# (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (43) Дата публикации заявки 2023.12.29
- (22) Дата подачи заявки 2019.11.11

- (51) Int. Cl. C07D 471/04 (2006.01) C07D 491/20 (2006.01) A61P 31/04 (2006.01) A61K 31/551 (2006.01)
- (54) АНТИБИОТИЧЕСКИЕ СОЕДИНЕНИЯ, СПОСОБЫ ИХ ПОЛУЧЕНИЯ, ФАРМАЦЕВТИЧЕСКИЕ КОМПОЗИЦИИ, СОДЕРЖАЩИЕ ИХ, И ИХ ПРИМЕНЕНИЕ
- (31) 18205619.2; 18213016.1
- (32) 2018.11.12; 2018.12.17
- (33) EP
- (62) 202191343; 2019.11.11
- (71) Заявитель: ДЕБИОФАРМ ИНТЕРНЭШНЛ С.А. (СН)
- (72) Изобретатель: Жерю Венсен (FR), Татсис Василеиос, Суносе Михиро (GB), Браво Хуан, Финн Терри, Похин Дэниг, Регенасс
- (74) Представитель: Медведев В.Н. (RU)

Пьер-Мишель (СН)

(57) Настоящее изобретение представляет соединения общей структуры

$$\begin{array}{c} A_1 \\ A_2 \\ A_2 \\ \end{array}$$

которые подходят в качестве антибиотических соединений для лечения инфекций N.gonorrhoeae и родственных инфекций.

# АНТИБИОТИЧЕСКИЕ СОЕДИНЕНИЯ, СПОСОБЫ ИХ ПОЛУЧЕНИЯ, ФАРМАЦЕВТИЧЕСКИЕ КОМПОЗИЦИИ, СОДЕРЖАЩЕЕ ИХ И ИХ ПРИМЕНЕНИЕ

#### Область техники

В настоящем изобретении представлены новые соединения, которые являются терапевтически активными в качестве антибиотических соединений. Кроме того, в настоящем изобретении представлены фармацевтические композиции, содержащие соединения по изобретению. Также представлено применение этих соединений и композиций для лечения бактериальных инфекций, вызванных *N. gonorrhoeae*. Кроме того, также представлены способы получения соединений настоящего изобретения.

### Уровень техники изобретения

Neisseria gonorrhoeae представляет собой разновидность грамотрицательных диплококковых бактерий, ответственных за инфекцию гонорею, передающуюся половым путем, которая обычно вызывает неосложненное (нераспространенное) заболевание.

Наиболее частым местом заражения *N. gonorrhoeae* является урогенитальный тракт. У мужчин с этой инфекцией может наблюдаться дизурия с выделениями из полового члена, и женщины могут иметь легкие слизисто-гнойные выделения из влагалища, сильную боль в тазу. Другие инфекции, вызванные *N. gonorrhoeae*, включают аноректальную, конъюнктивальную, глоточную и яичниковую/маточную. У женщин гонококки могут вызывать эндоцервикальные инфекции или заболевание верхних отделов половых путей. Гонококковые инфекции у женщин тесно связаны с бесплодием. При отсутствии лечения местные инфекции *N. gonorrhoeae* могут прогрессировать до бактериемии с сопутствующим септическим артритом. Когда инфекция поражает глаза, особенно у новорожденных, может возникнуть слепота, если не оказать своевременного лечения. В редких случаях бактериемия приводит к распространению (осложненная гонорея) на суставы, кожу, эндокард или мозговые оболочки.

Лечение гонореи осложняется способностью *N. gonorrhoeae* развивать устойчивость к противомикробным препаратам. В 2007 году появление в Соединенных Штатах *N. gonorrhoeae*, устойчивых к фторхинолонам, побудило органы здравоохранения прекратить рекомендовать фторхинолоны для лечения гонореи в Соединенных Штатах. Сообщалось о недавних неудачах лечения цефиксимом или другими пероральными цефалоспоринами в Азии, Европе, Южной Африке и Канаде. Сообщалось о неудачах лечения инфекций глотки цефтриаксоном в Австралии, Японии и Европе. Следовательно, всемирные организации, такие как ВОЗ, рекомендуют, чтобы данные о местной резистентности определяли выбор терапии.

В последнее время появились единичные сообщения о штаммах *N. gonorrhoeae*, устойчивых как к цефалоспоринам, так и к макролидам, что не оставляет возможности лечения для этих пациентов. Есть опасения, что из-за способности *Neisseria sp.* быстро распространять и интегрировать свой генетический материал (промискуитетная

трансформация) эти сверхрезистентные к лекарствам генотипы могут быстро распространяться.

Ингибирование FabI является относительно новой концепцией для разработки антибиотиков. FabI представляет собой фермент, участвующий в синтезе жирных кислот бактерий. Введение соединений, ингибирующих этот фермент, может избирательно воздействовать на бактерии, зависящие от этого фермента, не затрагивая хозяина (пациента). Антибиотические агенты, основанные на этом принципе действия, описаны, например, в WO 03/088897 A2 и WO 2013/190384 A1, содержание которых полностью включено в настоящую заявку. Однако эти соединения в первую очередь предназначены для лечения инфекций, вызванных *S. aureus*. Другие соединения с ингибирующим действием на FabI, но направленные в первую очередь на лечение инфекций, отличных от *N. gonorrhoeae*, раскрыты в WO 2007/053131 A, WO 2007/067416 A, WO 01/27103 A, WO 2008/098374 A, Yao et al., J. Biol. Chem., 2016, 291, 171-181, WO 2008/009122 A, US 2015/210719 A и US 2017/174683 A.

### Проблемы, лежащие в основе изобретения

Ввиду вышеизложенной ситуации, существует потребность в представлении дополнительных лекарственных средств и фармацевтических композиций, которые проявляют антибиотическую активность против *N. gonorrhoeae*.

Особенно желательно получить такие другие лекарственные средства и фармацевтические композиции, которые можно использовать в качестве альтернативного лечения бактериальных инфекций, вызванных *N. gonorrhoeae*, если стандартное лечение цефтриаксоном неэффективно.

Кроме того, существует потребность в дополнительных антибиотических лекарственных средствах и медикаментах для лечения различных родственных бактериальных инфекций.

Кроме того, желательно, чтобы такие антибиотические препараты и фармацевтические композиции демонстрировали приемлемый терапевтический индекс и не имели серьезных побочных эффектов.

### Сущность изобретения

Настоящее изобретение решает вышеуказанные проблемы через предоставление соединений и фармацевтических композиций, которые являются эффективными в лечении инфекций, вызванных *N. gonorrhoeae* и родственными бактериями.

Соединения по настоящему изобретению действуют как антибиотические агенты через рабочий механизм, включающий ингибирование FabI. Этот механизм отличается от механизма цефалоспоринов, которые действуют через разрушение пептидогликановых слоев стенок бактериальных клеток. Более того, соединения по настоящему изобретению имеют химическую структуру, отличную от цефалоспоринов. Следовательно, можно ожидать, что соединения и фармацевтические композиции по настоящему изобретению эффективны также в отношении штаммов, устойчивых к цефтриаксону.

Соединения и фармацевтические композиции по настоящему изобретению кроме

того показывают высокий терапевтический индекс и низкие побочные эффекты.

Согласно одному варианту осуществления, соединения и фармацевтические композиции по настоящему изобретению демонстрируют химические, физические и фармакокинетические свойства, подходящие для перорального и/или внутримышечного введения.

В одном варианте осуществления, в настоящем изобретении также представлено терапевтическое применение соединений, описанных в настоящем документе, и способы лечения бактериальных инфекций, включающие введение соединений по настоящему изобретению пациентам, нуждающимся в этом.

В других вариантах осуществления, в настоящем изобретении также представлены способы получения соединений по настоящему изобретению.

Таким образом, в настоящем изобретении представлено, в частности, следующее:

1. Соединение, которое выбирают из группы соединений, представленных общей формулой I

$$A_1 \xrightarrow{Q_1} Q_2$$

$$A_2 \xrightarrow{Q_1} Q_2$$

$$A_3 \xrightarrow{Q_3} Q_3$$

где

 $A_1$  представляет группу, выбранную из групп  $A_{11}$  и  $A_{12}$ , имеющих следующие структуры

$$R^1$$
  $Q_3$   $A_{11}$  и  $R^2$   $CH_3$   $A_{12}$ ;

где линия, соединенная с экзоциклической метиленовой группой, представляет одинарную ковалентную связь, образованную с атомом азота формулы I;

 $A_2$  представляет метильную группу;

или  $A_1$  и  $A_2$  вместе с атомом азота, с которым они связаны, образуют следующую группу  $A_3$ :

$$R^8$$
 $A_3$ ;

где экзоциклическая линия, соединенная с атомом азота бицикла, представляет ковалентную связь между азотом и карбонильной группой с левой стороны формулы I;

 $Q^1$  представляет -CH=CR<sup>7</sup>-, CH<sub>2</sub> или NH;

 $Q_2$  представляет  $CR^4R^5$ , или  $CR^4R^5$ - $CR^6R^7$ , где  $CR^4R^5$  группа связывается с  $Q_1$ ; или  $Q_1$ - $Q_2$  представляет -N= $CR^7$ - $CHR^7$ - или его таутомер -NH- $CR^7$ = $CR^7$ -

 $Q_3$  представляет O или S;

 $R^1$  представляет группу, выбранную из H, -NH<sub>2</sub>;

 $R^2$  представляет группу, выбранную из H, -O-Ar $^1$ , -O-Het $^1$ , -NR $^9$ R $^{10}$ , -O-Alk $^1$ , где Ar $^1$ представляет фенильную группу, которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C<sub>1-4</sub>-алкила, -O-(CH<sub>2</sub>)<sub>1-4</sub>-NR<sup>9</sup>R<sup>10</sup>, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N и O, где Het1 представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, или не ароматический частично или полностью насыщенный гетероцикл с 6 атомами кольца, включающими 1 гетероатом, выбранный из N и O, где Het1 группа необязательно может быть замещена одной или несколькими группами, индивидуально выбранными из -С1-4алкила, -O- $C_{1-4}$ -алкила, -CN, -(CH<sub>2</sub>) $_{0-4}$ -OH; где  $R^9$  выбирают из H и - $C_{1-4}$ -алкила; где  $R^{10}$ выбирают из H,  $-C_{1-4}$ -алкила и -C(=O)- $CH_3$ ; где Alk<sup>1</sup> представляет алкильную группу, имеющую от 1 до 6 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где Alk<sup>1</sup> группа может быть необязательно замещена одной или несколькими группами, выбранными из -ОН, -О-алкила;

 ${
m R}^3$  представляет группу, выбранную из H, -PO $_3{
m R}^{3a}{}_2$ , -CH $_2$ -OPO $_3{
m R}^{3a}{}_2$  и -CH $_2$ -O-C(=O)-  ${
m R}^{3b}$ :

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила, CN и  $C_{1-4}$ -алкилен-F;

 $R^5$  представляет группу, выбранную из H,  $C_{1\text{-}4}$ -алкила,  $C_{1\text{-}4}$ -алкилен-OH,  $C_{1\text{-}4}$ -алкилен-OR $^3$ , -OH, -OPO $_3R^{3a}{}_2$ ;

или  $R^4$  и  $R^5$  вместе образуют циклическую группу, имеющую от 4 до 6 членов кольца, образованную метиленовыми группами и, необязательно, атомом кислорода;

 $R^6$  представляет группу, выбранную из H, -OH,  $C_{1-4}$ -алкила, -OPO<sub>3</sub> $R^{3a}_{2}$ ;

 $R^7$  представляет группу, выбранную из H, C<sub>1-4</sub>-алкила, C<sub>1-4</sub>-алкилен-OH, C<sub>1-4</sub>-алкилен-OR<sup>3</sup>, C<sub>1-4</sub>-алкилен-F, -CN;

или  $R^6$  и  $R^7$  вместе образуют циклическую группу, имеющую от 4 до 6 членов кольца, образованную метиленовыми группами и, необязательно, атомом кислорода; где циклическая группа может необязательно нести заместитель, выбранный из -OH, -O-алкила;

 $R^8$  представляет группу, выбранную из -O-Ar<sup>2</sup> и -O-Het<sup>2</sup>;

где  $Ar^2$  представляет фенильную группу, которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C<sub>1-4</sub>-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N, S и O, где указанный гетероцикл может необязательно нести один или два заместителя, выбранных из оксо, галогена, -O-C<sub>1-4</sub>-алкила, C<sub>1-4</sub>-алкила, и CN;

И

где  $\operatorname{Het}^2$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, которые могут необязательно быть замещены одной или несколькими группами, индивидуально выбранными из -O- $\operatorname{C}_{14}$ -алкила, -CN, F,  $\operatorname{C}_{1-4}$ -алкила.

- 2. Соединение по пункту 1, где
- $Q_2$  представляет  $CR^4R^5$ - $CR^6R^7$ , где  $CR^4R^5$ группа связывается с  $Q_1$ ; или  $Q_1$ - $Q_2$  представляет -N= $CR^7$ - $CHR^7$  или его таутомер -NH- $CR^7$ = $CR^7$ -;
  - $R^4$  представляет группу, выбранную из  $C_{1\text{--}4}$ -алкил, CN и  $C_{1\text{--}4}$ -алкилен-F; и
- $R^5$  представляет группу, выбранную из H,  $C_{1\text{-}4}$ -алкила,  $C_{1\text{-}4}$ -алкилен-OH,  $C_{1\text{-}4}$ -алкилен-OR $^3$ , -OH, -OPO $_3R^{3a}{}_2$ ;

и оставшиеся вариабельные группы такие, как определены в пункте 1.

- 3. Соединение по пункту 1, где
- $Q_2$  представляет  $CR^4R^5$ - $CR^6R^7$ , где  $CR^4R^5$  группа связывается с  $Q_1$ ; или  $Q_1$ - $Q_2$  представляет -N= $CR^7$ - $CHR^7$  или его таутомер -NH- $CR^7$ = $CR^7$ -;
  - $R^4$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила, CN и  $C_{1-4}$ -алкилен-F; и
- $R^5$  представляет группу, выбранную из  $C_{1\text{-}4}$ -алкила,  $C_{1\text{-}4}$ -алкилен-ОН,  $C_{1\text{-}4}$ -алкилен-OR $^3$ , -OH, -OPO $_3R^{3a}_2$ ;

и оставшиеся вариабельные группы такие, как определены в пункте 1.

4. Соединение по пункту 1, 2 или 3, где соединение выбирают из группы соединений, представленных общей формулой II

$$\begin{array}{c|c}
R^1 & CH_3 & Q_1 \\
\hline
Q_1 & Q_2 \\
\hline
Q_2 & CH_3
\end{array}$$

$$\begin{array}{c|c}
R^2 & R^3$$
II

где

 $R^1$ ,  $R^2$ ,  $R^3$ ,  $Q^1$ ,  $Q_2$ ,  $Q_3$  имеют те же значения, которые определены в пункте 1 выше; и где пятичленный гетероцикл, содержащий  $Q_3$ , связан с метиленамидной группой в положении 2 и с метильной группой в положении 3, или связан с метиленамидной группой в положении 3 и с метильной группой в положении 2.

5. Соединение по пункту 4, где соединение выбирают из группы соединений, представленных общей формулой III

где

 $R^1,\,R^2,\,R^3,\,Q^1,\,Q_2,\,Q_3$  имеют те же значения, которые определены в пункте 1, 2 или 3 выше.

6. Соединение по пункту 5, где соединение выбирают из группы соединений, представленных общей формулой IV

$$\begin{array}{c|c} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & &$$

где

 $R^1,\,R^2,\,R^3,\,Q^1,\,Q_2$  имеют те же значения, которые определены в пункте 1, 2 или 3 выше.

7. Соединение по пункту 6, где соединение выбирают из группы соединений, представленных общей формулой Va или общей формулой Vb

где  $R^1$ ,  $R^2$  и  $R^3$  имеют те же значения, которые определены в пункте 1 выше;  $R^4$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила и  $C_{1-4}$ -алкилен-F, и  $R^5$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ ;

или

где

 $R^1$ ,  $R^2$  и  $R^3$  имеют те же значения, которые определены в пункте 1 выше;  $R^4$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила и  $C_{1-4}$ -алкилен-F; и  $R^5$  представляет группу, выбранную из H,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR,  $C_{1-4}$ -алкилен-OR,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-ОH,  $C_{1-4}$ -а

8. Соединение по пункту 7, где

 $R^1$  представляет H, NH<sub>2</sub>;

 $R^2$  представляет H;

 ${
m R}^3$  представляет группу, выбранную из H, -PO3R³a2, -CH2-OPO3R³a2 и -CH2-O-C(=O)-  ${
m R}^{3b}$ :

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ .

