечный антисептик и энтеросорбент в соотношениях соответственно от 1:1 до 1:10.

В предпочтительном варианте выполнения изобретения кишечный антисептик выбран из нифуроксазида, нифуратела, рифаксимина. Энтеросорбент выбран из лигнина гидролизного, активированного угля, диоксида кремния, дисмектита.

В наиболее предпочтительном варианте композиция согласно настоящему изобретению содержит нифуроксазид и лигнин гидролизный в соотношениях 1:4 в одной суточной дозе. Причем в предпочтительном варианте выполнения настоящего изобретения суточная доза нифуроксазида составляет от 100 мг до 800 мг в сутки, суточная доза нифуратела составляет от 100 мг до 1200 мг в сутки, суточная доза рифаксимина составляет от 100 мг до 1100 мг в сутки. Суточная доза энтеросорбента от 1000 до 5000 мг.

Согласно настоящему изобретению предлагаемая композиция представляет собой перорально дозируемую форму, выполненную в виде порошка, таблетки, капсулы, гранулы, микропеллет.

Согласно другому варианту выполнения изобретения предлагаемая композиция дополнительно может содержать фармацевтически приемлемые вспомогательные вещества.

Кроме того предлагаемая композиция применяется для купирования диареи бактериального, вирусно-бактериального, а также функционального при синдроме раздраженного кишечника диарейного типа, включая синдром избыточного бактериального роста.

Также настоящее изобретение относится к способу купирования диареи бактериального, вирусно-бактериального генеза, который заключается в приеме заявленной композиции в одной суточной дозе в течение 3-7 дней.

Согласно еще одному варианту выполнения настоящее изобретение относится к способу купирования диареи функционального генеза при синдроме раздраженного кишечника диарейного типа, включая синдром избыточного бактериального роста, который заключается в приеме заявленной композиции в одной суточной дозе в течение 7-14 дней.

Следует отметить, что созданная новая композиция обладает разнонаправленными антибактериальными, сорбционно-очищающими свойствами, которые в совокупности обеспечивают более эффективное устранение симптома диареи, повышая эффективность терапии композициями. Входящие в состав композиции активные компоненты хорошо сочетаются при совместном применении, не вызывая межлекарственных взаимодействий; композиции обладают высокой стабильностью, без ограничения использования по отношению ко всем возрастным и специфическим группам пациентов.

Было установлено, что заявленная композиция обладает неожиданным синергетическим эффектом, направленным на лечение больных диареей различного генеза.

Технический результат заявленного изобретения заключается в достижении неожиданного синергетического эффекта заявленной композиции за счет реализации механизма одновременного антибактериального воздействия кишечного антисептика на патогенные или условно патогенные микроорганизмы и сорбционно-очищающего действия энтеросорбента в отношении патогенных или условно патогенных микроорганизмов, а также продуктов их жизнедеятельности с одновременной абсорбцией избытков жидкости в просвете ЖКТ в заявленных эффективных количествах, способных нормализовывать частоту и консистенцию кала.

Композиция может применяться в виде пероральной дозированной единичной лекарственной формы, а также может применяться для лечения диарей бактериального, вирусно-бактериального генеза при неидентифицированных и/или неуточненных кишечных инфекциях, функционального генеза при диареях, связанных с синдромом раздраженного кишечника диарейного типа, включая синдром избыточного бактериального роста (СИБР).

Осуществление изобретения

Пример 1.

Выбор состава композиции.

Для выбора состава композиции использовали следующие основные критерии: 1) отсутствие негативного влияния каждого из компонентов на активность и/или стабильность другого компонента;

2) обеспечение необходимой суточной дозировки компонентов в комбинации. Известно, что энтеросорбенты, входящие в состав композиции, обладают неспецифической сорбционной активностью. В связи с этим было необходимо подтвердить отсутствие нежелательной сорбции в отношении кишечных антисептиков, которая могла бы негативно сказаться на специфической активности заявленных кишечных антисептиков.

Для этого было проведено in vitro исследование сорбционной активности энтеросорбентов в отношении используемых кишечных антисептиков. Для этого в натрий-фосфатном буфере с рН=7,4-7,6 смешивали навески энтеросорбентов и кишечных антисептиков для получения определенных конечных концентраций. Конечная концентрация энтеросорбентов в суспензии составляла 4,8 мг/мл, конечные концентрации кишечных антисептиков составляли 0,48 мг/мл, 0,8 мг/мл, 1,2 мг/мл, 2,4 мг/мл, 4,8 мг/мл и 48,0 мг/мл для обеспечения соотношений кишечный антисептик: энтеросорбент 1:10, 1:6, 1:4, 1:2, 1:1, и 10:1, соответственно. Каждая смесь исследовалась в 6 повторностях. Смеси инкубировали в течение 3 часов при частоте смешивания 100 об/мин в термостатируемом шейкере при температуре 37°С. Через 3 часа образцы фильтровали через мембранный нейлоновый фильтр с размером пор 0,45 мкм, после чего определяли остаточное содержание антисептика в фильтрате методом вэжх.