9. Соединение по пункту 6, где соединение выбирают из группы соединений, представленных общей формулой VI

где

 $R^1,\,R^2,\,R^3,\,R^4,\,R^5,\,R^6$  и  $R^7$  имеют те же значения, которые определены в пункте 1, 2 или 3 выше.

10. Соединение по пункту 9, где

 $R^1$  представляет H, NH<sub>2</sub>;

 $R^2$  представляет H;

 ${
m R}^3$  представляет группу, выбранную из H, -PO $_3{
m R}^{3a}{}_2$ , -CH $_2$ -OPO $_3{
m R}^{3a}{}_2$  и -CH $_2$ -O-C(=O)-  ${
m R}^{3b}$ ;

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ ;

 $R^6$  представляет H,  $C_{1-4}$ -алкил, OH, -OPO $_3R^{3a}{_2}$ ; и

 $R^7$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше,  $C_{1-4}$ -алкилен-F.

11. Соединение по пункту 6, где соединение выбирают из группы соединений, представленных общей формулой VII

$$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

где

 ${\bf R}^1,\,{\bf R}^2,\,{\bf R}^3,\,{\bf R}^6$  и  ${\bf R}^7$  имеют те же значения, которые определены в пункте 1, 2 или 3 выше.

12. Соединение по пункту11, где

 $R^1$  представляет H, NH<sub>2</sub>;

 $R^2$  представляет H;

 ${
m R}^3$  представляет группу, выбранную из H, -PO $_3{
m R}^{3a}{}_2$ , -CH $_2$ -OPO $_3{
m R}^{3a}{}_2$  и -CH $_2$ -O-C(=O)-  ${
m R}^{3b}$ :

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 ${
m R}^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  ${
m R}^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо

выбранными из -ОН, и -О-С1-6-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ ;

 $R^6$  представляет H,  $C_{1-4}$ -алкил, OH, -OPO<sub>3</sub> $R^{3a}_{2}$ ; и

 $R^7$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше,  $C_{1-4}$ -алкилен-F.

13. Соединение по пункту 4, где соединение выбирают из группы соединений, представленных общей формулой VIII

где

 $R^1,\,R^2,\,R^3,\,Q^1,\,Q_2,\,Q_3$  имеют те же значения, которые определены в пункте 1, 2 или 3 выше.

14. Соединение по пункту 13, где соединение выбирают из группы соединений, представленных общей формулой IX

$$R^{2}$$
 $CH_{3}$ 
 $CH$ 

где

 $R^1,\,R^2,\,R^3,\,Q^1,\,Q_2$  имеют те же значения, которые определены в пункте 1, 2 или 3 выше.

15. Соединение по пункту 14, где соединение выбирают из группы соединений, представленных общей формулой Xa и Xb

или

$$R^{2}$$
 $H_{3}C$ 
 $CH_{3}$ 
 $CH$ 

где

 $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$  и  $R^5$  имеют те же значения, которые определены в пункте 1 выше.

16. Соединение по пункту 15, где

 $R^1$  представляет H;

 $R^2$  представляет группу, выбранную из H, -O-Ar $^1$ , -O-Het $^1$ , -NH $_2$ , где Ar $^1$  представляет фенильную группу, которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C $_{1-4}$ -алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N и O, где Het $^1$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, или не ароматический частично или полностью насыщенный гетероцикл с 6 атомами кольца, включающими 1 гетероатом, выбранный из N, S и O, где Het $^1$  группа необязательно может быть замещена одной или несколькими группами, индивидуально выбранными из -C $_{1-4}$ -алкила, -O-C $_{1-4}$ -алкила, -CN;

 $R^3$  представляет H, -CH<sub>2</sub>-OPO<sub>3</sub> $R^{3a}_{2}$ , где  $R^{3a}$  представляет атом водорода или катион, способный образовывать фармацевтически приемлемую соль;

 $R^4$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-F; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH или  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше.

17. Соединение по пункту 14, где соединение выбирают из группы соединений, представленных общей формулой XI

где

 $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$ ,  $R^6$  и  $R^7$  имеют те же значения, которые определены в пункте 1, 2 или 3 выше.

18. Соединение по пункту 17, где

 $R^1$  представляет H;

 $R^2$  представляет группу, выбранную из H, -O-Ar $^1$ , -O-Het $^1$ , -NH $_2$ , где Ar $^1$  представляет фенильную группу, которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C $_1$ -4-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N и O, где Het $^1$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, или не ароматический частично или полностью насыщенный гетероцикл с 6 атомами кольца, включающими 1 гетероатом, выбранный из N, S и O, где Het $^1$  группа необязательно может быть замещена одной или несколькими группами, индивидуально выбранными из -C $_1$ -4-алкила, -O-C $_1$ -4-алкила, -CN;

 ${
m R}^3$  представляет группу, выбранную из H, -PO $_3{
m R}^{3a}{}_2$ , -CH $_2$ -OPO $_3{
m R}^{3a}{}_2$  и -CH $_2$ -O-C(=O)-  ${
m R}^{3b}$ ;

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>:

 ${
m R}^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  ${
m R}^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ .

 $R^6$  представляет H,  $C_{1-4}$ -алкил, OH, -OPO<sub>3</sub> $R^{3a}_{2}$ ; и

 $R^7$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше,  $C_{1-4}$ -алкилен-F.

19. Соединение по пункту 14, где соединение выбирают из группы соединений, представленных общей формулой XII

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{5}$$

$$\mathbb{R}^{7}$$

$$\mathbb{R}^{6}$$

$$\mathbb{R}^{6}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{3}$$

где

 ${\bf R}^1,\,{\bf R}^2,\,{\bf R}^3,\,{\bf R}^6$  и  ${\bf R}^7$  имеют те же значения, которые определены в пункте 1, 2 или 3 выше.

20. Соединение по пункту 19, где

 $R^1$  представляет H;

 $R^2$  представляет группу, выбранную из H, -O-Ar $^1$ , -O-Het $^1$ , -NH $_2$ , где Ar $^1$  представляет

фенильную группу, которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C<sub>1-4</sub>-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла имеющего один или два гетероатома, индивидуально выбранных из N и O, где  $\text{Het}^1$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, или не ароматический частично или полностью насыщенный гетероцикл с 6 атомами кольца, включающими 1 гетероатом, выбранный из N, S и O, где  $\text{Het}^1$  группа необязательно может быть замещена одной или несколькими группами, индивидуально выбранными из -C<sub>1-4</sub>-алкила, -O-C<sub>1-4</sub>-алкила, -CN;

 ${
m R}^3$  представляет группу, выбранную из H, -PO $_3{
m R}^{3a}{}_2$ , -CH $_2$ -OPO $_3{
m R}^{3a}{}_2$  и -CH $_2$ -O-C(=O)-  ${
m R}^{3b}$ ;

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 ${
m R}^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  ${
m R}^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ .

 $R^6$  представляет H,  $C_{1-4}$ -алкил, OH, -OPO<sub>3</sub> $R^{3a}_{2}$ ; и

 $R^7$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше,  $C_{1-4}$ -алкилен-F.

21. Соединение по пункту 1, где соединение выбирают из группы соединений, представленных общей формулой XIII

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

где

 $R^3$ ,  $R^8$ ,  $Q^1$ ,  $Q_2$  имеют те же значения, которые определены в пункте 1, 2 или 3 выше.

22. Соединение по пункту 21, где соединение выбирают из группы соединений, представленных общей формулой XIVa или XIVb

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

где

 ${\bf R}^3,\,{\bf R}^4,\,{\bf R}^5,\,{\bf R}^8$  имеют те же значения, которые определены в пункте 1 выше; или

$$R^{8}$$

где

 ${\rm R^3,\ R^4,\ R^5,\ R^8}$  имеют те же значения, которые определены для общей формулы I выше.

23. Соединение по пункту 22, где

 $R^3$  представляет H, -CH<sub>2</sub>-OPO<sub>3</sub> $R^{3a}_{2}$ , где  $R^{3a}$  представляет атом водорода или катион, способный образовывать фармацевтически приемлемую соль;

 $R^4$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-F;

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH или  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше; и

 ${
m R}^{8}$  представляет группу, выбранную из -O-Ar  $^{2}$  и -O-Het  $^{2}$ ;

где  $Ar^2$  представляет фенильную группу, которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C<sub>1-4</sub>-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла имеющего один или два гетероатома, индивидуально выбранных из N, S и O, где указанный гетероцикл может необязательно нести один или два заместителя, выбранных из оксо, F, -O-C<sub>1-4</sub>-алкила, C<sub>1-4</sub>-алкила, CN;

И

где  $\operatorname{Het}^2$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, которые могут необязательно быть замещены одной или несколькими группами, индивидуально выбранными из -O- $\operatorname{C}_{14}$ -алкил, -CN, F,  $\operatorname{C}_{14}$ -алкил.

24. Соединение по пункту 21, где соединение выбирают из группы соединений, представленных общей формулой XV

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

где

 ${\bf R}^3,\,{\bf R}^4,\,{\bf R}^5,\,{\bf R}^6,\,{\bf R}^7,\,{\bf R}^8$  имеют те же значения, которые определены в пункте 1, 2 или 3 выше.

25. Соединение по пункту23, где

 $R^3$  представляет группу, выбранную из H, -PO $_3R^{3a}_2$ , -CH $_2$ -OPO $_3R^{3a}_2$  и -CH $_2$ -O-C(=O)-  $R^{3b}$ :

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O- $C_{1-6}$ -алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ ;

 $R^6$  представляет H,  $C_{1-4}$ -алкил, OH, -OPO<sub>3</sub> $R^{3a}_{2}$ ; и

 $R^7$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше,  $C_{1-4}$ -алкилен-F; и

 ${
m R}^{8}$  представляет группу, выбранную из -O-Ar² и -O-Het²,

где  $Ar^2$  представляет фенильную группу, которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C<sub>1-4</sub>-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N, S и O, где указанный гетероцикл может необязательно нести один или два заместителя, выбранных из оксо, F, -O-C<sub>1-4</sub>-алкил, F0-С<sub>1-4</sub>-алкил, F1-4-алкил, F

И

где  $Het^2$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, которые могут

необязательно быть замещены одной или несколькими группами, индивидуально выбранными из -O- $C_{1-4}$ -алкила, -CN, F,  $C_{1-4}$ -алкила.

26. Соединение по пункту 21, где соединение выбирают из группы соединений, представленных общей формулой XVI

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

где

 ${\bf R}^3,\,{\bf R}^4,\,{\bf R}^5,\,{\bf R}^6,\,{\bf R}^7,\,{\bf R}^8$  имеют те же значения, которые определены в пункте 1, 2 или 3 выше.

27. Соединение по пункту26, где

 ${
m R}^3$  представляет группу, выбранную из H, -PO3R³a2, -CH2-OPO3R³a2 и -CH2-O-C(=O)-R³b:

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ ;

 $R^6$  представляет H,  $C_{1-4}$ -алкил, OH, -OPO<sub>3</sub> $R^{3a}_{2}$ ; и

 $R^7$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше,  $C_{1-4}$ -алкилен-F;

 $R^8$  представляет группу, выбранную из -O-Ar  $^2$  и -O-Het  $^2$  ,

где  $Ar^2$  представляет фенильную группу, которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C<sub>1-4</sub>-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N, S и O, где указанный гетероцикл может необязательно нести один или два заместителя, индивидуально выбранных из оксо, F, -O-C<sub>1-4</sub>-алкила, C<sub>1-4</sub>-алкила, CN

И

где Het<sup>2</sup> представляет ароматический гетероцикл с 5 или 6 атомами кольца,

включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, которые могут необязательно быть замещены одной или несколькими группами, индивидуально выбранными из -O- $C_{1-4}$ -алкила, -CN, F,  $C_{1-4}$ -алкила.

- 28. Фармацевтическая композиция, содержащая соединение по любому из пунктов 1-27.
- 29. Соединение по любому из пунктов 1-27 или фармацевтическая композиция по пункту 26 для применения в лечении бактериальной инфекции, выбранной из инфекций, вызванных N. gonorrhoeae,

Bacillus Spp., в частности Bacillus cereus, Bacillus coagulans, Bacillus megaterium, Bacillus subtilis, Bacillus anthracis,

Bartonella Spp.,

Brucella Spp, в частности Brucella abortus, Brucella melitensis,

Campylobacter Spp., в частности Campylobacter jejuni,

Chlamydia trachomatis,

Enterococcus faecalis, Enterococcus faecium,

Legionella pneumophila,

Listeria Spp., в частности Listeria monocytogenes,

Proteus mirabilis,

Providencia stuartii

Rickettsia Spp., в частности Rickettsia rickettsii,

Bordetella pertussis, Bordetella parapertussis,

Burkholderia Spp., в частности Burkholderia pseudomallei, Burkholderia mallei, Burkholderia cenocepacia,

Haemophilus influenza,

Kingella kingae,

Moraxella catarrhalis,

Streptomyces Spp.,

Nocardioides Spp.,

Frankia Spp.,

Propionibacterium acnes,

Mycobacterium Spp., в частности Mycobacterium smegmatis, Mycobacterium abscessus, Mycobacterium leprae, Mycobacterium tuberculosis, Mycobacterium avium

и их комбинаций, предпочтительно, инфекций, вызванных только N. gonorrhoeae или в комбинации с Chlamydia trachomatis.

31. Способ производства соединения по любому из пунктов 1-27, включающий стадию сочетания соединения-предшественника формулы XVII

$$X$$
 $Q_1$ 
 $Q_2$ 
 $Q_3$ 
 $Q_4$ 
 $Q_2$ 
 $Q_3$ 
 $Q_4$ 
 $Q_5$ 
 $Q_5$ 
 $Q_7$ 
 $Q_8$ 
 $Q_8$ 

где  $Q_1$ ,  $Q_2$  и  $\mathbb{R}^3$  имеют те же значения, которые определены в пункте 1, 2 или 3 выше, и где X представляет уходящую группу,

с соединением амина формулы H-NA<sub>1</sub>A<sub>2</sub>, где  $A_1$  и  $A_2$  имеют те же значения, которые определены в пункте 1 выше.

32. Способ производства соединения по любому из пунктов 1-27, включающий стадию сочетания соединения-предшественника формулы XVIII

где  $R^3$ ,  $Q_1$  и  $Q_2$  имеют те же значения, которые определены в пункте 1, 2 или 3 выше, с соединением-предшественником формулы XIX

$$A_1$$
 $CH_2$ 
 $A_2$ 
 $XIX$ 

где  $A_1$  и  $A_2$  имеют те же значения, которые определены в пункте 1 выше.

#### Определения

Следующие определения предназначены для помощи читателю. Если не указано иное, все термины из области техники, обозначения и другие научные или медицинские термины или терминология, используемые в настоящем документе, имеют значения, обычно понятные специалистам в области химии и медицины. В некоторых случаях, термины с общепринятыми значениями определены в настоящем документе для ясности и/или для удобства ссылок, и включение таких определений в настоящий документ не должно толковаться как представляющее существенное отличие по сравнению с определением термина как обычно понимается в данной области техники.

В некоторых вариантах осуществления термин «*примерно*» относится к отклонению  $\pm 10\%$  от заявленного значения. Когда слово «*примерно*» используется в настоящем документе в отношении числа, следует понимать, что еще один вариант осуществления изобретения включает это число, не измененное присутствием слова «*примерно*».

«Введение» или «введение» лекарственного средства пациенту (и грамматические эквиваленты этой фразы) относится к прямому введению, которое может быть введением пациенту медицинским работником, или может быть самостоятельным введением и/или косвенным введением, которым может быть акт прописывания лекарственного средства.

Например, врач, который инструктирует пациента самостоятельно вводить лекарственное средство или дает пациенту рецепт на лекарственное средство, осуществляет введение лекарственного средства пациенту.

«Доза» и «дозировка» относятся к конкретному количеству активных или терапевтических агентов для введения. Такие количества включены в «дозированную форму», которая относится к физически дискретным единицам, подходящим в качестве единичных доз для людей и других млекопитающих, где каждая единица содержит заранее определенное количество активного агента, рассчитанное для получения желаемого начала, переносимости и терапевтических эффектов, в сочетании с одним или несколькими подходящими фармацевтическими эксципиентами, такими как носители.

Термины «лечение» и «терапия», используемые в настоящей заявке, относятся к множеству гигиенических, фармакологических, хирургических и/или физических средств, используемых с намерением вылечить и/или облегчить заболевание и/или симптомы с целью решить проблему со здоровьем. Термины «лечение» и «терапия» включают профилактические и лечебные методы, поскольку оба направлены на поддержание и/или восстановление здоровья индивидуума или животного. Независимо от происхождения симптомов, заболевания и инвалидности, введение подходящего лекарственного средства для облегчения и/или лечения проблемы со здоровьем следует интерпретировать как форму лечения или терапии в контексте настоящей заявки.