Расчет сорбционной ёмкости проводили согласно формуле:

$$X = \frac{(X_{\rm H}2_{\rm K} - X_{\rm H}2_{\rm MO}) \cdot 0.01 \cdot 1000}{a_{\rm Mur.}} = \frac{(X_{\rm H}2_{\rm K} - X_{\rm H}2_{\rm MO}) \cdot 10}{a_{\rm Mur.}}$$

где: $XH2_{\kappa}$ - остаточное содержание кишечного антисептика в контрольном растворе в мг/мл; $XH2_{\mu\sigma}$ - остаточное содержание кишечного антисептика в испытуемом растворе в мг/мл; $a_{\text{лиг}}$ - навеска энтеросорбента, в миллиграммах.

Результаты эксперимента представлены в табл. 1.

Таблица 1 Сорбционная ёмкость энтеросорбента в отношении кишечного антисептика в зависимости от соотношения концентраций в среде

Наименование	Наименование	Соотношение антисептик:	Сорбционная емкость	
антисептика	_		энтеросорбента, г/г	
		энтеросорбент 1:10	0.0010 ± 0.0008	
		1:4	$0,0050 \pm 0,0003$	
нифуроксазид	лигнин гидролизный	1:1	0.0480 ± 0.0054	
		10:1	0.1820 ± 0.0034	
		1:10	0.049 ± 0.0010	
4			0.0049 ± 0.0010 0.0099 ± 0.0022	
нифуроксазид	активированный уголь	1:4	'	
		1:1	0.0851 ± 0.0124	
		1:10	$0,0005 \pm 0,0001$	
нифуроксазид	диоксид кремния	1:4	$0,0015 \pm 0,0001$	
		1:1	$0,0073 \pm 0,0004$	
		1:10	$0,0007 \pm 0,0001$	
нифуроксазид	дисмектит	1:4	$0,0032 \pm 0,0002$	
		1:1	$0,0099 \pm 0,0003$	
		1:10	$0,0008 \pm 0,0002$	
нифурател	лигнин гидролизный	1:4	$0,0033 \pm 0,0007$	
		1:1	$0,0244 \pm 0,0014$	
		1:10	$0,0026 \pm 0,0003$	
нифурател	активированный уголь	1:4	$0,0073 \pm 0,0009$	
		1:1	$0,0688 \pm 0,0021$	
		1:10	$0,0002 \pm 0,0000$	
нифурател	диоксид кремния	1:4	$0,0012 \pm 0,0003$	
		1:1	$0,0089 \pm 0,0007$	
1	-	1:10	$0,0008 \pm 0,0008$	
нифурател	дисмектит	1:4	$0,0046 \pm 0,0013$	
		1:1	0.0281 ± 0.0023	
		1:10	0.0014 ± 0.0002	
рифаксимин	лигнин гидролизный	1:4	$0,0062 \pm 0,0006$	
		1:1	0.0523 ± 0.0015	
		1:10	$0,0021 \pm 0,0004$	
рифаксимин	активированный уголь	1:4	$0,0083 \pm 0,0008$	
Lharrarini	активированный уголь	1:1	$0,0668 \pm 0,0034$	
		1:10	$0,0003 \pm 0,0000$	
рифаксимин	диоксид кремния	1:4	$0,0003 \pm 0,0000$ $0,0011 \pm 0,0003$	
рифаксимип		1:1	0.0011 ± 0.0003 0.0137 ± 0.0013	
			0.0006 ± 0.0001	
nh.o		1:10		
рифаксимин	дисмектит	1:4	0.0010 ± 0.0004	
		1:1	$0,0096 \pm 0,0022$	

*Достоверное отличие для значения соотношения 1:1 (определяли по двустороннему t-критерию Стьюдента p<0,05).

Из данных, представленных в табл. 1, следует, что при соотношениях кишечный антисептик: энтеросорбент от 1:10 до 1:4, сорбция кишечного антисептика составляет менее 1,0%, т.е. при попадании разовой суточной дозировки кишечного антисептика 100 мг сорбируется не более 1 мг антибиотика, что минимизирует риск снижения специфической антибактериальной активности антисептика.

В результате испытаний, было обнаружено, что наблюдаемый синергетический эффект заявляемой композиции достигается во всем заявленном диапазоне активных веществ, входящих в её состав.

Пример 2.

Влияние кишечного антисептика на сорбционную активность энтеросорбента.

Оценку влияния антисептика на сорбционную активность энтеросорбента проводили в in vitro условиях путем измерения адсорбционной способности энтеросорбента в отношении метиленового синего в присутствии различных концентраций кишечного антисептика в среде.

Для этого в колбы вносили навески энтеросорбента и антисептика до заданных конечных концентраций, затем вносили раствор метиленового синего (0,75 мг/мл). Концентрация энтеросорбента составляла 5 мг/мл, концентрации антисептика: 0,5 мг/мл, 1,25 мг/мл и 50,0 мг/мл. В качестве контрольных образцов использовали смесь, содержащую только энтеросорбент без добавления антисептика, а также смеси, с добавлением каждой из тестируемых концентраций антисептика без добавления энтеросорбента. Каждую смесь исследовали в 5 повторностях. Смеси инкубировали в течение 1 часа на магнитной мешалке при частоте перемешивания не менее 120 об/мин. Далее 1 мл супернатанта, полученного после центрифугирования при 6000 об/мин., 15 мин., доводили до 100 мл водой и получали испытуемый раствор. Остаточную концентрацию метиленового синего определяли спектрофотометрически, измеряя оптическую плотность испытуемого раствора в сравнении со стандартным раствором метиленового синего и водой при длине волны 665 нм, толщина кюветы при этом составляла 10 мл. Расчет адсорбционной активности энтеросорбента осуществляли по формуле:

сороента осуществл
$$X = \frac{((C - C_1) \cdot G)}{a}$$

где Х - адсорбционная активность, мг,

С - содержание метиленового синего в исходном растворе, мг,

Cl - содержание метиленового синего в растворе после инкубации, мг,

а - масса навески энтеросорбента, мг.