«Стандартная дозированная форма», используемая в настоящем документе, относится к физически дискретной единице терапевтического состава, подходящей для субъекта, подлежащего лечению. Однако следует понимать, что общее суточное использование композиций по настоящему изобретению будет определяться лечащим врачом в рамках обоснованного медицинского заключения. Конкретный уровень эффективной дозы для любого конкретного субъекта или организма будет зависеть от множества факторов, включая заболевание, которое лечат, и тяжесть расстройства; активность конкретного применяемого активного агента; конкретную используемую композицию; возраст, массу тела, общее состояние здоровья, пол и диету субъекта; время введения и скорость выведения конкретного применяемого активного агента; продолжительность лечения; лекарственные средства и/или дополнительные терапии, используемые в комбинации или одновременно с конкретным используемым соединением(ями), и подобные факторы, хорошо известные в области медицины.

Артикли «a» и «an» используются в настоящем документе для обозначения одного или более чем одного (т. е., по крайней мере, одного) грамматического объекта артикля. Например, «элемент» означает один элемент или более одного элемента.

Термин «включая» используется для обозначения «включая, но не ограничиваясь этим». «Включая» и «включая, но не ограничиваясь этим» используются взаимозаменяемо. Термин «содержащий» используется в том же значении, что и «включающий». Термин «состоящий из» используется для обозначения того, что перечисленные элементы присутствуют, но отсутствуют другие, не упомянутые элементы. Термин «содержащий»

используется для включения значения «состоящий из» в качестве предпочтительного варианта осуществления.

Термин «**FabI**» известен в данной области техники и относится к бактериальному ферменту, который, как предполагается, функционирует как редуктаза белка-носителя еноила-ацила (ACP) на заключительной стадии четырех реакций, вовлеченных в каждый цикл биосинтеза жирных кислот бактерий. Считается, что этот фермент широко распространен у бактерий и растений.

Термин «ингибитор фермента» относится к любому соединению, которое не позволяет ферменту эффективно выполнять свои соответствующие биохимические роли. Следовательно, «ингибитором FabI» является любое соединение, которое ингибирует выполнение FabI его биохимической роли. Степень ингибирования фермента любым таким соединением будет варьироваться и описана в настоящем документе и в других местах.

Термин «антибиотический агент» или «антибактериальный агент» должен означать любое лекарственное средство, которое полезно для лечения, профилактики или иного уменьшения тяжести любого бактериального заболевания или любых его осложнений, включая любое из состояний, заболеваний или осложнений, возникающих в результате и/или описанных в настоящем документе. Антибиотические агенты включают, например, цефалоспорины, хинолоны и фторхинолоны, пенициллины и ингибиторы беталактамазы, карбапенемы, монобактамы, макролиды и линкозамиды, гликопептиды, рифампин, оксазолидиноны, тетрациклины, аминогликозиды, стрептограмины, сульфонамиды и подобные. Другие антибиотические или антибактериальные агенты описаны в настоящем документе и известны специалистам в данной области техники. В некоторых вариантах осуществления, термин «антибиотический агент» не включает агент, который является ингибитором FabI, так что комбинации по настоящему изобретению в некоторых случаях будут включать один агент, который является ингибитором FabI, и другой агент, который не является ингибитором FabI.

Термин **«лекарственное средство»**, применяемый в настоящем документе, относится к любому веществу, попадающему в, по меньшей мере, одному из определений, данных в Статье 1, Пунктах 2(a), 2(b) или 3a из Directive 2001/83/EC от 6 ноября 2001, в редакции от 16 ноября 2012, или в Статье 1, Пунктах 2(a) или 2(b) из Directive 2001/82/EC от 6 ноября 2001, в редакции от 7 августа 2009. и в Статье 2 из Regulation (EC) No. 726/2004 от 31 марта 2004.

Термин «болезнь», используемый в настоящем документе, относится к любой болезни, вызванной или связанной с инфекцией организма.

Термин «бактериальная болезнь», используемый в настоящем документе, относится к любой болезни, вызванной или связанной с инфекцией бактериями.

Термин «**цис**» является принятым в данной области техники, и относится к расположению двух атомов или групп вокруг двойной связи таким образом, что атомы или группы находятся на одной стороне двойной связи. Цис конфигурации часто обозначаются как (Z) конфигурации.

Термин «**транс**» является принятым в данной области техники, и относится к расположению двух атомов или групп вокруг двойной связи таким образом, что атомы или группы находятся на противоположных сторонах двойной связи. Транс-конфигурации часто обозначаются как (E) конфигурации.

Термин «терапевтический эффект» является принятым в данной области техники, и относится к местному или системному эффекту у животных, в частности млекопитающих, и более конкретно у людей, вызванному фармакологически активным веществом. Таким образом, термин означает любой измеримый эффект в диагностике, лечении, смягчении, лечении или профилактике заболевания или в улучшении желаемого физического или умственного развития и/или состояний у животного или человека. Фраза «терапевтически эффективное количество» означает такое количество такого вещества, которое дает желаемый местный или системный эффект с разумным соотношением польза/риск, применимым к любому лечению. Терапевтически эффективное количество такого вещества будет варьироваться в зависимости от субъекта и болезненного состояния, которое лечат, массы тела и возраста субъекта, тяжести болезненного состояния, способа введения и подобных, что может быть легко определено специалистом в данной области техники. Например, определенные композиции по настоящему изобретению могут быть введены в количестве, достаточном для получения терапевтического эффекта при разумном соотношении польза/риск, применимом к такому лечению.

Термин «хиральный» является принятым в данной области техники, и относится к молекулам, которые обладают свойством не совпадать при наложении зеркального отображения, в то время как термин «ахиральный» относится к молекулам, которые являются совпадающими при наложении зеркального отображения. «Прохиральной молекулой» является молекула, которая потенциально может быть превращена в хиральную молекулу в конкретном процессе.

Соединения настоящего описания могут содержать один или несколько хиральных центров и/или двойных связей и, следовательно, существовать в виде геометрических изомеров, энантиомеров или диастереомеров. Энантиомер и диастереомеры могут быть обозначены символами «(+)», «(-)», «R» или «S» в зависимости от конфигурации заместителей вокруг стереогенного атома углерода, но специалист в данной области техники поймет, что структура может неявно обозначать один или несколько хиральных центров. Смеси энантиомеров или диастереомеров могут быть обозначены в номенклатуре «(±)», но специалист в данной области техники поймет, что структура может неявно обозначать хиральный центр. Геометрические изомеры, возникающие в результате расположения заместителей вокруг двойной связи углерод-углерод или расположения заместителей вокруг двойной связи углерод-углерод или расположения заместителей вокруг двойной связи углерод-углерод или расположения заместителей вокруг циклоалкильного или гетероциклического кольца, также могут существовать в соединениях по настоящему изобретению.

Символ — означает связь, которая может быть одинарной, двойной или тройной связью, как описано в настоящем документе.

Заместители вокруг двойной связи углерод-углерод обозначены как имеющие

конфигурацию « $\mathbb{Z}$ » или « $\mathbb{E}$ », где термины « $\mathbb{Z}$ » и « $\mathbb{E}$ » используют в соответствии со стандартами IUPAC. Если не указано иное, структуры, изображающие двойные связи, охватывают оба « $\mathbb{E}$ », и « $\mathbb{Z}$ » изомера. Заместители вокруг двойной связи углерод-углерод альтернативно могут называться « $\mathbf{quc}$ » или « $\mathbf{транc}$ », где « $\mathbf{quc}$ » представляет заместители на одной и той же стороне двойной связи, и « $\mathbf{транc}$ » представляет заместители на противоположных сторонах двойной связи. Расположение заместителей вокруг карбоциклического кольца также может быть обозначено как « $\mathbf{quc}$ » или « $\mathbf{транc}$ ». Термин « $\mathbf{quc}$ » представляет заместители на одной и той же стороне плоскости кольца, и термин « $\mathbf{транc}$ » представляет заместители на противоположных сторонах плоскости кольца. Смеси соединений, в которых заместители расположены как на одной и той же, так и на противоположных сторонах плоскости кольца, обозначаются « $\mathbf{quc}$ / $\mathbf{транc}$ » или « $\mathbf{Z}$ / $\mathbf{E}$ ».

Термин «**стереоизомеры**», используемый в настоящем документе, состоит из всех геометрических изомеров, энантиомеров или диастереомеров. Настоящее изобретение охватывает разные стереоизомеры этих соединений и их смеси. Также рассматриваются конформационные изомеры и ротамеры описанных соединений.

Термин «**ED50**» является принятым в данной области техники. В некоторых вариантах осуществления, ED50 означает эффективную дозу лекарственного средства, которая вызывает 50% его максимального ответа или эффекта, или, альтернативно, дозу, которая вызывает заранее определенный ответ у 50% испытуемых субъектов или препаратов. Термин «LD50» является принятым в данной области техники. В некоторых вариантах осуществления, LD50 означает дозу лекарственного средства, которая является летальной для 50% испытуемых. Термин «терапевтический индекс» является принятым в данной области техники термином, который относится к терапевтическому индексу лекарственного средства, определяемому как ED50/LD50.

Термин «Ki» является принятым в данной области техники и относится к константе диссоциации комплекса фермент-ингибитор.

Термин «противомикробный» является принятым в данной области техники и относится к способности соединений, описанных в настоящем документе, предотвращать, ингибировать или уничтожать рост микробов, таких как бактерии, грибы, простейшие и вирусы.

Термин «антибактериальный» является принятым в данной области техники и относится к способности соединений, раскрытых в настоящем документе, предотвращать, подавлять или уничтожать рост микробов бактерий.

Термин «микроб» является принятым в данной области техники и относится к микроскопическому организму. В некоторых вариантах осуществления, термин микроб применяется к бактериям. В других вариантах осуществления, термин относится к патогенным формам микроскопического организма.

Термин «алкил», применяемый в настоящем документе, относится к насыщенному прямому или разветвленному углеводороду, такому как прямая или разветвленная группа из 1-8 или 1-6 атомов углерода, обозначенных в настоящем документе как  $C_1$ - $C_8$ алкил или

 $C_1$ - $C_6$ алкил, соответственно. Термин «низший алкил», применяемый в настоящем документе, более конкретно относится к насыщенному прямому или разветвленному углеводороду, такому как прямая или разветвленная группа из 1-4 или 1-3 атомов углерода, обозначенная в настоящем документе как  $C_1$ - $C_4$ алкил и  $C_1$ - $C_3$ алкил, соответственно. Типовые алкильные группы и низшие алкильные включают, но не ограничены ими, метил, этил, пропил, изопропил, 2-метил-1-пропил, 2-метил-2-пропил, 2-метил-1-бутил, 3-метил-1-бутил, 3-метил-1-пентил, 4-метил-1-пентил, 2-метил-2-пентил, 3-метил-1-пентил, 4-метил-2-пентил, 2-диметил-1-бутил, 3-диметил-1-бутил, 3-диметил-1-бутил, 3-диметил-1-бутил, 4-метил-2-пентил, изопентил, неопентил и гексил.

Кроме того, термин «алкил» (или «низший алкил») включает «замещенные алкилы», т.е. его следует понимать как необязательно несущий один или несколько заместителей в одном или нескольких положениях. То есть, он относится также к алкильным группам, имеющим один или несколько (например, два, три, четыре, пять, шесть и т.д.) заместителей, каждый из которых замещает водород на атоме углерода углеводородной основной цепи. Такие заместители могут включать, например, гидроксил, карбонильную группу (где карбонильная группа несет атом водорода, алкильную группу или другую группу, как определено в этом параграфе, например, чтобы получить карбоксильную, алкоксикарбонильную, формильную или ацильную группу), тиокарбонилсодержащую группу (где карбонильная группа несет атом водорода, алкильную группу или другую группу, как определено в этом параграфе, например, чтобы получить тиоэфир, тиоацетат или тиоформиат), алкоксил, фосфорил, фосфонат, фосфинат, фосфат, амино, амидо, амидин, имин, циано, нитро, азидо, сульфгидрил, алкилтио, сульфат, сульфонат, сульфамоил, сульфонамидо, сульфонил, гетероциклил, аралкил, циклоалкил, гетероцикл или ароматическую или гетероароматическую группу. Во всех случаях, когда вышеупомянутые группы имеют более одной валентности, дополнительная свободная валентность может быть насыщена атомом водорода, алкильной группой, циклоалкильной группой, гетероциклической группой, арильной группой или гетероарильной группой. Кроме того, специалистам в данной области техники будет понятно, что фрагменты, замещенные в углеводородной цепи, сами могут быть замещены, если это применимо. Например, заместители замещенного алкила могут включать замещенные и незамещенные формы амино, азидо, имино, амидо, фосфорила (включая фосфонат, фосфинат и фосфат), сульфонила (включая сульфат, сульфонамидо, сульфамоил и сульфонат) и силильных групп, а также простые эфиры, алкилтио, карбонилы (включая кетоны, альдегиды, карбоксилаты и сложные эфиры), нитрил и изонитрил. Во избежание сомнений, алкильную группу, несущую другую алкильную группу, следует рассматривать не как алкильную группу, замещенную другой алкильной группой, а как одну разветвленную алкильную группу.

Термин «алкенил» является принятым в данной области техники и относится к группе, соответствующей алкильной группе, определенной выше, но несущей одну или

несколько двойных связей углерод-углерод. Конечно, общее количество двойных связей ограничено числом атомов углерода в алкенильной группе, и для того, чтобы учесть, по меньшей мере, одну двойную связь, алкенильная группа должна иметь, по меньшей мере, два атома углерода. За исключением этого различия, определения и характеристики, данные для алкильной группы выше, в равной степени применимы к алкенильной группе.

Термин «алкинил» является принятым в данной области техники и относится к группе, соответствующей алкильной группе, определенной выше, но несущей одну или несколько тройных связей углерод-углерод. Конечно, общее количество двойных связей ограничено числом атомов углерода в алкенильной группе и для того, чтобы учесть, по меньшей мере, одну тройную связь, алкинильная группа должна иметь, по меньшей мере, два атома углерода. За исключением этого различия, определения и характеристики, данные для алкильной группы выше, в равной степени применимы к алкинильной группе.

Термин «арил» является принятым в данной области техники и относится к 5-, 6- и 7-членным однокольцевым ароматическим группам, которые могут включать от нуля до четырех гетероатомов, например, бензолу, пирролу, фурану, тиофену, имидазолу, оксазолу, тиазолу, триазолу, пиразолу, пиридину, пиразину, пиридазину и пиримидину и подобным. Те арильные группы, которые имеют гетероатомы в кольцевой структуре, также могут называться «гетероарил» или «гетероароматические соединения». Ароматическое кольцо может быть замещено в одном или нескольких положениях кольца такими заместителями, как описано выше, например, галогеном, азидом, алкилом, аралкилом, алкенилом, алкинилом, циклоалкилом, гидроксилом, алкоксилом, амино, нитро, сульфгидрилом, имино, амидо, фосфонатом, фосфинатом, фосфатом, карбонилом, карбоксилом, силилом, простым эфиром, алкилтио, сульфонилом, сульфонамидо, кетоном, альдегидом, сложным эфиром, гетероциклилом, ароматическими или гетероароматическими группами, -CF<sub>3</sub>, -CN и подобными. Термин «арил» также включает полициклические кольцевые системы, содержащие два или несколько циклических колец, в которых два или несколько атомов углерода являются общими ДЛЯ двух соседних колец (кольца «конденсированными кольцами»), где, по меньшей мере, одно из колец является ароматическим, например, другие циклические кольца могут быть циклоалкилами, циклоалкенилами, циклоалкинилами, арилами и/или гетероциклилами.

Термин «аралкил» или «арилалкил» является принятым в данной области техники и относится к алкильной группе, замещенной арильной группой (например, ароматической или гетероароматической группой).

Термин «карбоцикл» является принятым в данной области техники и относится к ароматическому или не ароматическому кольцу, в котором каждый атом кольца является углеродом.

Термин «**циклоалкил**», применяемый в настоящем документе, относится к моноциклической насыщенной или частично ненасыщенной алкильной или алкенильной группе, из, например, 3-6 или 4-6 атомов углерода, названной в настоящем документе, например, как « $C_{3-6}$ циклоалкил» или « $C_{4-6}$ циклоалкил», и ее получают из циклоалкана.

Примеры циклоалкильных групп включают, но не ограничены ими, циклогексан, циклогексен, циклопентан, циклобутан, циклопропан или циклопентен. Указанная циклоалкильная группа может быть замещена в одном или нескольких положениях одним или несколькими заместителями, как описано выше.