Содержание метилевого синего рассчитывали, исходя из данных по оптической плотности испытуемых растворов и растворов сравнения, с учетом проведенных разведений.

Для описания данных использовали метод описательной статистики, а именно, определяли среднее значение адсорбционной активности энтеросорбента в отношении метиленового синего, а также стандартное отклонение для 10 независимых изменений. Статистическую обработку данных проводили с использованием оценки нормальности распределения методом Шапиро-Вилка, сравнение дисперсий проводили с помощью F-теста, сравнение средних значений проводили с применением двустороннего t-критерия Стьюдента. В результате достоверных различий адсорбционной активности во всех использованных соотношениях антисептика и энтеросорбента не было установлено (р>0,05). Полученные данные представлены в табл. 2.

Таблица 2 Адсорбционная активность энтеросорбента в отношении метиленового синего в зависимости от концентрации антисептика в среде

Наименование	Наименование	Соотношение	Адсорбционная активность
антисептика	энтеросорбента	антисептик:	энтеросорбента в отношении
		энтеросорбент	метиленового синего, мг
	лигнин гидролизный	1:10	81,9 ± 1,1
		1:4	84,8 ± 1,0
нифуроксазид		10:1	82,2 ± 2,6
		1:1	84,8 ± 1,0
		1:10	$93,6 \pm 2,3$
нифуроксазид	активированный	1:4	$90,3 \pm 2,1$
нифуроксазид	уголь	10:1	92,2 ± 1,8
		1:1	$90,2 \pm 2,1$
		1:10	$76,2 \pm 1,3$
нифуроксазид	диоксид кремния	1:4	77.0 ± 0.8
нифуроксазид		10:1	$75,2 \pm 2,2$
		1:1	77.0 ± 0.8
	дисмектит	1:10	$79,3 \pm 2,6$
нифуроксазид		1:4	76,8 ± 1,7
нифуроксазид		10:1	$78,1 \pm 1,9$
		1:1	$76,5 \pm 1,7$
		1:10	$82,3 \pm 0,5$
нифурател	лигнин гидролизный	1:4	83,1 ± 1,4
нифурател		10:1	85,3 ± 2,7
		1:1	83,0 ± 1,4
		1:10	89,8 ± 1,0
нифурател	активированный	1:4	94,2 ± 1,8
	уголь	10:1	$91,3 \pm 2,1$
		1:1	94,1 ± 1,7
нифурател	диоксид кремния	1:10	$80,2 \pm 1,3$

		1:4	78.8 ± 1.1
		10:1	80,1 ± 2,6
		1:1	78,6 ± 1,0
		1:10	81,7 ± 1,5
		1:4	80,8± 1,8
нифурател	дисмектит	10:1	79,9± 1,3
		1:1	80,6 ± 1,8
		1:10	77.8 ± 0.9
рифаксимин	лигнин гидролизный	1:4	80,1 ± 1,8
рифаксимин	литнин гидролизный	10:1	$79,5 \pm 2,8$
		1:1	80,0 ± 1,8
		1:10	$82,4 \pm 1,2$
рифаксимин	активированный уголь	1:4	83,9 ± 1,1
рифаксимин		10:1	80.9 ± 0.9
		1:1	83.8 ± 1.1
	диоксид кремния	1:10	80,0 ± 2,1
nudarcumuu		1:4	$78,9 \pm 2,8$
рифаксимин		10:1	$81,1 \pm 1,6$
		1:1	$78,7 \pm 2,8$
рифаксимин	дисмектит	1:10	$77,5 \pm 2,2$
		1:4	79,8 ± 1,7
		10:1	$78,3 \pm 0,6$
		1:1	79,7 ± 1,7

В испытанном диапазоне от 10,0 до 1000,0 мг антисептик в составе комбинации не оказывает значимого влияния на адсорбционную активность энтеросорбента, взятого в количестве 100,0 мг. Таким образом, наблюдаемый синергетический эффект заявляемой комбинации достигается во всем заявленном диапазоне активных веществ, входящих в её состав.

Пример 3.

Влияние энтеросорбента на антибактериальную активность кишечного антисептика.

Оценку влияния энтеросорбента на антибактериальную активность антисептика проводили в in vitro условиях с использованием штаммов бактерий, наиболее часто являющихся возбудителями острых кишечных инфекций.

В качестве тестовых штаммов бактерий был выбран Campylobacter јејипі ATCC 11168. После определения минимальной подавляющей концентрации антисептика ингибирующей рост 90% штамма бактерий (МИК90), проводили инкубирование бактерий (конечная концентрация бактерий в среде 10^4 - 10^5 КОЕ/мл) в жидкой минимальной питательной среде присутствии антисептика в концентрации, эквивалентной МИК90, с добавлением энтеросорбента в определенных концентрациях или без него.