Термины «гало» или «галоген», используемые в настоящем документе, относятся к F, Cl, Br или I. «Галогенид» обозначает соответствующий анион галогенов, а «псевдогалогенид» имеет определение, приведенное на странице 560 из "Advanced Inorganic Chemistry" by Cotton and Wilkinson, Interscience Publishers, 1966.

Термин «амино», применяемый в настоящем документе, относится к любой группе структуры -NR $_a$ R $_b$ , где, если не указано иное, R $_a$  и R $_b$  независимо выбирают из группы, состоящей из H, алкила, циклоалкила, алкенила, алкинила, арила, гетероарила, гетероциклических групп, а также любых других групп заместителей, перечисленных выше в отношении объема замещенных алкильных групп, за исключением карбонильных групп, тиокарбонильных групп и групп заместителей, в которых присоединение к оставшейся молекуле осуществляется через гетероатом, выбранный из N, O, S и P. Альтернативно, R $_a$  и R $_b$  могут представлять собой углеводородные группы, которые связаны с образованием гетероцикла вместе с атомом азота, к которому они присоединены.

Термин «гетероарил», используемый в настоящем документе, относится к моноциклической ароматической 4-6-членной кольцевой системе, содержащей один или несколько гетероатомов, например от одного до трех гетероатомов, которые могут быть одинаковыми или разными, таких как азот, кислород и сера. Если возможно, указанное гетероарильное кольцо может быть связано с соседним радикалом через углерод или азот. Примеры гетероарильных колец включают, но не ограничиваются ими, фуран, бензофуран, тиофен, пиррол, тиазол, оксазол, изотиазол, изоксазол, имидазол, пиразол, триазол, пиридин и пиримидин. Указанная гетероарильная группа может быть замещена одним или несколькими заместителями, как описано для арильной группы выше. Термин «гетероарил» также включает полициклические кольцевые системы, имеющие два или несколько циклических колец, в которых два или несколько атомов углерода или гетероатомов общими соседних колец (кольца представляют являются для двух «конденсированные кольца») где, по меньшей мере, одно из колец представляет собой гетероарил, как определено выше, тогда как другие циклические кольца могут быть циклоалкилами, циклоалкенилами, циклоалкилами, ароматическими кольцами и/или насыщенными, ненасыщенными или ароматическими гетероциклами.

Термин «гетероцикл», используемый в настоящем документе, относится к моноциклическому кольцу, содержащему один или несколько гетероатомов, например от одного до трех гетероатомов, которые могут быть одинаковыми или разными, таких как азот, кислород и сера. Остальные члены кольца образованы атомами углерода. Гетероцикл обычно имеет от 4 до 8 членов кольца и, предпочтительно, 5 или 6 членов кольца. Если не указано иное, гетероцикл может быть ароматическим, частично или полностью насыщенным. Если не указано иное, он может содержать или может не содержать

допустимые заместители, как указано в настоящем документе.

Термины «гидрокси» и «гидроксил», используемые в настоящем документе, относятся к радикалу -OH.

Термин **«нитро»** является принятым в данной области техники и относится  $\kappa$  -NO<sub>2</sub>; термин **«сульфгидрил»** является принятым в данной области техники и относится  $\kappa$  -SH; и термин **«сульфонил»** является принятым в данной области техники и относится  $\kappa$  -SO<sub>2</sub>-.

Определение каждого выражения, когда оно встречается более одного раза в любой структуре, должно быть независимым от его определения где-либо еще в той же структуре.

Термины «трифлил», «тозил», «мезил» и «нонафлил» являются принятыми в данной области техники и относятся к трифторметансульфонильной, птолуолсульфонильной, метансульфонильной и нонафторбутансульфонильной группам, соответственно. Термины трифлат, тозилат, мезилат и нонафлат являются принятыми в данной области техники и относятся к функциональным группам трифторметансульфоната, п-толуолсульфоната, метансульфоната и нонафторбутансульфоната и молекулам, которые содержат указанные группы, соответственно.

Сокращения **Me, Et, Ph, Tf, Nf, Ts** и **Ms** представляют метил, этил, фенил, трифторметансульфонил, нонафторбутансульфонил, п-толуолсульфонил и метансульфонил, соответственно. Более полный список сокращений, используемых специалистами в области органической химии, представлен в первом выпуске каждого тома Journal of Organic Chemistry; этот список обычно представлен в таблице под названием Стандартный список сокращений.

Термин «пролекарство» относится к производному активного соединения (лекарственное средство), которое претерпевает трансформацию в условиях использования, например, в организме, с высвобождением активного лекарственного средства. Пролекарства часто, но не обязательно, фармакологически неактивны, пока не превращаются в активное лекарственное средство.

Следует понимать, что «замещение» или «замещенный» включает неявное условие, что такое замещение соответствует разрешенной валентности замещенного атома и заместителя, и что замещение приводит к стабильному соединению, например, в котором не происходит самопроизвольное превращение, такое как перегруппировка, циклизация, отщепление или другие реакции.

Термин «замещенный» также рассматривается как включающий все допустимые заместители органических соединений. В широком аспекте, допустимые заместители И циклические, разветвленные включают ациклические И неразветвленные, карбоциклические и гетероциклические, ароматические и неароматические заместители органических соединений. Иллюстративные заместители включают, например, заместители, описанные в настоящем документе выше, например, в связи с замещенными алкилами. Допустимые заместители могут быть одним или несколькими и одинаковыми или разными для подходящих органических соединений. Для целей этого описания, гетероатомы, такие как азот, могут иметь водородные заместители и/или любые допустимые заместители органических соединений, описанных в настоящем документе, которые удовлетворяют валентности гетероатомов. В этом контексте термин «допустимые заместители» означает любой заместитель, который может быть связан с основной молекулой без нарушения общих принципов образования химической связи, таких как максимальное количество валентных электронов для атома, представляющего интерес, и не делая соединение настолько токсичным для пациента, что неприемлемая токсичность обнаруживается даже при минимальной дозировке, необходимой для достижения терапевтического эффекта.

Для целей этого изобретения, химические элементы идентифицированы в соответствии с Периодической таблицей элементов, версия CAS, Handbook of Chemistry and Physics, 67th Ed., 1986-87, внутри обложки. Также для целей описания, термин «углеводород» рассматривается как включающий все допустимые соединения, имеющие, по меньшей мере, один атом водорода и один атом углерода. В широком аспекте, допустимые углеводороды включают ациклические и циклические, разветвленные и неразветвленные, карбоциклические и гетероциклические, ароматические и неароматические органические соединения, которые могут быть замещенными или незамещенными.

Термин «фармацевтически приемлемые соли» является принятым в данной области техники и относится к относительно нетоксичным неорганическим и органическим кислотно-аддитивным солям или неорганическим или органическим основно-аддитивным солям, включая, например, содержащиеся в композициях по настоящему изобретению, и включая те, которые присутствуют в других одобренных лекарственных средствах (где одобрение может быть дано любым компетентным органом в EU, USA, CA, JP, CN или KR). Подразумевается, что фармацевтически приемлемые соли входят в объем настоящего изобретения. Следовательно, все ссылки на соединения настоящего изобретения следует понимать как ссылки не только на соединения как таковые, но также на фармацевтически соответствующих соединений. Согласно приемлемые соли одному фармацевтически приемлемые соли могут быть выбраны из солей, признанных фармацевтически приемлемыми в литературе на дату подачи, и, в частности, как описано в G.S. Paulekuhn et al. in J. Med. Chem. 2007, 50, 6665-6672 и цитированных там ссылках. Если соединением по изобретению является кислотное соединение, и в частности, пролекарство, содержащее фосфатную группу, указанное соединение по изобретению может быть предоставлено в форме фармацевтически приемлемых солей, где соединение образует анионную часть, и противоион выбирают из Na, K, Mg, Ca, или протонированные формы органических оснований этаноламина, меглумина, трометамина (т.е. 2-амино-2-(гидроксиметил)пропан-1,3-диола) И деанола (т.е. 2-(диметиламино)этанола). Стехиометрия солей особо не ограничена. Например, соли могут быть образованы с фосфатными пролекарствами по изобретению (имеющими 2 кислых протона) в любом стехиометрическом соотношении от 0 до 2 эквивалентов. Обычно фармацевтически приемлемые соли образуют так, что чистый заряд соли равен нулю, т.е. что общее количество положительных зарядов равно общему количеству отрицательных зарядов.

Термин «лечение» включает любой значительный эффект, например уменьшение, снижение, модуляцию или устранение, который приводит к улучшению состояния, заболевания, расстройства и подобного.

Термин «профилактическое» или «терапевтическое» лечение является принятым в данной области техники и относится к введению хозяину одной или нескольких рассматриваемых композиций. Если введение происходит до клинического проявления нежелательного состояния (например, заболевания или другого нежелательного состояния животного-хозяина), тогда лечение является профилактическим, то есть оно защищает хозяина от развития нежелательного состояния, в то время как если введение происходит после проявления нежелательного состояния, лечение является терапевтическим (т.е. оно предназначено для уменьшения, облегчения или поддержания существующего нежелательного состояния или связанных с ним побочных эффектов).

«Пациент», «субъект» или «хозяин», которых лечат данным способом, может означать либо человека, либо животное, не относящееся к человеку. Животные, не относящиеся к человеку, включают животных-компаньонов (например, кошек, собак) и животных, выращиваемых для употребления в пищу (т. е. пищевых животных), таких как коровы, свиньи, куры. Не относящиеся к человеку животные предпочтительно являются млекопитающими.

Термин «млекопитающее» известен в данной области техники, и типовые млекопитающие включают людей, приматов, крупный рогатый скот, свиней, собак, кошек и грызунов (например, мышей и крыс).

Термин «биодоступный» является принятым в данной области техники и относится к форме объекта описания, которая позволяет ему или части введенного количества абсорбироваться, вводиться или иным образом быть физиологически доступным субъекту или пациенту, которому он вводится.

Термин «фармацевтически приемлемый носитель» является принятым в данной области техники и относится к фармацевтически приемлемому материалу, композиции или носителю, такому как жидкий или твердый наполнитель, разбавитель, эксципиент, растворитель или инкапсулирующий материал, вовлеченный в перемещение или транспортировку любой рассматриваемой композиции или ее компонента из одного органа или части тела в другой орган или часть тела. Каждый носитель должен быть «приемлемым» в том смысле, что он совместим с рассматриваемой композицией и ее компонентами и не причиняет вреда пациенту. Некоторые примеры материалов, которые могут служить фармацевтически приемлемыми носителями, включают: (1) сахара, такие как декстроза, лактоза, глюкоза и сахароза; (2) крахмалы, такие как кукурузный крахмал и картофельный крахмал, а также производные крахмала, такие как циклодекстрины и модифицированные циклодекстрины, включая, предпочтительно, (2-гидроксипропил)-βциклодекстрин и сульфобутиловый эфир-β-циклодекстрин; (3) целлюлозу и ее целлюлоза, производные, такие как микрокристаллическая

натрийкарбоксиметилцеллюлоза, метилцеллюлоза, этилцеллюлоза, гидроксипропилметилцеллюлоза (НРМС) и ацетат целлюлозы; (4) порошковый трагакант; (5) солод; (6) желатин; (7) тальк; (8) образующие матрицу полимерные эксципиенты, такие как поливинилпирролидин (ПВП), например PVP К30, акриловые полимеры и сополимеры, такие как различные сорта Eudragit и, предпочтительно, Eurdragit L100, сукцинат гидроксипропилметилцеллюлозы (HPMCAS), другие сополимеры, такие как сополимеры на основе полиэтиленгликоля, такие как Soluplus; (9) эксципиенты, такие как масло какао и воски для суппозиториев; (10) масла, такие как арахисовое масло, хлопковое масло, сафлоровое масло, кунжутное масло, оливковое масло, кукурузное масло и соевое масло; (11) гликоли, такие как пропиленгликоль; (12) полиолы, такие как глицерин, сорбит, маннит и полиэтиленгликоль; (13) сложные эфиры, такие как этил олеат, глицерил бегенат и этил лаурат; (14) агар; (15) буферные агенты, такие как гидроксид магния и гидроксид алюминия; (16) альгиновую кислоту; (17) апирогенную воду; (18) изотонический солевой раствор; (19) раствор Рингера; (20) этиловый спирт; (21) фосфатные буферные растворы; и (22) другие нетоксичные совместимые вещества, используемые в фармацевтических составах. Описанные вспомогательные вещества могут выполнять более одной функции. Например, наполнители или связующие агенты также могут быть разрыхлителями, глидантами, антиадгезивами, смазывающими агентами, подсластителями и подобными.

Термин «растворитель» используется в настоящем документе для обозначения жидкого химического вещества, которое способно растворять значительное количество другого вещества, представляющего интерес, «растворенного вещества», с образованием прозрачного гомогенного раствора. Термин «значительное количество» определяется предполагаемым использованием раствора таким образом, что предполагаемое использование должно быть возможным благодаря растворенному количеству растворенного вещества. Например, если предполагается вводить соединение по настоящему изобретению в форме раствора инъекцией, растворитель должен быть способен растворять соединение в таких количествах, чтобы сделать возможным введение терапевтической дозы.

Если не указано иное, все реакции, описанные в настоящем документе, проводят при температурах реакции, которые дают желаемое целевое соединение, и которые обеспечивают разумный компромисс между скоростью реакции и селективностью. Типовые температуры реакции для реакций сочетания на основе Pd и реакций циклизации на основе Fe составляют от  $80^{\circ}$ C до  $90^{\circ}$ C, в то время как удаление защитных групп обычно осуществляется при температуре от  $0^{\circ}$ C до комнатной температуры ( $25^{\circ}$ C).

Если не указано иное, все характеристики переменных групп являются такими же, как указано для соединения формулы I, или, подобным образом, их следует понимать так, что более конкретные значения и комбинации значений, представленные формулами II-XVI, также возможны и даже предпочтительны.

Если не указано иное, термин «защитная группа» используется в настоящем документе для характеризации группы, которая связана с функциональной группой, чтобы

предотвратить участие этой функциональной группы в предполагаемой химической реакции. Защитная группа должна быть инертной в условиях предполагаемой химической реакции, но должна быть возможность удалить защитную группу из соединения так, чтобы не происходили дальнейшие превращения в других частях молекулы. Подходящие защитные группы описаны для каждой функциональной группы в «Greene's Protective Groups in Organic Synthesis», Peter G. M. Wuts, Theodora W. Greene, John Wiley & Sons, 20 Dec 2012.

## Соединения по изобретению

В настоящем изобретении представлены соединения, которые демонстрируют благоприятную антибиотическую активность через ингибирование FabI. Соединения по настоящему изобретению представлены следующей общей формулой I

$$A_1 \xrightarrow{Q_1} Q_2$$

$$A_2 \xrightarrow{Q_1} Q_2$$

$$A_3 \xrightarrow{Q_1} Q_3$$

где

 $A_1$  представляет группу, выбранную из групп  $A_{11}$  и  $A_{12}$  имеющих следующие структуры

где линия, соединенная с экзоциклической метиленовой группой, представляет одинарную ковалентную связь, образованную с атомом азота формулы I;

А2 представляет метильную группу;

или  $A_1$  и  $A_2$  вместе с атомом азота, с которым они связаны, образуют следующую группу  $A_3$ :

$$R^8$$
 $A_3$ ;

где группа  ${\bf A}_3$  не ограничена по ее стереохимии. Она может быть одним энантиомером:

или она может быть другим энантиомером

или она может быть любой их смесью, включая особенно рацемическую смесь двух вышеуказанных энантиомеров. Любые из этих групп могут быть обозначены как группа  $A_3$ ;

где, в группе  $A_3$ , экзоциклическая линия, соединенная с атомом азота бицикла, представляет ковалентную связь между азотом и карбонильной группой с левой стороны формулы I;

 $Q^1$  представляет -CH=CR $^7$ -, CH $_2$  или NH;

 $Q_2$  представляет  $CR^4R^5$ , или  $CR^4R^5$ - $CR^6R^7$ , где  $CR^4R^5$  группа связывается с  $Q_1$ ; или  $Q_1$ - $Q_2$  представляет -N= $CR^7$ - $CHR^7$ - или его таутомер -NH- $CR^7$ = $CR^7$ -

 $Q_3$  представляет O или S;

 $R^1$  представляет группу, выбранную из H, -NH<sub>2</sub>;

 $R^2$  представляет группу, выбранную из H, -O-Ar $^1$ , -O-Het $^1$ , -NR $^9$ R $^{10}$ , -O-Alk $^1$ , где Ar $^1$  представляет фенильную группу которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C $_{1\text{-}4}$ -алкил, -O-(CH $_2$ ) $_{1\text{-}4}$ -NR $^9$ R $^{10}$ , или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы, которые, например, могут быть выбраны из алкиленовых групп, и алкиленовых групп, несущих один или два гетероатома, индивидуально выбранных из N и O в их основной цепи, где замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла имеющего один или два гетероатома, индивидуально выбранных из N и O, где атом N может нести группу,

выбранную из H и метила, где Het¹ представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, или не ароматический частично или полностью насыщенный гетероцикл с 6 атомами кольца, включающими 1 гетероатом, выбранный из N и O, где указанный ароматический или не ароматический гетероцикл необязательно может быть замещен одной или несколькими группами, индивидуально выбранными из - $C_{1-4}$ -алкила, - $C_{1-4}$ -алкила, - $C_{1-4}$ -алкила и - $C(E_{2})_{0-4}$ -OH, где  $R^{9}$  выбирают из H и - $C_{1-4}$ -алкила; где  $R^{10}$  выбирают из H, - $C_{1-4}$ -алкила и - $C(E_{2})_{0-4}$ -OH, где  $R^{10}$  выбирают из H, - $R_{1-4}$ -алкила и - $R_{1-4}$ -алкила и оторая является линейной, разветвленной или циклической, или их комбинацию, где  $R_{1-4}$ -алкила может быть необязательно замещена одной или несколькими группами, выбранными из -OH, -O-алкил

 ${
m R}^3$  представляет группу, выбранную из H, -PO $_3{
m R}^{3a}{}_2$ , -CH $_2$ -OPO $_3{
m R}^{3a}{}_2$  и -CH $_2$ -O-C(=O)-  ${
m R}^{3b}$ ;

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>:

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O- $C_{1-6}$ -алкила;

 $R^4$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила, CN и  $C_{1-4}$ -алкилен-F;

 $R^5$  представляет группу, выбранную из H,  $C_{1\text{-}4\text{-}}$ алкила,  $C_{1\text{-}4\text{-}}$ алкилен-OR,  $C_{1\text{-}4\text{-}}$ алкилен-OR, -OPO $_3R^{3a}_2$ ;

или  $R^4$  и  $R^5$  вместе образуют циклическую группу, имеющую от 4 до 6 членов кольца, образованную метиленовыми группами и, необязательно, атомом кислорода;

 $R^6$  представляет группу, выбранную из H, -OH,  $C_{1\text{-}4}$ -алкила или -OPO $_3R^{3a}{}_2$ ;

 $R^7$  представляет группу, выбранную из H, С<sub>1-4</sub>-алкила, С<sub>1-4</sub>-алкилен-OH, С<sub>1-4</sub>-алкилен-OR<sup>3</sup>, С<sub>1-4</sub>-алкилен-F,-CN;

или  $R^6$  и  $R^7$  вместе образуют циклическую группу, имеющую от 4 до 6 членов кольца, образованную метиленовыми группами и, необязательно, атомом кислорода; где циклическая группа может необязательно нести заместитель, выбранный из -OH, -O-алкила;

 ${R}^{8}$  представляет группу, выбранную из -O-Ar $^{2}$  и -O-Het $^{2}$ ;

где  $Ar^2$  представляет фенильную группу которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C<sub>1-4</sub>-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N, S и O, где указанный гетероцикл может необязательно нести один или два заместителя,

выбранных из оксо, галогена, -O-C<sub>1-4</sub>-алкила, C<sub>1-4</sub>-алкила и CN;

И

где  $\operatorname{Het}^2$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, которые могут необязательно быть замещены одной или несколькими группами, индивидуально выбранными из -O- $\operatorname{C}_{14}$ -алкила, -CN, F,  $\operatorname{C}_{1-4}$ -алкила.

В одном варианте осуществления, соединения по настоящему изобретению представлены общей формулой II

$$\begin{array}{c|c}
R^1 & CH_3 & Q_1 \\
\hline
Q_1 & Q_2 \\
\hline
R^2 & CH_3 & R^3
\end{array}$$
II

где

 $R^1, R^2, R^3, Q^1, Q_2, Q_3$  имеют те же значения, которые определены для общей формулы I выше;

и где пятичленный гетероцикл, содержащий  $Q_3$ , связан с метиленамидной группой в положении 2 и с метильной группой в положении 3 или связан с метиленамидной группой в положении 3 и с метильной группой в положении 2.

Предпочтительно, соединения этого варианта осуществления представлены общей формулой III

где

 $R^1, R^2, R^3, Q^1, Q_2, Q_3$  имеют те же значения, которые определены для общей формулы I выше.

B этом варианте осуществления, переменная группа  $Q_3$  особенно может представлять атом кислорода, так, что группа с левой стороны молекулы является бензофурановой группой. Такие соединения представлены общей формулой IV

$$R^{1} \xrightarrow{H_{3}C} Q_{1} \xrightarrow{Q_{1}} Q_{2}$$

$$R^{2} \xrightarrow{CH_{3}} R^{3} \qquad IV$$

где

 $R^1,\,R^2,\,R^3,\,Q^1,\,Q_2$  имеют те же значения, которые определены для общей формулы I выше.

Согласно другому предпочтительному аспекту этого варианта осуществления, переменные группы  $Q_1$  и  $Q_2$  представляют NH или  $CH_2$  для  $Q_1$  и  $CR^4R^5$  для  $Q_2$ , соответственно. Соединения по этому аспекту представлены общей формулой Va или общей формулой Vb

$$R^1$$
 $C = R^5$ 
 $C = R^5$ 
 $R^2$ 
 $Va;$ 

или

$$R^1$$
 $C - R^5$ 
 $C - R^5$ 
 $R^2$ 
 $Vb$ 

где

 $R^1$ ,  $R^2$ ,  $R^3$ , имеют те же значения, которые определены для общей формулы I выше. В формуле Va,  $R^4$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила и  $C_{1-4}$ -алкилен-F, и  $R^5$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ . В формуле Vb,  $R^4$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила и  $C_{1-4}$ -алкилен-F, и  $R^5$  представляет группу, выбранную из H,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ , -OH; и -OPO $_3R^{3a}_2$ .

Переменные группы общей формулы Va или Vb предпочтительно могут иметь следующие значения:

 $R^1$  представляет H, NH<sub>2</sub>;

 $R^2$  представляет H;

 ${
m R}^3$  представляет группу, выбранную из H, -PO3R³a2, -CH2-OPO3R³a2 и -CH2-O-C(=O)-R³b:

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ .

Согласно другому аспекту этого варианта осуществления, переменные группы  $Q_1$  и  $Q_2$  представляют NH и  $CR^4R^5$ - $CR^6R^7$ , соответственно. Соединения по этому аспекту представлены общей формулой VI

$$\begin{array}{c|c}
 & H_3C \\
 & R^1 \\
 & C \\
 & R^2 \\
 & R^3
\end{array}$$

$$\begin{array}{c}
 & H \\
 & R^4 \\
 & R^7 \\
 & R^6 \\
 & R^6 \\
 & R^6
\end{array}$$

$$\begin{array}{c}
 & VI \\
 & VI \\$$

где

 $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$ ,  $R^6$  и  $R^7$  имеют те же значения, которые определены для общей формулы I выше.

В этом аспекте, переменные группы предпочтительно могут иметь следующие значения:

 $R^1$  представляет H, NH<sub>2</sub>;

 $R^2$  представляет H;

 ${
m R}^3$  представляет группу, выбранную из H, -PO3R<sup>3a</sup>2, -CH2-OPO3R<sup>3a</sup>2 и -CH2-O-C(=O)-R<sup>3b</sup>:

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ .

 $R^6$  представляет H,  $C_{1-4}$ -алкил, OH, -OPO<sub>3</sub> $R^{3a}_{2}$ ; и

 $R^7$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ ,где  $R^3$  такой, как определен выше,  $C_{1-4}$ -алкилен-F.

Согласно еще одному аспекту этого варианта осуществления, вариабельная группа  $Q_1$  представляет метиленовую группу, а  $Q_2$  имеет такое же значение, как в предыдущем аспекте, т.е. - $CR^4R^5$ - $CR^6R^7$ . Соединения этого аспекта представлены общей формулой VII

$$\begin{array}{c|c}
R^1 & & & \\
R^1 & & & \\
R^2 & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^4 & & \\
R^5 & & \\
R^6 & & \\
R^6 & & \\
\end{array}$$

$$\begin{array}{c|c}
R^4 & & \\
R^6 & & \\
\end{array}$$

$$\begin{array}{c|c}
R^6 & & \\
\end{array}$$

где

 $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$ ,  $R^6$  и  $R^7$  имеют те же значения, которые определены для общей формулы I выше.

В соединениях по этому аспекту, переменные группы предпочтительно имеют следующие значения:

 $R^1$  представляет H, NH<sub>2</sub>;

 $R^2$  представляет H;

 ${
m R}^3$  представляет группу, выбранную из H, -PO3R³a2, -CH2-OPO3R³a2 и -CH2-O-C(=O)-R³b:

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>:

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ ;

 $R^6$  представляет H,  $C_{1-4}$ -алкил, OH, -OPO $_3R^{3a}{_2}$ ; и

 $R^7$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше,  $C_{1-4}$ -алкилен-F.

В другом варианте осуществления по настоящему изобретению, бициклическая группа с левой стороны молекулы связана через положение 3 пятичленного гетероцикла. Соединения по этому варианту осуществления представлены общей формулой VIII

где

 $R^1, R^2, R^3, Q^1, Q_2, Q_3$  имеют те же значения, которые определены для общей формулы I выше.

В одном конкретном аспекте этого варианта осуществления, вариабельная группа  $Q_3$  представляет атом кислорода, так, что бициклическая группа с левой стороны является бензофурановой группой. Соединения этого аспекта представлены общей формулой IX

$$R^{2}$$
 $CH_{3}$ 
 $CH$ 

где

 $R^1,\,R^2,\,R^3,\,Q^1,\,Q_2$  имеют те же значения, которые определены для общей формулы I выше.

В этом аспекте, переменные группы  $Q_1$  и  $Q_2$  предпочтительно представляют NH или  $CH_2$  для  $Q_1$ , и  $CR^4R^5$  для  $Q_2$ , соответственно. Предпочтительные соединения по этому аспекту представлены общей формулой Xa и Xb

$$R^{2}$$
 $CH_{3}$ 
 $CH$ 

или 
$$\mathbb{R}^1$$
  $\mathbb{R}^1$   $\mathbb{R}^1$   $\mathbb{R}^2$   $\mathbb{R}^4$   $\mathbb{R}^5$   $\mathbb{R}^3$   $\mathbb{R}^3$   $\mathbb{R}^3$   $\mathbb{R}^3$   $\mathbb{R}^3$ 

где

 ${\bf R}^1, {\bf R}^2, {\bf R}^3, {\bf R}^4$  и  ${\bf R}^5$  имеют те же значения, которые определены для общей формулы I выше.

Значения вариабельной группы для соединений этого аспекта предпочтительно являются следующими:

 $R^1$  представляет H;

 $R^2$  представляет группу, выбранную из H, -O-Ar $^1$ , -O-Het $^1$ , NH $_2$ , где Ar $^1$  представляет фенильную группу, которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C $_{1-4}$ -алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла имеющего один или два гетероатома, индивидуально выбранных из N и O, где Het $^1$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, или не ароматический частично или полностью насыщенный

гетероцикл с 6 атомами кольца, включающими 1 гетероатом, выбранный из N, S и O, где  $Het^1$  группа необязательно может быть замещена одной или несколькими группами, индивидуально выбранными из - $C_{1-4}$ -алкила, -O- $C_{1-4}$ -алкила, -CN;

 ${
m R}^3$  представляет группу, выбранную из H, -PO $_3{
m R}^{3a}{}_2$ , -CH $_2$ -OPO $_3{
m R}^{3a}{}_2$  и -CH $_2$ -O-C(=O)-  ${
m R}^{3b}$ :

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкила,  $C_{1-4}$ -алкилен-F; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH или  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше.

Другой предпочтительный подвид соединений этого аспекта изобретения представлен общей формулой XI

где

 $R^1,\,R^2,\,R^3,\,R^4,\,R^5,\,R^6$  и  $R^7$  имеют те же значения, которые определены для общей формулы I выше.

Для этого подвида, значения вариабельной группы предпочтительно являются следующими:

 $R^1$  представляет H;

 $R^2$  представляет группу, выбранную из H, -O-Ar $^1$ , -O-Het $^1$ , -NH $_2$ , где Ar $^1$  представляет фенильную группу которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C $_1$ -4-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N и O, где Het $^1$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, или не ароматический частично или полностью насыщенный гетероцикл с 6 атомами кольца, включающими 1 гетероатом, выбранный из N, S и O, где Het $^1$  группа необязательно может быть замещена одной или несколькими группами,

индивидуально выбранными из - $C_{1-4}$ -алкила, -O- $C_{1-4}$ -алкила, -CN;

 ${
m R}^3$  представляет группу, выбранную из H, -PO3R³a2, -CH2-OPO3R³a2 и -CH2-O-C(=O)-  ${
m R}^{3b}$ :

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ .

 $R^6$  представляет H,  $C_{1-4}$ -алкил, OH, -OPO<sub>3</sub> $R^{3a}_{2}$ ; и

 $R^7$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ ,где  $R^3$  такой, как определен выше,  $C_{1-4}$ -алкилен-F.

Другой предпочтительный подвид соединений этого аспекта изобретения представлен общей формулой XII

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{1}$$

$$\mathbb{R}^{4}$$

$$\mathbb{R}^{5}$$

$$\mathbb{R}^{7}$$

$$\mathbb{R}^{6}$$

$$\mathbb{R}^{6}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{3}$$

$$\mathbb{R}^{3}$$

где

 $R^1$ ,  $R^2$ ,  $R^3$ ,  $R^4$ ,  $R^5$ ,  $R^6$  и  $R^7$  имеют те же значения, которые определены для общей формулы I выше.

Значения вариабельной группы в этом подвиде соединений предпочтительно являются следующими:

 $R^1$  представляет H;

 $R^2$  представляет группу, выбранную из H, -O-Ar $^1$ , -O-Het $^1$ , -NH2, где Ar $^1$  представляет фенильную группу которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C $_1$ -4-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла имеющего один или два гетероатома, индивидуально выбранных из N и O, где Het $^1$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, или не ароматический частично или полностью насыщенный гетероцикл с 6 атомами кольца, включающими 1 гетероатом, выбранный из N, S и O, где Het $^1$  группа необязательно может быть замещена одной или

несколькими группами, индивидуально выбранными из -С1-4-алкила, -О-С1-4-алкила, -СN;

 ${
m R}^3$  представляет группу, выбранную из H, -PO3R<sup>3a</sup>2, -CH2-OPO3R<sup>3a</sup>2 и -CH2-O-C(=O)-R<sup>3b</sup>:

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ .

 $R^6$  представляет H,  $C_{1-4}$ -алкил, OH, -OPO<sub>3</sub> $R^{3a}_{2}$ ; и

 $R^7$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше,  $C_{1-4}$ -алкилен-F.

Другой вариант осуществления по настоящему изобретению относится к соединениям, представленным общей формулой XIII

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

где

 $R^3,\ R^8,\ Q^1,\ Q_2$  имеют те же значения, которые определены для общей формулы I выше.

Из соединений по настоящему варианту осуществления, предпочтительный аспект относится к соединениям, имеющим аминогруппу NH или метиленовую группу  $CH_2$  в положении  $Q_1$  и группу  $CR^4R^5$  в положении  $Q_2$ . Эти соединения представлены общей формулой XIVa и XIVb

$$R^{8}$$

где

 ${\rm R^3,\ R^4,\ R^5,\ R^8}$  имеют те же значения, которые определены для общей формулы I выше;

или

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

где

 ${
m R}^3, {
m R}^4, {
m R}^5, {
m R}^8$  имеют те же значения, которые определены для общей формулы I выше.

Для этого аспекта изобретения, предпочтительные значения переменной группы являются следующими:

 ${
m R}^3$  представляет группу, выбранную из H, -PO $_3{
m R}^{3a}{}_2$ , -CH $_2$ -OPO $_3{
m R}^{3a}{}_2$  и -CH $_2$ -O-C(=O)-  ${
m R}^{3b}$ :

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1 ext{-4}}$ -алкил,  $C_{1 ext{-4}}$ -алкилен-F; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH или  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше;

 $R^8$  представляет группу, выбранную из -O-Ar² и -O-Het²;

где  $Ar^2$  представляет фенильную группу которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C<sub>1-4</sub>-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N, S и O, где указанный гетероцикл может необязательно нести один или два заместителя, выбранных из оксо, F, -O-C<sub>1-4</sub>-алкила, C<sub>1-4</sub>-алкила, CN;

И

где  $Het^2$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, которые могут

необязательно быть замещены одной или несколькими группами, индивидуально выбранными из -O- $C_{1-4}$ -алкила, -CN, F,  $C_{1-4}$ -алкила.