Для Campylobacter jejuni ATCC 11168 концентрации энтеросорбента составляли 32 мкг/мл, 128 мкг/мл, 320 мкг/мл.

Каждая комбинация исследовалась в 6 повторностях. После инкубации в течение 8 часов при температуре 37°C, суспензии тщательно перемешивали и осуществляли последовательные разведения с высевом на соответствующие плотные питательные диагностические среды с последующим культивированием в течение 72 часов. После чего осуществляли подсчет колоний и оценку выживаемости бактерий. Результаты эксперимента представлены в табл. 3. Таблица 3 Влияние энтеросорбента на антибактериальные свойства кишечного антисептика в отношении тестового штамма Campylobacter ieiuni NCTC 11168

	ylobac	ter jejuni NCTC 111			
		Параметры наблюдаемые, оцененные для			
		исследуе			
Наименование группы		Концентрация	Дельта с		
		бактерий в	ПКО, в lg	P-value	
		lgKOE/мл (M±SM)	TIKO, DIS		
<i>C.jejuni</i> , 0 ч (КЖ)	9	6,08±0,08	0,65	<0,01	
С.јејипі, 6 ч (ПКО)	9	8,72±0,15	H.O.	н.о.	
<i>С.jejuni</i> , 6 ч НФ 32 мкг/мл	9	6,57±0,05	2,15	<0,01	
С. јејипі, 6 ч НИФ 32 мкг/мл	9	6,73±0,13	2,15	<0,01	
С.jejuni, 6 ч РИФ 32 мкг/мл	9	7,08±0,08	2,15	<0,01	
<i>С.jejuni</i> , 6 ч, НФ 32 мкг/мл + ЛГ 128	9	4,13±0,06	4,59	<0,01	
мкг/мл, соотношение 1:4					
<i>С.jejuni</i> , 6 ч, НИФ 32 мкг/мл + ЛГ					
128 мкг/мл, соотношение 1:4	9	4,08±0,03	4,64	<0,01	
<i>С. jejuni</i> , 6 ч, РИФ 32 мкг/мл + ЛГ					
128 мкг/мл, соотношение 1:4	9	4,73±0,16	3,99	<0,01	
С.јејині, 6 ч, НФ 32 мкг/мл + АУ		4.5610.00		<0,01	
128 мкг/мл, соотношение 1:4	9	4,56±0,08	4,16		
C.jejuni, 6 ч, НИФ 32 мкг/мл + АУ		4 22 +0 12	4,39	<0,01	
128 мкг/мл, соотношение 1:4	9	4,33±0,13			
<i>C.jejuni</i> , 6 ч, РИФ 32 мкг/мл + AУ		5,13±0,18	3,59	<0,01	
128 мкг/мл, соотношение 1:4	9	3,13=0,10	3,35	10,01	
<i>C.jejuni</i> , 6 ч, НФ 32 мкг/мл + ДК			3,36	<0,01	
(диоксид кремния) 128 мкг/мл,		5,36±0,24			
соотношение 1:4	9				
<i>C.jejuni</i> , 6 ч, НИФ 32 мкг/мл + ДК		5,03±0,03	3,69	<0,01	
128 мкг/мл, соотношение 1:4	9	.,	-,	.0,01	
<i>C.jejuni</i> , 6 ч, РИФ 32 мкг/мл + ДК					
128		5,82±0,15	2,90	<0,01	
мкг/мл, соотношение 1:4	9				
<i>C.jejuni</i> , 6 ч, НФ 32 мкг/мл +					
дисмектит 128 мкг/мл,		5,03±0,06	3,69	<0,01	
соотношение 1:4	9				
С. јејипі, 6 ч, НИФ 32 мкг/мл					
+дисмектит 128 мкг/мл,		4,93±0,18	3,79	<0,01	
соотношение 1:4	9				
<i>С. jejuni</i> , 6 ч, РИФ 32 мкг/мл +					
дисмектит 128 мкг/мл,		5,63±0,08	3,09	<0,01	
соотношение 1:4	9				
С. јејипі, 6 ч ЛГ 320 мкг/мл	9	8,64±0,03	0,08	0,15	
ЛГ 320 мкг/мл (МБЧ)	9	К.О.	H.O.	н.о.	

Примечание: КЖ – контроль жизнеспособности C.jejumi, высев через 0 часов; ПКО – положительный контроль роста культуры C.jejumi в течение 6 часов; МБЧ – контроль микробиологической стерильности в отношении C.jejumi; НФ – нифуроксазид; НИФ –

нифуротел, РИФ – рифаксимин; ДК – диоксид кремния; ЛГ – лигнин гидролизный; АУ–активированный уголь; КОЕ – колониеобразующие единицы; Ig – логарифм числа по основанию 10; М – среднее арифметическое значение; SM – стандартное отклонение среднего значения; к.о. – колоний не обнаружено; н.о. – значение не определяли; P-value – уровень значимости различий между средними значениями группы и ПКО, определяли по двустороннему t-критерию Стьюдента для одинаковых дисперсий и выборок при множественном сравнении с поправкой Шоффе; N – количество повторов измерений концентрации бактерий.