В другом предпочтительном аспекте этого варианта осуществления, аминогруппа NH присутствует в положении  $Q_1$  и группа - $CR^4R^5$ - $CR^6R^7$  присутствует в положении  $Q_2$ . Соединения представлены общей формулой XV

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

где

 ${\bf R}^3, {\bf R}^4, {\bf R}^5, {\bf R}^6, {\bf R}^7, {\bf R}^8$  имеют те же значения, которые определены для общей формулы I выше.

Предпочтительные значения заместителей для соединений этого аспекта следующие:

 ${
m R}^3$  представляет группу, выбранную из H, -PO $_3{
m R}^{3a}{}_2$ , -CH $_2$ -OPO $_3{
m R}^{3a}{}_2$  и -CH $_2$ -O-C(=O)-  ${
m R}^{3b}$ ;

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ .

 $R^6$  представляет H,  $C_{1-4}$ -алкил, OH, -OPO<sub>3</sub> $R^{3a}_{2}$ ; и

 $R^7$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше,  $C_{1-4}$ -алкилен-F;

 ${
m R}^{8}$  представляет группу, выбранную из -O-Ar $^{2}$  и -O-Het $^{2}$ ,

где  $Ar^2$  представляет фенильную группу которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C<sub>1-4</sub>-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N, S и O, где указанный гетероцикл может необязательно нести один или два заместителя,

выбранных из оксо, F, -О-С<sub>1-4</sub>-алкила, С<sub>1-4</sub>-алкила, СN

И

где  $\operatorname{Het}^2$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, которые могут необязательно быть замещены одной или несколькими группами, индивидуально выбранными из -O- $\operatorname{C}_{14}$ -алкила, -CN, F,  $\operatorname{C}_{1-4}$ -алкила.

В связанном аспекте, переменная группа  $Q_1$  представляет метиленовую группу так, что соединения представлены общей формулой XVI

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

где

 ${
m R}^3, {
m R}^4, {
m R}^5, {
m R}^6, {
m R}^7, {
m R}^8$  имеют те же значения, которые определены для общей формулы I выше.

Предпочтительные значения вариабельной группы для этого аспекта следующие:

 ${
m R}^3$  представляет группу, выбранную из H, -PO $_3{
m R}^{3a}{}_2$ , -CH $_2$ -OPO $_3{
m R}^{3a}{}_2$  и -CH $_2$ -O-C(=O)-  ${
m R}^{3b}$ :

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ ;

 $R^6$  представляет H,  $C_{1-4}$ -алкил, OH, -OPO<sub>3</sub> $R^{3a}_{2}$ ; и

 $R^7$  представляет H,  $C_{1\text{-4}}$ -алкил,  $C_{1\text{-4}}$ -алкилен-OH,  $C_{1\text{-4}}$ -алкилен-OR $^3$ ,где  $R^3$  такой, как определен выше,  $C_{1\text{-4}}$ -алкилен-F;

 ${\bf R}^{8}$  представляет группу, выбранную из -O-Ar² и -O-Het²,

где  $Ar^2$  представляет фенильную группу которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C<sub>1-4</sub>-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла, имеющего один или два гетероатома, выбранных из N, S и O, где

указанный гетероцикл может необязательно нести один или два заместителя, индивидуально выбранных из оксо, F,  $-O-C_{1-4}$ -алкила,  $C_{1-4}$ -алкила, CN

И

где  $\mathrm{Het}^2$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, которые могут необязательно быть замещены одной или несколькими группами, индивидуально выбранными из -O- $\mathrm{C}_{14}$ -алкила, -CN, F,  $\mathrm{C}_{1\text{-}4}$ -алкила.

В настоящем описании все такие соединения, включая цис- и трансизомеры, R- и S- энантиомеры, диастереомеры, (d)-изомеры, (l)-изомеры, их рацемические смеси и другие их смеси, подпадают в объем изобретения. Однако двойная связь углерод-углерод между пиридиновым кольцом и амидной группой в центре молекулы должна находиться в транс конфигурации, как показано в приведенных выше формулах. Дополнительные асимметричные атомы углерода могут присутствовать в заместителе, таком как алкильная группа. Все такие изомеры, а также их смеси, предназначены для включения в настоящее изобретение.

Если, например, желателен конкретный энантиомер соединения, описанного в настоящем документе, он может быть получен асимметричным синтезом или дериватизацией с хиральным вспомогательным веществом, где полученная диастереомерная смесь разделяется и вспомогательная группа отщепляется для получения чистых желаемых энантиомеров. Альтернативно, когда молекула содержит основную функциональную группу, такую как амино, или кислотную функциональную группу, такую как карбоксил, диастереомерные соли образуются с соответствующей оптически активной кислотой или основанием с последующим разделением диастереомеров, образованных таким образом, средствами фракционной кристаллизацией или хроматографии, хорошо известными в данной области техники, и последующим восстановлением чистых энантиомеров.

Более того, индивидуальные энантиомеры и диастереомеры соединений по настоящему изобретению могут быть получены синтетически из коммерчески доступных исходных материалов, которые содержат асимметричные или стереогенные центры, или приготовлением рацемических смесей с последующим разделением методами, хорошо известными специалистам в данной области техники. Эти методы разделения представлены (1) присоединением смеси энантиомеров к хиральному вспомогательному веществу, разделением полученной смеси диастереомеров перекристаллизацией или хроматографией и выделением оптически чистого продукта из вспомогательного вещества, (2) образованием соли с использованием оптически активного разделяющего агента, (3) прямым разделением смеси оптических энантиомеров на колонках для хиральной жидкостной хроматографии или (4) кинетическим разделением с использованием стереоселективных химических или ферментативных реагентов. Рацемические смеси также могут быть разделены на составляющие их энантиомеры хорошо известными методами, такими как хиральная газофазная хроматография или кристаллизация соединения в хиральном растворителе.

Стереоселективный синтез, химическая или ферментативная реакция, в которой один реагент образует неравную смесь стереоизомеров во время создания нового стереоцентра или во время трансформации уже существующего, хорошо известны в данной области техники. Стереоселективный синтез включает как энантио-, так и диастереоселективные превращения. Примеры см. в Carreira и Kvaerno, Classics in Stereoselective Synthesis, Wiley-VCH: Weinheim, 2009.

Соединения, описанные в настоящем документе, могут существовать в сольватированных, а также несольватированных формах с фармацевтически приемлемыми растворителями, такими как вода, этанол и подобные, и предполагается, что изобретение охватывает как сольватированные, так и несольватированные формы. Описанные здесь соединения могут существовать в одной или нескольких кристаллических формах или полиморфах. В одном варианте осуществления, соединение является аморфным. В одном варианте осуществления, соединение является единственным полиморфом. В другом варианте осуществления, соединение является смесью полиморфов. В другом варианте осуществления, соединение является смесью полиморфов. В другом варианте осуществления, соединение находится в кристаллической форме.

Изобретение также охватывает меченые изотопами соединения по изобретению, которые представлены в настоящем документе, за исключением того, что один или несколько атомов замещены атомом, имеющим атомную массу или массовое число, отличное от атомной массы или массового числа, обычно встречающихся в природе. Примеры изотопов, которые могут быть включены в соединения по изобретению, включают изотопы водорода, углерода, азота, кислорода, фосфора, фтора и хлора, такие как  $^2$ H,  $^3$ H,  $^{13}$ C,  $^{14}$ C,  $^{15}$ N,  $^{18}$ O,  $^{17}$ O,  $^{31}$ P,  $^{32}$ P,  $^{35}$ S,  $^{18}$ F, и  $^{36}$ Cl, соответственно. Например, соединение по изобретению может иметь один или несколько атомов H, замещенных дейтерием.

Некоторые описанные изотопно-меченые соединения (например, меченые <sup>3</sup>H и <sup>14</sup>C) применяют в анализах распределения соединения и/или субстрата в тканях. Тритированные (т.е. <sup>3</sup>H) и углерод-14 (т.е. <sup>14</sup>C) изотопы особенно предпочтительны из-за простоты их получения и обнаружения. Кроме того, замещение более тяжелыми изотопами, такими как дейтерий (т.е. <sup>2</sup>H), может дать определенные терапевтические преимущества, обусловленные большей метаболической стабильностью (например, увеличенным периодом полужизни in vivo или уменьшенными требованиями к дозировке) и, следовательно, может быть предпочтительным в некоторых обстоятельствах. Изотопномеченые соединения по изобретению обычно могут быть получены с помощью следующих методов, аналогичных описанным в, например, примерах в настоящем документе, через замещением изотопно-меченым реагентом не изотопно-меченого реагента.

Пролекарства по настоящему изобретению содержат, по меньшей мере, один группу пролекарства, т.е. группу, которая расщепляется в физиологических условиях, высвобождая тем самым активные частицы. Такие группы пролекарства могут быть присоединены к соединениям по настоящему изобретению во всех положениях, представленных переменной группой  ${\bf R}^3$ . Подходящей группой пролекарства является метиленфосфатная группа, как описано в WO 2013/190384 A1. Другими подходящими

группами пролекарства являются фосфаты или другие солюбилизирующие группы, как описано в "Prodrugs: design and clinical applications" (Rautio et al. Nature Reviews Drug Discovery, 2008, 7, 255). Одной из специфических модификаций пролекарства является превращение аминогруппы в N-оксидную группу. Вышеуказанные химические формулы иллюстрируют подходящие положения для модификаций пролекарства с помощью метиленфосфатной группы и фосфатной группы. Следует понимать, что эти группы пролекарства могут быть заменены другими группами пролекарства. Согласно предпочтительному варианту осуществления настоящего изобретения, пролекарства по настоящему изобретению содержат ровно одну группу пролекарства.

#### Способы производства

Соединения по настоящему изобретению могут быть получены с использованием известных способов и процедур органической химии и/или информации, описанной в настоящем документе ниже. Исходные материалы могут быть либо приобретены (если они коммерчески доступны), либо могут быть синтезированы с использованием общепринятых способов и процедур органической химии и/или информации, описанной в настоящем документе ниже.

#### Конечная стадия амидного сочетания

Соединения, описанные в настоящем документе, могут быть получены с помощью следующего способа, который включает стадию сочетания соединения-предшественника формулы XVII

$$X$$
 $Q_1$ 
 $Q_2$ 
 $Q_3$ 
 $Q_4$ 
 $Q_2$ 
 $Q_3$ 
 $Q_4$ 
 $Q_5$ 
 $Q_5$ 
 $Q_7$ 
 $Q_8$ 
 $Q_8$ 
 $Q_8$ 
 $Q_9$ 
 $Q_9$ 

где  $Q_1$ , и  $Q_2$  имеют те же значения, которые определены в настоящем документе выше, где  $\mathbb{R}^3$  представляет атом водорода, и где X представляет уходящую группу,

с соединением амина формулы H- $NA_1A_2$ , в настоящем документе иногда названного формула XXIII, где  $A_1$  и  $A_2$  имеют те же значения, которые определены в настоящем документе выше для соединения формулы I.

Уходящая группа может быть выбрана из гидроксильной группы, тозилатной группы, трифлатной группы, мезилатной группы, йодида, бромида и подобных.

Особенно, если уходящая группа является гидроксильной группой, реакцию сочетания обычно проводят в растворителе и в присутствии сочетающего агента и, более предпочтительно, в присутствии растворителя, сочетающей группы и основания. Растворитель предпочтительно выбирают из ДМФ, ТГФ, ДХМ. Связывающий агент предпочтительно выбирается из ГАТУ, ГБТУ, ГХТУ, ТБТУ, СОМИ, ТОМВИ, СОМВИ и, наиболее предпочтительно, ГАТУ. Реакцию обычно проводят в присутствии основания. Основание предпочтительно выбирают из ДИПЭА.

Последовательность этой реакции проиллюстрирована следующей схемой 1.

где  $A_1$  и  $A_2$ , а также  $Q_1$  и  $Q_2$  имеют те же значения, которые определены для соединения I в настоящем документе выше, и где  $R^3$  представляет атом водорода.

# Производство предшественника правой стороны

Соединение-предшественник формулы XVII может быть произведено взаимодействием соединения формулы XVIII

где  $Q_1$  и  $Q_2$  имеют те же значения, которые определены для соединения I в настоящем документе выше, и где  $R^3$  представляет атом водорода,

с карбоксил-защищенной акриловой кислотой, такой как С<sub>1-6</sub>-алкиловый эфир (предпочтительно, трет-бутиловый эфир) ариловой кислоты. Эту реакцию сочетания проводят в условиях сочетания Хека и, предпочтительно, в присутствии соли Pd(II), такой как Pd(OAc)2, и фосфинового лиганда, такого как Xantphos, три-(о-толил)фосфин или 1,1бис(дифенилфосфино)ферроцен(dppf). Реакцию обычно проводят в присутствии растворителя, такого как ДМФ, пропионитрил или их комбинация, и также в присутствии основания, такого как ДИПЭА. Реакцию сочетания проводят через снятие защиты и необязательное введение уходящей группы, отличной OT гидроксила. Эта последовательность реакции иллюстрирована следующей схемой 2.

#### Схема 2:

где Pg представляет защитную группу, Q1 и Q2 имеют те же значения, которые

определены для соединения I в настоящем документе выше, и где  $\mathbb{R}^3$  представляет атом водорода.

Соединение-предшественник XX может быть синтезировано с помощью реакции циклизации, начиная с соединения формулы XXI:

$$\begin{array}{c} \mathsf{Br} & \mathsf{Q}_1 \\ \mathsf{N} & \mathsf{Q}_2 \\ \mathsf{NH} \\ \mathsf{R}^3 \end{array} \qquad \mathsf{XXI}$$

где  $Q_1$  и  $Q_2$  имеют те же значения, которые определены для соединения I в настоящем документе выше, и где  $R^3$  представляет атом водорода. Циклизацию обычно проводят с применением сочетающих агентов, таких как ГАТУ, в присутствии основания, такого как ДИПЭА, и в растворителе, таком как ДМФ. Эта последовательность реакции иллюстрирована следующей схемой 3.

# Схема 3:

где  $Q_1$  и  $Q_2$  имеют те же значения, которые определены в настоящем документе выше, и где  $R^3$  представляет атом водорода.

Альтернативно, соединение-предшественник XX может быть синтезировано с помощью реакции циклизации, начиная с соединения формулы XXII:

$$\begin{array}{c} \text{Br} & \overset{\text{Q}_1}{\underset{\text{NO}_2}{\bigvee}} \text{OH} \\ \end{array}$$

где  $Q_1$  и  $Q_2$  имеют те же значения, которые определены для соединения I в настоящем документе выше.

Этот вариант реакции циклизации обычно проводят в присутствии восстанавливающего агента, такого как Fe, в уксусной кислоте или смеси воды, этанола и хлорида аммония. Эта стадия реакции иллюстрирована следующей реакционной схемой 4.

#### Схема 4:

где  $Q_1$  и  $Q_2$  имеют те же значения, которые определены для соединения I в настоящем документе выше, и где  $R^3$  представляет атом водорода.

#### Производство Н-NA<sub>1</sub>A<sub>2</sub> предшественника

Если переменная группа  $A_1$  является группой, выбранной из группа  $A_{11}$  и  $A_{12}$ , и  $A_2$  является метильной группой, соединение-предшественник H- $NA_1A_2$  может быть получено с применением следующих процедур.

Одним из вариантов является образование предшественника амида XXIV, который впоследствии восстанавливается до соединения амина XXIII. Предшественник амида XXIV имеет следующую структуру (где структура XXIV позволяет амидной группе быть связанной с положением 2, и метильной группе, связанной с положением 3, или наоборот):

где  $R^1$ ,  $R^2$  и  $Q_3$  имеют те же значения, как указаны для соединения I выше, или где  $R^1$  и/или  $R^2$  могут представлять функциональную группу, которая может быть превращена в желаемый заместитель на последующей стадии последовательности реакции. Указанная функциональная группа, конечно, должна быть инертной в условиях реакции, определенных для превращений, описанных в настоящем документе (т.е. из соединения XXV в соединение XXIII), но быть восприимчивой к последующему превращению в других условиях реакции. Ей может быть, например, заместитель Br.

Соединение XXIV может быть синтезировано взаимодействием активированного производного карбоновой кислоты XXV

$$R^1$$
  $CH_3$   $CH_3$   $XXV$ 

с метиламин. В формуле XXV вариабельная группа X представляет уходящую группу, которой может быть, например, алкоксигруппа, -OHet, такая как 1-гидроксибензотриазол, карбамимидат, в то время как  $\mathbf{R}^1$ ,  $\mathbf{R}^2$  и  $\mathbf{Q}_3$  имеют те же значения, как указаны для соединения I выше.

На следующей стадии, амидную группу соединения XXIV восстанавливают с получением амина XXIII. Это может осуществляться с помощью обычного восстанавливающего агента, подходящего для восстановления карбонильных групп, такого как  $BH_3$ . Эту реакцию обычно проводят в растворителе, таком как  $T\Gamma\Phi$ .

Последовательность стадий реакций, описанных выше, иллюстрирована следующей

реакционной схемой 5.

Альтернативно, соединение амина XXIII может быть получено из соответствующего производного формулы XXVI

$$R^1$$
 $Q_3$ 
 $CH_3$ 
 $XXVI$ 

где  $R^1$ ,  $R^2$  и  $Q_3$  имеют те же значения, как указаны для соединения I выше, или где  $R^1$  и/или  $R^2$  могут представлять функциональную группу, которая может быть превращена в желаемый заместитель на последующей стадии последовательности реакций, как описано выше.

Соединение формулы XXVI взаимодействует с защищенным N-метиламином в присутствии соединения боргидрида, такого как Na(OAc)<sub>3</sub>BH, в присутствии растворителя, такого как этанол или 1,2-дихлорэтан. Подходящими защитными группами являются бензил или п-метоксибензил. Получают промежуточное соединение XXVII.

$$P_g$$
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 
 $CH_3$ 

В формуле XXVII Pg представляет защитную группу и  $R^1$ ,  $R^2$  и  $Q_3$  имеют те же значения, как указаны для соединения I выше, или  $R^1$  и/или  $R^2$  могут представлять функциональную группу, которая может быть превращена в желаемый заместитель на более поздней стадии последовательности реакций, как описано выше.

После реакции, защитную группу удаляют, обычно гидрогенолизом, с получением соединения амина XXIII. Последовательность реакций иллюстрирована следующей схемой 6.

## Схема 6:

$$\begin{array}{c} R^1 \\ R^2 \\ R^2 \end{array} \begin{array}{c} R^1 \\ R^2 \\ R^2 \end{array} \begin{array}{c} CH_3 \\ R^2 \\ R^2 \end{array} \begin{array}{c} CH_3 \\ R^2 \\ R^2 \end{array}$$

Если переменные группы A1 и A2 вместе образуют группу A3, соединениепредшественник XXIII имеет следующую структуру XXIIIa:

где  $\mathbb{R}^8$  имеет то же значение, как определено для соединения  $\mathbb{I}$  выше.

Соединение XXIIIa может быть получено сочетанием соединения-предшественника XXIV

где  $\mathbb{R}^8$  имеет то же значение, как определено для соединения I выше, с соединением-предшественником XXV

с последующим снятием защиты, согласно следующей реакционной схеме 7. Реакцию сочетания обычно проводят в присутствии карбоната, такого как  $Na_2CO_3$  или  $K_2CO_3$ , и Pd-комплекса, который подходящим образом выбирают из Pd(PPh $_3$ ) $_4$  и PdCl $_2$ (dppf). Подходящим реакционным растворителем является смесь воды и 1,4-диоксана. Предпочтительной защитной группой является BOC группа.

Схема 7:

где Pg представляет защитную группу, такую как Boc, и  $R^8$  имеет то же значение, как определено для соединения I выше.

Альтернативно, целевое соединение XXIIIа может быть получено сочетанием соединения-предшественника XXVI

с соединением-предшественником XXVII

после снятия защиты, согласно следующей реакционной схеме 8. Реакцию сочетания обычно проводят в присутствии карбоната, такого как  $K_2CO_3$ , и Pd-комплекса, такого как  $PdCl_2(dppf)$ . Подходящим реакционным растворителем является 1,4-диоксан или смесь воды и 1,4-диоксана. Предпочтительной защитной группой является BOC группа.

Схема 8:

$$H_3C$$
 $H_3C$ 
 $H_3C$ 

В реакционной схеме выше, Pg представляет защитную группу и  $R^8$  такой, как определен для соединения I выше.

#### Конечная стадия сочетание Хека

Согласно альтернативной стратегии синтеза, соединения, описанные в настоящем документе, могут быть произведены с помощью следующего способа, который включает стадию сочетания соединения-предшественника формулы XVIII.

где  $Q_1$  и  $Q_2$  имеют те же значения, которые определены для соединения I в настоящем документе выше, и где  $R^3$  представляет атом водорода, с соединениемпредшественником формулы XIX

$$A_1$$
  $CH_2$   $A_2$   $XIX$ 

где  $A_1$  и  $A_2$  имеют те же значения, которые определены в настоящем документе выше.

Эту реакцию сочетания проводят в условиях сочетания Хека. Обычно ее проводят в присутствии Pd(II) комплекса, такого как Pd-162 (т.е. [P(tBu)<sub>3</sub>] Pd(кротил) Cl), хлорида тетрабутиламмония, N-циклогексил-N-метилциклогексанамина и диоксана. Также возможно применять комбинацию Pd(II)-соли, такой как Pd(OAc)<sub>2</sub>, с фосфиновым лигандом, таким как три-о-толилфосфан, основанием, таким как ДИПЭА, и растворителем, таким как смесь ДМФ и АЦН. Реакция иллюстрирована следующей реакционной схемой.

Схема 9:

Br 
$$Q_1$$
  $Q_2$   $Q_2$   $Q_3$   $Q_4$   $Q_4$   $Q_4$   $Q_5$   $Q_4$   $Q_5$   $Q_4$   $Q_5$   $Q$ 

В вышеуказанной реакционной схеме,  $Q_1$ ,  $Q_2$ ,  $A_1$  и  $A_2$  имеют те же значения, которые определены для соединения I выше, и  $\mathbb{R}^3$  представляет водород.

Приготовление пролекарств соединений по настоящему изобретению обычно осуществляется путем превращения соответствующего соединения по настоящему изобретению, где  $R^3$  является водородом, в соединение с той же структурой, за исключением того, что  $R^3$  является группой пролекарства, которая расщепляется в физиологических условиях, например, фосфатсодержащей группой, как указано выше. Группой пролекарства обычно является метиленфосфатная группа. Такие группы пролекарства и подходящие условия реакции получения метиленфосфатных пролекарств описаны в WO 2013/190384 A1.

Альтернативно, группа пролекарства может быть связана с другими частями молекулы. В частности, рассматривается, что она связывается с группой пролекарства с правой стороны молекулы через вариабельные группы  $R^5$  или  $R^7$ , в этом случае вариабельные группы представляют группу  $C_{1-4}$ -алкилен- $OR^3$ . Способ получения таких пролекарств является аналогичным способу, описанному в WO 2013/190384 A1, но где атом азота, несущий  $R^3$ , конечно должен быть подходящим образом защищен.

# Фармацевтические композиции

Формы введения, фармацевтические композиции и составы

Фармацевтические композиции по настоящему описанию могут быть введены различными способами в зависимости от их предполагаемого использования, как хорошо известно в данной области техники. Например, если композиции по описанию должны вводиться перорально, они могут быть составлены в виде таблеток, капсул, гранул, порошков или сиропов. Альтернативно, составы, описанные в настоящем документе, могут вводиться парентерально в виде инъекций (внутривенных, внутримышечных или подкожных), препаратов для капельной инфузии или суппозиториев. Для применения через глазную слизистую оболочку, композиции, описанные в настоящем документе, могут быть составлены в виде глазных капель или глазных мазей. Эти составы могут быть приготовлены обычными способами, и, если желательно, композиции могут быть смешаны с любой обычной добавкой, такой как эксципиент, связующий агент, разрыхлитель, смазывающий агент, корригирующее вещество, солюбилизирующий агент, суспензионная добавка, эмульгирующий агент или покрывающий агент. Описанные эксцпиенты могут выполнять более одной функции. Например, наполнители или связующие агенты могут также быть разрыхлителями, глидантами, антиадгезивами, смазывающими агентами,

подсластителями и подобными.

В составах по описанию, смачивающие агенты, эмульгаторы и смазывающие агенты, такие как лаурилсульфат натрия и стеарат магния, а также красители, разделительные агенты, покрывающие агенты, подсластители, вкусовые добавки и отдушки, консерванты и антиоксиданты могут присутствовать в составленных агентах.

Рассматриваемые композиции могут быть подходящими для перорального, назального (например, ингаляцией с использованием композиции в виде сухого порошка или распыляемой композиции), местного (включая буккальное и сублингвальное), легочного (включая введение аэрозоля), ректального, вагинального, аэрозольного и/или парентерального (например, инъекцией, например, внутривенной, внутримышечной или подкожной инъекцией) введения. Составы могут быть удобно представлены в стандартной дозированной форме, и могут быть приготовлены любыми способами, хорошо известными в области фармации. Количество соединения, описанного в настоящем документе, которое может быть объединено с материалом носителя для получения одинарной дозы, может варьироваться в зависимости от идентичности соединения, субъекта, которого лечат, и конкретного способа введения.

Способы приготовления этих составов включают стадию объединения композиций по описанию с носителем и, необязательно, одним или несколькими дополнительными ингредиентами. Как правило, составы получают равномерным и тщательным объединением агентов с жидкими носителями или тонкоизмельченными твердыми носителями, или с обоими, а затем, если необходимо, формованием продукта.

Составы, подходящие для перорального введения, могут быть в форме капсул, облаток, пилюль, таблеток, пастилок (с применением ароматизированной основы, обычно сахарозы и аравийской камеди или трагаканта), порошков, гранул или в виде раствора или суспензии в водной или не водной жидкости, или в виде жидкой эмульсии масло в воде или вода в масле, или в виде эликсира или сиропа, или в виде пастилок (с использованием инертной основы, такой как желатин и глицерин, или сахароза и аравийская камедь), каждая из которых содержит предопределенное количество рассматриваемой композиции в качестве активного ингредиента. Композиции по настоящему описанию можно также вводить в виде болюса, электуария или пасты.

В твердых дозированных формах для перорального введения (капсулы, таблетки, пилюли, драже, порошки, гранулы и подобные) рассматриваемая композиция смешана с одним или несколькими фармацевтически приемлемыми эксцпиентами, выбранными из: (1) наполнителей или расширителей, таких как крахмалы, декстроза, лактоза, сахароза, глюкоза, маннит и/или кремниевая кислота; (2) связующих веществ, таких как, например, целлюлоза (например, микрокристаллическая целлюлоза, метилцеллюлоза, гидроксипропилметилцеллюлоза (НРМС) и карбоксиметилцеллюлоза), альгинаты, желатин, поливинилпирролидон, сахароза и/или аравийская камедь; (3) увлажнителей, таких как глицерин; (4) разрыхлителей, таких как кроскармеллоза натрия, карбоксиметиловый крахмал натрия (натрия крахмалгликолят), поперечно-сшитый

поливинилпурролидон (кросповидон), геллановая камедь, ксантановая камедь, агар-агар, карбонат кальция, картофельный или тапиоковый крахмал, альгиновая кислота и альгинат натрия, определенные силикаты и особенно силикат кальция и карбонат натрия; (5) агентов, замедляющих растворение, такие как парафин; (6) ускорителей абсорбции, таких как соединения четвертичного аммония; (7) смачивающих агентов, таких как, например, цетиловый спирт и моностеарат глицерина; (8) абсорбентов, таких как каолин и бентонитовая глина; (9) смазывающих веществ, таких как тальк, стеарат кальция, стеарат магния, твердые полиэтиленгликоли, лаурилсульфат натрия и их смеси; (10) красителей; (11) комплексообразующих агентов, таких как циклодекстрины и модифицированные (2-гидроксипропил)-β-циклодекстрин циклодекстрины, включая прост И сульфобутилэфир-β-циклодекстрин; (12) образующих матрицу полимерных наполнителей, таких как поливинилпирролидин (ПВП), например ПВП К30, акриловые полимеры и сополимеры, такие как различные сорта Eudragit и, предпочтительно, Eudragit L100, сукцинат гидроксипропилметилцеллюлозы (HPMCAS), другие сополимеры, такие как сополимеры на основе полиэтиленгликоля, такие как Soluplus; и (13) носители, такие как цитрат натрия или дикальцийфосфат. В случае капсул, таблеток и пилюль, композиции также могут содержать буферные агенты. Твердые композиции подобного типа также могут быть использованы в качестве наполнителей в мягких и твердых желатиновых капсулах с использованием таких наполнителей, как лактоза или молочные сахара, а также высокомолекулярные полиэтиленгликоли и подобные. Описанные эксципиенты могут выполнять более одной функции. Например, наполнители или связующие агенты могут также быть разрыхлителями, глидантами, антиадгезивами, смазывающими агентами, подсластителями и подобными. В соответствии с настоящим изобретением можно использовать два или несколько эксципиентов, где указанные два или несколько эксципиентов могут принадлежать к одной и/или разным категориям. В этом отношении нет никаких ограничений.

# Предпочтительные пероральные составы

#### Связующие агенты

Связующий агент преимущественно используется для увеличения размера частиц одного активного ингредиента или с эксципиентами и улучшения его эксплуатационных свойств. Нет особых ограничений на связующий материал, который может применяться в настоящем изобретении.

Подходящие связующие материалы включают повидон (поливинилпирролидон), (сополимер поли(1-винилпирролидон-ко-винилацетат)), коповидон мальтодекстрин, полоксамер (блоксополимер с первым блоком поли(этиленоксида), вторым и центральным блоком поли(пропиленоксида) и третьим блоком поли(этиленоксида)), полиэтиленгликоль, полиэтиленоксид, алюмосиликат магния, желатин, аравийская камедь, альгиновая кислота, карбомер (карбопол), декстрин, декстраты (очищенная смесь сахаридов, полученная в результате контролируемого ферментативного гидролиза крахмала), гуаровая камедь, гидрогенизированное растительное масло, жидкая глюкоза, воск, крахмал (прежелатинизированный и простой), альгинат натрия и их смеси.

Применение повидона и коповидона является предпочтительным.

Связующий агент может присутствовать в относительном количестве от 0,5% масс. до 15% масс., предпочтительно, от 1% масс. до 12% масс. и более предпочтительно от 4% масс. до 10% масс.

#### Разбавители

Разбавители преимущественно используют для увеличения объема фармацевтической композиции и для облегчения обращения с композицией. Нет особых ограничений на материал разбавителя, который можно использовать в настоящем изобретении.

Подходящие разбавляющие материалы включают маннит, изомальт, гистидин, лактозу (включая безводные или моногидратные формы), фосфат кальция (включая двухосновный и трехосновный фосфат кальция), карбонат кальция, сульфат кальция, сахарозу, фруктозу, мальтозу, ксилит, сорбит, мальтит, силикат алюминия, декстрозу, крахмал (прежелатинизированный или простой), глюкозу, декстраты (очищенную смесь сахаридов, полученную в результате контролируемого ферментативного гидролиза крахмала), карбонат магния и их смеси.

Предпочтительно использование маннита, ксилита, сорбита, изомальта и/или гистидина. Особенно предпочтителен маннит.

Разбавитель может присутствовать в относительном количестве, которое особо не ограничивается. Подходящие количества могут составлять от 2% масс. до 85% масс., предпочтительно, от 8% масс. до 80% масс. и более предпочтительно, от 10% масс. до 50% масс.

#### Поверхностно-активное вещество

Поверхностно-активное вещество может преимущественно использоваться для улучшения смачиваемости таблетки и активного ингредиента. Поверхностно-активное вещество является необязательным, но предпочтительным компонентом. Нет особых ограничений на поверхностно-активное вещество, которое может быть использовано в настоящем изобретении.

Подходящие поверхностно-активные вещества включают лаурилсульфат натрия, полоксамер, докузат натрия, сложные эфиры сорбитана, оксид полиэтилена, полисорбат 20, полисорбат 40, полисорбат 60, полисорбат 80 (этоксилированный сорбитан, эстерифицированный кислотами, жирными где число указывает количество повторяющихся единиц полиэтиленгликоля) и их смеси.

Предпочтительно использование лаурилсульфата натрия.

Поверхностно-активное вещество может присутствовать в относительном количестве, которое особо не ограничено. Подходящие количества могут составлять от 0% масс. или более до 7% масс., предпочтительно, от 0,1% масс. до 6,5% масс. и более предпочтительно, от 1% масс. до 6% масс.

#### Разрыхлитель

Разрыхлитель используют для ускорения распада фармацевтической композиции, тем самым способствуя растворению и поглощению активного ингредиента. Нет особых ограничений на разрыхлитель, который можно использовать в настоящем изобретении.