По результатам исследований, проведенных со штаммом Campylobacter jejuni, установлено, что комбинация антисептика и энтеросорбента в соотношении 1:4 не снижала антибактериальной эффективности антисептика. Было отмечено зависимое от дозы достоверное (p<0,05) повышение антибактериальной активности комбинации антисептика и энтеросорбента, начиная с дозы энтеросорбента 32 мкг при множественном сравнении с группами ПКО.

Пример 4.

Результаты клинического исследования применения заявляемой комбинации кишечного антисептика и энтеросорбента на примере комбинации нифуроксазида и лигнина гидролизного для терапии диарей бактериального и вирусно-бактериального (неидтефицированные/неуточненные кишечные инфекции) генеза.

Было проведено рандомизированное открытое исследование эффективности и безопасности комбинаций нифуроксазида и лигнина в сравнениях в сравнении с монотерапией нифуроксазидом у пациентов с острыми диареями бактериального и смешанного генеза.

В клиническом исследовании приняли участие 79 пациентов мужского и женского пола в возрасте от 22 до 59 лет (медиана 41 год) с установленным диагнозом острой кишечной инфекции (ОКИ) легкой и средней степени тяжести (код по МКБ-10: A02-A04, A08).

Симптомы острой диареи на момент включения пациентов в исследование наблюдались не более 72 часов

Все пациенты была рандомизированы в 2 группы: 1) экспериментальная группа - пациенты получали комбинацию нифуроксазида и лигнина гидролизного и 2) контрольная группа - пациенты получали монотерапию нифуроксазидом.

Результаты исследования.

При анализе эффективности комбинации нифуроксазида и лигнина гидролизного в сравнении с монотерапией нифуроксазидом у пациентов с острыми бактериальными и смешанными кишечными инфекциями установлено, что скорость (количество часов) наступления клинической ремиссии (частота стула не более 3-х раз в сутки, характер стула - оформленный) статистически значимо различалась в двух группах с уровнем вероятности ошибки менее 5% (p=0,041). Выздоровление в группе, получавшей терапию заявляемой комбинацией, наступило в среднем через 78,7 часов, стандартное отклонение составило 17,1 часов. Нормализация стула в группе сравнения, получавшей монотерапию нифуроксазидом, в среднем зафиксирована через 91,0 час, стандартное отклонение - 28,6 часов.

Сравнительный анализ между группами проведен при помощи t-критерий Стьюдента (данные в группах соответствуют Гауссовскому распределению), наглядное представление данных на фиг. 1. Таким образом, разница наступления клинической ремиссии в группе 1 и группе 2 составляла 12,3 часов, что является клинически существенным результатом.

Краткое описание чертежей

На фиг. 1 представлено время наступления клинической ремиссии у пациентов двух групп: группа 1 - экспериментальная группа - терапия комбинацией нифуроксазида и лигнина гидролизного, группа 2 - контрольная группа - монотерапия нифуроксазидом.

На фиг. 2 представлена кумулятивная доля пациентов с наступлением клинической ремиссии при лечении острых кишечных инфекций. Для получения этого графика была проведена оценка первичного параметра эффективности с применением анализа выживаемости и метода Каплана-Мейера. Для подтверждения статистической значимости результатов проводили сравнение двух групп с использованием критерия Кокса-Ментела, в результате чего показали, что различия между группами статистически значимые (p=0, 042).

Обозначения на фиг. 2 представляют собой кривые дожития по показателю "время наступления клинической ремиссии" двух групп: группа 1 - экспериментальная группа - комбинация нифуроксазида и лигнина гидролизного, группа 2 - контрольная группа - монотерапия нифуроксазидом.

По вторичному параметру эффективности "Динамика изменения консистенции стула у пациентов на фоне проводимой терапии" доказано превосходство применения комбинации нифуроксазида и лигнина гидролизного, в сравнении с монотерапией нифуроксазидом. На пятый день лечения у 22 (64,7%) пациентов экспериментальной группы стул приобрел нормальную консистенцию, против 11 (30,6%) чело-

век контрольной группы (р=0,009).

Пример 5.

Результаты купирования диареи при использовании комбинации кишечного антисептика и энтеросорбента в модели синдрома раздраженного кишечника диарейного типа.

Одной из причин развития синдрома раздраженного кишечника диарейного типа является нарушения баланса микрофлоры кишечника, вызванные разными причинами, в том числе, как следствие действия различных лекарственных препаратов, включая в первую очередь системные антибиотики. Была разработана модель синдрома раздраженного кишечника диарейного типа у золотистых сирийских хомяков в возрасте 6-8 недель и массой тела 60-80 г, которым в течение 10 суток перорально вводили раствор амоксициллина с клавулановой кислотой в дозе (5,33+0,76 мг/кг/сут). Такая доза антибиотика вызывает у животных через 5-10 суток ежедневного введения у 80-100% животных изменение характеристик стула и диарею.

В ходе проведения исследований животным экспериментальных и контрольной групп (n=10) вводили в течение 10 суток раствор амоксициллина с клавулановой кислотой (АК) в дозе (5,33+0,76 мг/кг/сут), при этом экспериментальные группы животных получали через 5 суток после начала введения АК и в течение 14 дней терапию различными комбинациями антисептика и энтеросорбента. Учет частоты диареи после применения комбинированного препарата проводили сразу после окончания терапии. Данные исследований приведены в табл. 4.

Таблица 4 Эффективность комбинации антисептика и энтеросорбента в купировании диареи у золотистых хомяков вызванной 10 дневным пероральным применением амоксициллина с клавулановой кислотой

Группа	Наименование препарата (антисептик и энтеросорбент)	Соотношение антисептик: энтеросорбент	Частота диареи, животные с диарей / животных в группе (%)	Уровень значимости отличий от контроля, p-Value*
Контроль СРК-Д	Вода	H.O.	9/10 (90)	H.O.
	Нифуроксазид	1:10	0/10 (0)	<0,05
НФ+ЛГ	+лигнин	1:4	0/10 (0)	<0,05
ПФТЛ	гидролизный	10:1	1/10 (10)	<0,05
	тидролизный	1:1	0/10 (0)	<0,05
	Нифуроксазид +активированный уголь	1:10	0/10 (0)	<0,05
НФ+АУ		1:4	0/10 (0)	<0,05
ПФТАУ		10:1	1/10 (10)	<0,05
	уголь	1:1	0/10 (0)	<0,05
	Нифуроксазид +диоксид кремния	1:10	0/10 (0)	<0,05
НФ+ДК		1:4	1/10 (10)	<0,05
НФ∓ДК		10:1	1/10 (10)	<0,05
		1:1	1/10 (10)	<0,05
		1:10	0/10 (0)	<0,05
НФ+ДС	Нифуроксазид	1:4	1/10 (10)	<0,05
нФ∓дС	+дисмектит	10:1	2/10 (20)	<0,05
		1:1	2/10 (20)	<0,05
НИФ+ЛГ	Нифурател +лигнин	1:10	0/10 (0)	<0,05
		1:4	0/10 (0)	<0,05
		10:1	2/10 (20)	<0,05
	гидролизный	1:1	1/10 (10)	<0,05
НИФ+АУ	Нифурател	1:10	0/10 (0)	<0,05

	+активированный	1:4	0/10 (0)	<0,05
	уголь	10:1	1/10 (10)	<0,05
		1:1	1/10 (10)	<0,05
		1:10	1/10 (10)	<0,05
НИФ+ДК	Нифурател	1:4	1/10 (10)	<0,05
ниФ+дк	+диоксид кремния	10:1	2/10 (20)	<0,05
		1:1	1/10 (10)	<0,05
		1:10	1/10 (10)	<0,05
НИФ+ДС	Нифурател	1:4	2/10 (20)	<0,05
тифтде	+дисмектит	10:1	2/10 (20)	<0,05
		1:1	2/10 (20)	<0,05
	Рифаксимин +лигнин гидролизный	1:10	0/10 (0)	<0,05
РИФ+ЛГ		1:4	1/10 (10)	<0,05
THOTH		10:1	3/10 (30)	<0,05
		1:1	2/10 (20)	<0,05
РИФ+АУ	Рифаксимин	1:10	0/10 (0)	<0,05
	+активированный	1:4	1/10 (10)	<0,05
	уголь	10:1	3/10 (30)	<0,05
	yrons	1:1	1/10 (10)	<0,05
		1:10	3/10 (30)	<0,05
РИФ+ДК	Рифаксимин	1:4	3/10 (30)	<0,05
	+диоксид кремния	10:1	4/10 (40)	0,06
		1:1	3/10 (30)	<0,05
		1:10	2/10 (20)	<0,05
РИФ+ДС	Рифаксимин	1:4	3/10 (30)	<0,05
1114 / 40	+ дисмектит	10:1	4/10 (40)	0,06
		1:1	3/10 (30)	<0,05
				·

Примечание: НФ – нифуроксазид; НИФ – нифуротел; РИФ – рифаксимин; ДК – диоксид кремния; ЛГ – лигнин гидролизный; АУ – активированный уголь. Нифуроксазид, нифурател и рифаксимин использовали в дозе 16 мг/кг/сутки; энтеросорбенты использовали в дозах 160; 64; 1,6 мг/кг/сутки. Животным вводили препараты в объеме 0,2 мл два раза в сутки; * - сравнение частоты диареи в экспериментальных группах проводили с помощью парного двустороннего точного теста Фишера; н.о.- не определяли.

В результате установили, что все испытываемые комбинации энтеросорбента и антисептика обладали выраженной достоверной способностью купирования индуцированной системным антибиотиком диареи у хомяков, моделирующей синдром раздраженного кишечника. Однако, комбинации рифаксимина с дисмектитом и диоксидом кремния в соотношении 10:1 показали достоверное различие в частоте диарей через 14 дней терапии комбинированными препаратами только при использовании парного одностороннего точного теста Фишера (p=0,03).

Пример 6.

Результаты клинического исследования применения комбинации кишечного антисептика на примере нифуроксазида и лигнина гидролизного для купирования диареи при синдроме раздраженного кишечника диарейного типа.

Было проведено рандомизированное открытое исследование эффективности и безопасности комбинации нифуроксазида и лигнина гидролизного в сравнении с монотерапией нифуроксазидом у пациентов при дисбактериозе кишечника у взрослых пациентов с синдромом раздраженного кишечника, с преобладанием диареи в стадии обострения.

В клиническом исследовании приняли участие 90 (64 женщины и 26 мужчин) возрасте от 21 до 55 лет (средний возраст 38,5 лет, медиана возраста 39,4 лет). Согласно протоколу в испытание были включены пациенты с установленным диагнозом синдром раздраженного кишечника, с диареей (код по МКБ-10: К58,0).

У всех субъектов отмечались один или несколько клинических симптомов дисбиоза, таких как: боль в животе, вздутие, тошнота, метеоризм, увеличение частоты стула, изменение консистенции стула.

Все пациенты была рандомизированы в 3 группы:

- 1 группа (30 пациентов), получали комбинацию нифуроксазида, 800 мг и лигнина гидролизного, 3200 мг в суточной дозировке. Продолжительность приема комбинации составила 7 дней.
- 2 группа (30 пациентов) получала монотерапию лигнина гидролизного в суточной дозе 3200 мг. Продолжительность приема препарата у пациентов 2-й группы 7 дней.
- 3 группа (30 пациентов) получала монотерапию нифуроксазида в суточной дозе 800 мг. Продолжительность приема препарата у пациентов 3-й группы 7 дней. Результаты приведены в табл. 5.

Таблица 5 Сравнительный анализ показателя "консистенции кала" в течение 7-ми дней терапии комбинацией и монопрепаратами лигнина гидролизного и нифуроксазида

попропаратами зин инша гидрозизиото и инфуроксазида					
	Средний бал	консистенции сту	Уровень значимости для		
	для трех груп	п, M±SD (n=30)	рангового ДА Краскела-		
День терапии	Группа 1	Группа 2	Группа 3	Уоллиса для трех групп	
1 день	0,60±0,77	0,53±0,68	0,50±0,57	p = 0,968	
2 день	0,70±0,99	0,70±0,84	0,57±0,73	p = 0,854	
3 день	0,83±0,87	0,70±0,79	0,93±0,74	p = 0.417	
4 день	1,20±0,89	1,03±0,89	1,11±0,77	p = 0,627	
5 день	1,53±0,82	1,07±0,87*	1,13±0,85*	p = 0.046	
6 день	1,60±0,60	1,10±0,80*	1,18±0,94*	p = 0,042	
7 день	1,77±0,86	0,97±0,81*	1,49±0,85#	p < 0,022	

Примечание: группа 1 — пациенты получали комбинацию нифуроксазида и лигнина гидролизного 800/3200 мг соответственно; группа 2 — пациенты получали лигнин гидролизный 3200 мг; группа 3 — пациенты получали нифуроксазид 800 мг; * - достоверное отличие в сравнении с группой 1, критерий Манна Уитни при p<0,05; # - достоверное отличие в сравнении с группой 2, критерий Манна Уитни при p<0,05; М — среднее арифметическое консистенции стула; SD — стандартное отклонение для консистенции кала в группах.

Сравнительный анализ вышеописанного показателя показал, что, начиная с пятого дня, имеются статистически значимые различия между группами 1 и 2, а также 1 и 3, т.е. стул восстанавливался эффективнее у пациентов, получающих комбинацию нифуроксазида и лигнина гидролизного при сравнении с монотерапией лигнином гидролизным или монотерапией нифуроксазидом. При этом через 7 дней терапии различий между группами с заявляемой комбинацией и группой монотерапии нифуроксазидом не наблюдали, тем не менее, группа терапии лигнином имела достоверно менее эффективное восстановление консистенции стула.

Таким образом, заявляемая комбинация обладает преимуществом по сравнению с монотерапией лигнином гидролизным, заключающееся в более эффективном восстановлении консистенции кала, а также при сравнении с мототерапией нифуроксазидом, достоверно более быстром восстановлении консистенции кала.

Пример 7.

Получение композиции, содержащей кишечный антисептик и энтеросорбент.

Для получения композиции кишечного антисептика и энтеросорбента осуществляли следующие процедуры:

- 1) измельчение энтеросорбентов проводили с использованием мельницы с размером ячеек сетки 0,4 мм;
- 2) просеивание субстанций для удаления посторонних включений и комков осуществляли просеивание субстанций с использованием вибросита с величиной ячейки 0,32 мм. Каждый компонент просеивали отдельно. Просеянное сырье повторно взвешивали. Количество отсева не должно превышать 6 мас.%;
 - 3) получение композиций проводили расчет количества активных ингредиентов, позволяющим

обеспечить суточную дозировку кишечного антисептика: суточная доза нифуроксазида составляет от 100 мг до 800 мг в сутки; суточная доза нифуратела составляет от 100 мг до 1200 мг в сутки; суточная доза рифаксимина составляет от 100 мг до 1100 мг в сутки. Суточная доза энтеросорбента от 1000 до 5000 мг. Осуществляли взвешивание сырья. Сырье порционно загружали в смеситель, полученную массу перемешивали в течение 20 минут при скорости вращения смесителя 15-20 оборотов в минуту до равномерного распределения компонентов. Полученную композицию фасовали в герметичную тару из непрозрачного стекла или пластика, наносили маркировку с указанием соотношения активных компонентов, даты выработки и условий хранения.

Пример 8.

Состав композиции, содержащей кишечный антисептик и энтеросорбент.

Одним вариантом выполнения изобретения на основе раскрываемых композиций антисептика и энтеросорбента, является комбинированный лекарственный препарат в виде таблеток, для создания которых использовали вспомогательные вещества из ряда:

стабилизаторы, наполнители, антислеживающие и связывающие агенты: гемицеллюлоза, гуаровая камедь, камедь акации, гуммиарабик, камедь рожкового дерева, крахмалы, в том числе эфиры крахмалов и крахмалы модифицированные, декстрины, пектины, лецитины, полидекстрозы, целлюлоза, в том числе целлюлозы модифицированные, поливинилпирролидон, диоксид кремния, силикаты магния, алюмосиликаты магния, карбонат кальция, лактозы моногидрат;

разрыхлители: повидон и его модификации, крахмалы, в том числе модифицированные, целлюлоза, в том числе модифицированная, кроскармелоза;

скользящие вещества: тальк, кремния диоксид, макрогол, стеариновая кислота и ее соли;

красители: куркумин, диоксид титана, азорубин, соли железа и др.; корригенты вкуса: аспартам, ацесульфам калия, полиолы, сукралоза; антиоксиданты: аскорбиновая кислота и ее соли, лимонная кислота и ее соли, токоферолы, винная кислота и ее соли;

пленочные оболочки и вспомогательные вещества для пленочных оболочек: адгезивы, (сахарный сироп, поливинилпирролидон, целлюлоза, в том числе целлюлозы модифицированные, полиэтиленгликоль и др.); наполнители (сахар, магния оксид, кальция оксид, тальк, магния карбонат и др.);

пластификаторы (растительные масла, целлюлоза, в том числе целлюлозы модифицированные, твины и др.); пленкообразователи для формирования влагозащитных покрытий (шеллак, полиакриловые смолы, зеин); красители (тропеолин 00, тартразин, кислотный красный 2С, индигокармин и др.); корригенты вкуса (сахар, лимонная кислота, какао, ванилин и др.).

Выбранные вспомогательные вещества использовали в количествах, обеспечивающих их технологические свойства и характеристики, необходимые для готовой формы.

Еще одним вариантом изобретения на основе раскрываемых композиций антисептиков и энтеросорбентов являются комбинированные лекарственные препараты в виде порошка, для создания которых использовали следующие вспомогательные вещества:

стабилизаторы, наполнители, антислеживающие агенты: гемицеллюлоза, крахмалы, в том числе, эфиры крахмалов и крахмалы модифицированные, декстрины, пектины, лецитины, полидекстрозы, целлюлоза, в том числе целлюлозы модифицированные, поливинилпирролидон, диоксид кремния, силикаты магния, карбонат кальция, лактозы моногидрат;

регуляторы кислоти: уксусная кислота и ее соли, аскорбиновая кислота и ее соли, лимонная кислота и ее соли, молочная кислота и ее соли, яблочная кислота и ее соли, винная кислота и ее соли, соляная кислота, перекись водорода;

красители: куркумин, антоцианы, кармин, бетанин, танины, капсорубин, диоксид титана, азорубин, соли железа и др.;

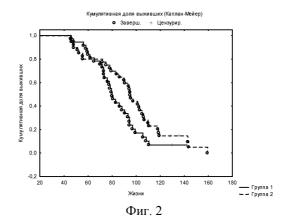
корригенты вкуса: аспартам, ацесульфам калия, полиолы, сахар, сахароза, сукралоза;

скользящие вещества: тальк, кремния диоксид, макрогол, стеариновая кислота и ее соли;

антиоксиданты: аскорбиновая кислота и ее соли, лимонная кислота и ее соли, токоферолы, винная кислота и ее соли;


консерванты: сорбиновая кислота и ее соли, бензойная кислота и ее соли, уксусная кислота и ее соли, пропионовая кислота и ее соли; коммерчески доступные ароматизаторы.

Выбранные вспомогательные вещества использовали в количествах, обеспечивающих их технологические свойства и характеристики, необходимые для готовых форм.


ФОРМУЛА ИЗОБРЕТЕНИЯ

- 1. Композиция для купирования диареи бактериального, вирусно-бактериального и функционального генеза, содержащая кишечный антисептик, выбранный из нифуроксазида и рифаксимина, и энтеросорбент, выбранный из лигнина гидролизного, активированного уголя, диоксида кремния, дисмектита, в соотношении соответственно от 1:1 до 1:10.
- 2. Композиция по п.1, отличающаяся тем, что содержит нифуроксазид и лигнин гидролизный в соотношениях 1:4.

- 3. Композиция по любому из пп.1-2, отличающаяся тем, что представляет собой перорально дозируемую форму, выполненную в виде порошка, таблетки, капсулы, гранулы, микропеллет.
- 4. Композиция по любому из пп.1-3, отличающаяся тем, что дополнительно содержит фармацевтически приемлемые вспомогательные вещества.
- 5. Применение композиции по любому из пп.1-4 для купирования диареи бактериального, вирусно-бактериального, а также функционального при синдроме раздраженного кишечника диарейного типа, включая синдром избыточного бактериального роста.
- 6. Способ купирования диареи бактериального, вирусно-бактериального генеза, отличающийся тем, что прием композиции по одному из пп.1-4 в одной суточной дозе осуществляют в течение 3-7 дней.
- 7. Способ купирования диареи функционального генеза при синдроме раздраженного кишечника диарейного типа, включая синдром избыточного бактериального роста, отличающийся тем, что прием композиции по одному из пп.1-4 в одной суточной дозе осуществляют в течение 7-14 дней.

Фиг. 1