Подходящие разрыхлители включают поперечно-сшитый поливинилпирролидон (кросповидон), карбоксиметиловый крахмал натрия (натрия крахмалгликолят), кроскармеллозу натрия, геллановую камедь, ксантановую камедь, алюмосиликат магния, альгинат натрия, прежелатинизированный крахмал, альгиновую кислоту, гуаровую камедь, гомо- и сополимеры (мет)акриловой кислоты и ее солей, такие как полакриллин калия, и их смеси.

Предпочтительно использование кросповидона.

Разрыхлитель может присутствовать в относительном количестве, которое особо не ограничивается. Подходящие количества могут составлять от 0% масс. или более до 20% масс., предпочтительно, от 1% масс. до 15% масс. и более предпочтительно, от 2% масс. до 10% масс.

#### Глидант

Глидант преимущественно используют для улучшения текучести фармацевтической композиции, тем самым улучшая его технологические свойства. Глидант является необязательным, но предпочтительным компонентом. Нет особых ограничений на материал глиданта, который можно использовать в настоящем изобретении.

Подходящие материалы глиданта включают коллоидный диоксид кремния, оксид магния, силикат магния, трехосновный фосфат кальция и их смеси.

Предпочтительно использование коллоидного диоксида кремния.

Глидант может присутствовать в относительном количестве, которое особо не ограничивается. Подходящие количества могут составлять от 0% масс. или более до 5% масс., предпочтительно, от 0,1% масс. до 4% масс. и более предпочтительно, от 0,2% масс. до 1% масс.

#### Смазывающий агент

Смазывающие агенты преимущественно используют для облегчения таблетирования, в частности, за счет предотвращения прилипания таблеток к пуансону для таблеток. Смазывающий агент является необязательным, но предпочтительным компонентом. Нет особых ограничений на материал смазывающего агента, который можно использовать в настоящем изобретении.

Подходящие смазывающие агенты включают стеарат магния, стеарилфумарат натрия, тальк, стеариновую кислоту, лейцин, полоксамер, полиэтиленгликоль, глицерилбегенат, моностеарат глицерина, лаурилсульфат магния, сложные эфиры сахарозы и жирных кислот, стеарат кальция, стеарат алюминия, гидрогенизированное касторовое масло, гидрированное растительное масло, минеральное масло, бензоат натрия, стеарат цинка, пальмитиновую кислоту, карнаубский воск, лаурилсульфат натрия, моностеараты полиоксиэтилена, силикат кальция и их смеси.

Использование смазывающего агента, выбранного из стеарата магния и

стеарилфумарата натрия, и их комбинаций является предпочтительным.

Смазывающий агент может присутствовать в относительном количестве, которое особо не ограничивается. Подходящие количества могут составлять от 0% масс. или более до 7% масс., предпочтительно, от 0,1% масс. до 4% масс. и более предпочтительно, от 0,5% масс. до 3,5% масс.

# Матрицеобразующие полимеры и сополимеры

Подходящие матрицеобразующие полимеры и сополимеры включают поливинилпирролидин (ПВП), акриловые полимеры и сополимеры, такие как различные сорта Eudragit, сукцинат гидроксипропилметилцеллюлозы (HPMCAS), а также другие сополимеры, такие как сополимеры на основе полиэтиленгликоля, такие как Soluplus.

Предпочтительными матрицеобразующими полимерами и сополимерами являются HPMC AS и Soluplus.

Образующие матрицу полимеры и сополимеры могут присутствовать в относительном количестве, которое особо не ограничивается. Подходящие количества могут варьироваться от 0,1 г до 10 г, предпочтительно, от 0,2 г до 5 г и более предпочтительно, от 0,3 г до 4 г.

# Комплексообразующие агенты

Подходящие комплексообразующие агенты включают циклодекстрины и модифицированные циклодекстрины.

Предпочтительные комплексообразующие агенты включают (2-гидроксипропил)-βциклодекстрин и сульфобутиловый эфир-β-циклодекстрин.

Комплексообразующие агенты могут присутствовать в относительном количестве, которое особо не ограничивается. Подходящие количества могут варьироваться от 0,1 г до 24 г, предпочтительно, от 0,1 г до 10 г и более предпочтительно, от 0,1 г до 5 г.

## Другие типы эксципиентов

Композиция по настоящему изобретению может содержать дополнительные эксципиенты, которые обычно используются в данной области техники.

Такие дополнительные эксципиенты могут включать модификаторы скорости высвобождения, пластификатор, пленкообразующий агент, краситель, агент, препятствующий слипанию, и/или пигмент для покрытия композиций по настоящему изобретению. Дополнительные типы эксципиентов, которые могут присутствовать, включают вкусовые добавки, подсластители, антиоксиданты, ускорители абсорбции и/или объемообразующие агенты. Относительное количество таких эксципиентов особо не ограничено. Они могут быть определены специалистом в данной области техники на основе общих знаний и рутинных процедур.

Пленкообразующие агенты преимущественно используют для получения таблеток по изобретению с когерентным покрытием. Подходящие пленкообразующие агенты включают изомальт, поливиниловый спирт, полиэтиленгликоль, мальтодекстрин, сахарозу, ксилит, мальтит, энтеросолюбильные покрытия, такие как материалы, выбранные из группы, состоящей из сополимеров метилакрилата и метакриловой кислоты,

поливинилацетатфталата (PVAP), сополимеров метилметакрилата и метакриловой кислоты, шеллак, альгинат натрия и зеин. Предпочтительно использовать комбинацию пленкообразующих агентов, включающую поливиниловый спирт и один или несколько вторых агентов, выбранных из изомальта, мальтодекстрина, сахарозы, ксилита и мальтита. Особенно предпочтительно использовать комбинацию пленкообразующих агентов, содержащую, по меньшей мере, поливиниловый спирт и изомальт.

Подходящие пластификаторы включают сорбит, триацетин, полоксамер, пропиленгликоль, простой полиэтиленгликоль, глицерин, монометиловый полиэтиленгликоля, ацетилтрибутилцитрат, ацетилтриэтилцитрат, касторовое масло, диацетилированные моноглицериды, дибутилсебакат, глицерилмоностеарат, диэтилфталат, триэтилцитрат и трибутилцитрат.

Для каждой из вышеперечисленных категорий эксципиентов можно использовать только одно вещество или комбинацию двух или более веществ, относящихся к той же категории. Конечно, необязательно, чтобы присутствовали представители всех до одной категорий.

Составы и композиции по изобретению могут включать соединения, описанные в настоящем документе, в форме частиц аморфного вещества или в любой кристаллической форме. Размер частиц особо не ограничен. Например, составы и композиции могут включать микронизированные кристаллы описанных соединений. Микронизацию можно проводить на кристаллах отдельных соединений или на смеси кристаллов и части или целых фармацевтических эксципиентов или носителей. Средний размер частиц микронизированных кристаллов описанного соединения может составлять, например, от примерно 5 до примерно 200 микрон или от примерно 10 до примерно 110 микрон. Соединения по изобретению также могут присутствовать в форме молекулярной дисперсии внутри полимерной матрицы. В еще одном варианте осуществления соединения по изобретению могут образовывать комплексы с подходящими комплексообразующими агентами, такими как циклодекстрины.

Таблетка может быть изготовлена прессованием или формованием, необязательно с одним или несколькими дополнительными ингредиентами. Прессованные таблетки могут быть приготовлены с использованием связующего агента (например, желатина, микрокристаллической целлюлозы или гидроксипропилметилцеллюлозы), смазывающего агента, инертного разбавителя, консерванта, разрыхлителя (например, поперечно-сшитой карбоксиметилцеллюлозы крахмалгликолята или натрия), поверхностно-активного или диспергирующего агента. Формованные таблетки могут быть получены формованием в подходящей машине смеси рассматриваемой композиции, смоченной инертным жидким разбавителем. Таблетки и другие твердые дозированные формы, такие как драже, капсулы, пилюли и гранулы, могут необязательно иметь насечки или могут быть приготовлены с покрытиями и оболочками, такими как энтеросолюбильные покрытия и другие покрытия, хорошо известные в области составления фармацевтических препаратов. Описанные эксципиенты могут выполнять более одной функции. Например,

наполнители или связующие агенты также могут быть разрыхлителями, глидантами, антиадгезивами, смазывающими агентами, подсластителями и подобными.

Следует понимать, что описанная композиция может включать лиофилизированные или сублимированные соединения, описанные в настоящем документе. Например, в настоящем документе описаны композиции, в которых включают соединения в кристаллической и/или аморфной порошковых формах. Такие формы могут быть восстановлены для использования, например, в виде водной композиции.

Жидкие дозированные формы для перорального введения включают фармацевтически приемлемые эмульсии, микроэмульсии, растворы, суспензии, сиропы и эликсиры. В дополнение к рассматриваемой композиции, жидкие дозированные формы могут содержать инертные разбавители, обычно используемые в данной области техники, такие как, например, вода или другие растворители, солюбилизирующие агенты и эмульгаторы, такие как этиловый спирт, изопропиловый спирт, этилкарбонат, этилацетат, бензиловый спирт, бензилбензоат, пропиленгликоль, 1,3-бутиленгликоль, масла (в частности, хлопковое, арахисовое, кукурузное, зародышевое, оливковое, касторовое и кунжутное масла), глицерин, тетрагидрофуриловый спирт, полиэтиленгликоли и сложные эфиры жирных кислот и сорбитана, циклодекстрины и их смеси.

Суспензии, в дополнение к рассматриваемой композиции, могут содержать суспендирующие агенты, такие как, например, этоксилированные изостеариловые спирты, полиоксиэтиленсорбит и сложные эфиры сорбитана, микрокристаллическая целлюлоза, метагидроксид алюминия, бентонит, агар-агар и трагакант, и их смеси.

Составы для ректального или вагинального введения могут быть представлены в виде суппозиториев, которые могут быть приготовлены смешиванием рассматриваемой композиции с одним или несколькими подходящими нераздражающими эксципиентами или носителями, содержащими, например, масло какао, полиэтиленгликоль, воск для суппозиториев или салицилат, и которые являются твердыми при комнатной температуре, но жидкими при температуре тела и, следовательно, плавятся в полости тела и высвобождают активный агент. Составы, подходящие для вагинального введения, также включают пессарии, тампоны, кремы, гели, пасты, пены или спреи, содержащие такие носители, которые известны в данной области техники, как подходящие.

Дозированные формы для трансдермального введения рассматриваемой композиции включают порошки, спреи, мази, пасты, кремы, лосьоны, гели, растворы и пластыри. Активный компонент может быть смешан в стерильных условиях с фармацевтически приемлемым носителем и с любыми консервантами, буферами или пропеллентами, которые могут потребоваться.

Мази, пасты, кремы и гели могут содержать, помимо рассматриваемой композиции, эксципиенты, такие как животные и растительные жиры, масла, воски, парафины, крахмал, трагакант, производные целлюлозы, полиэтиленгликоли, силиконы, бентониты, кремниевая кислота, тальк и оксид цинка или их смеси.

Порошки и спреи могут содержать, помимо рассматриваемой композиции,

эксципиенты, такие как лактоза, тальк, кремниевая кислота, гидроксид алюминия, силикаты кальция и порошок полиамида или смеси этих веществ. Спреи могут дополнительно содержать обычные пропелленты, такие как хлорфторуглеводороды и летучие незамещенные углеводороды, такие как бутан и пропан.

Композиции и соединения по настоящему описанию альтернативно можно вводить в виде аэрозоля. Это достигается путем приготовления водного аэрозоля, липосомального препарата или твердых частиц, содержащих соединение. Можно использовать не водную суспензию (например, фторуглеродный пропеллент). Звуковые небулайзеры можно использовать, потому что они минимизируют воздействие сдвига на агент, что может привести к разложению соединений, содержащихся в рассматриваемых композициях.

Обычно водный аэрозоль получают путем составления водного раствора или суспензии рассматриваемой композиции вместе с обычными фармацевтически приемлемыми носителями и стабилизаторами. Носители и стабилизаторы варьируются в зависимости от требований конкретной рассматриваемой композиции, но обычно включают неионные поверхностно-активные вещества (Tweens, pluronics или полиэтиленгликоль), нетоксичные белки, такие как сывороточный альбумин, сложные эфиры сорбитана, олеиновая кислота, лецитин, аминокислоты, такие как глицин, буферы, соли, сахара или сахарные спирты. Аэрозоли обычно готовят из изотонических растворов.

Следует отметить, что приведенные в качестве примеров эксципиенты могут иметь более одной функций. Например, наполнители или связующие агенты также могут быть разрыхлителями, глидантами, антиадгезивами, смазывающими агентами, подсластителями и подобными.

Фармацевтические препараты настоящего описания, подходящие для парентерального введения, содержат рассматриваемую композицию в комбинации с одним или несколькими фармацевтически приемлемыми стерильными изотоническими водными или не водными растворами, дисперсиями, суспензиями или эмульсиями, или стерильными порошками, которые могут быть восстановлены в стерильные растворы или дисперсии для инъекций непосредственно перед применением, которые могут содержать антиоксиданты, буферы, бактериостатики, растворенные вещества, которые делают состав изотоническим по отношению к крови предполагаемого реципиента, или суспендирующие агенты или загустители. Например, в настоящем документе представлена водная композиция, которая включает описанное соединение, и может дополнительно включать, например, декстрозу (например, от примерно от 1 до примерно 10 массовых процентов декстрозы или примерно 5 массовых процентов декстрозы в воде (D5W).

Примеры подходящих водных и не водных носителей, которые могут применяться в фармацевтических композициях по настоящему описанию, включают воду, этанол, полиолы (такие как глицерин, пропиленгликоль, полиэтиленгликоль и подобные) и их подходящие смеси, растительные масла, такие как оливковое масло и органические сложные эфиры для инъекций, такие как этилолеат и циклодекстрины. Надлежащая текучесть может поддерживаться, например, с помощью покрывающих материалов, таких

как лецитин, путем поддержания необходимого размера частиц в случае дисперсий и с помощью использования поверхностно-активных веществ.

Следует понимать, что предполагаемые составы, такие как пероральные составы (например, пилюля или таблетка), могут быть составлены в виде состава с контролируемым высвобождением, например, состава с немедленным высвобождением, состава с отсроченным высвобождением или их комбинации.

В определенных вариантах осуществления, рассматриваемые соединения могут быть составлены в виде таблетки, пилюли, капсулы или другого подходящего состава для приема внутрь (в совокупности далее называемых «таблетки»). В определенных вариантах осуществления, терапевтическая доза может быть представлена в 10 таблетках или меньше. В другом примере, терапевтическая доза представлена в 50, 40, 30, 20, 15, 10, 5 или 3 таблетках.

В определенном варианте осуществления, описанное соединение составлено для перорального введения в виде таблетки, капсулы или водного раствора или суспензии. В другом варианте осуществления таблетированной формы, таблетки составлены таким образом, что полученное количество антибактериального агента (или антибактериальных агентов), представленное в 20 таблетках, если их принимать вместе (например, с течением времени) после введения, будет обеспечивать терапевтически эффективную дозу и/или дозу, по меньшей мере, являющуюся медианной эффективной дозой (ED50), например, доза, при которой, по меньшей мере, 50% индивидуумов проявляют количественный эффект ингибирования роста бактериальных клеток или защиты (например, статистически значимое снижение инфекции). В другом варианте осуществления, таблетки могут быть составлены таким образом, что общее количество антибактериального агента (или антибактериальных агентов), предоставленное при введении 10, 5, 2 или 1 таблетки, обеспечило бы терапевтически эффективную дозу и/или, по меньшей мере, ED50 дозу пациенту (человеку или млекопитающему, не относящемуся к человеку). В других вариантах осуществления, количество антибактериального агента (или антибактериальных агентов), представленное при введении в 20, 10, 5 или 2 таблетках, принимаемых в течение 24-часового периода времени, будет обеспечивать режим дозирования, обеспечивающий, в среднем, средний уровень антибактериального агента(ов) в плазме терапевтически эффективной дозы и/или, по меньшей мере, ED50 концентрации (концентрации для 50% максимального эффекта, например, ингибирования роста бактериальных клеток). В других вариантах осуществления, представлена ЕD50 менее чем в 100, 10 или 5 раз. В других вариантах осуществления, разовая доза таблеток (1-20 таблеток) обеспечивает примерно от 40 мг до 3000 мг соединения(ий). Эти указанные количества стандартных доз применяют также для других пероральных дозированных форм.

Аналогичным образом, соединения, описанные в настоящем документе, могут быть составлены для парентерального введения, например, для подкожной, внутримышечной или внутривенной инъекции, например, антибактериальный агент может быть представлен в стерильном растворе или суспензии (в совокупности далее названных «раствор для

инъекций»). В некоторых вариантах осуществления, раствор для инъекций может быть чтобы количество антибактериального составлен таким образом, антибактериальных агентов), представленное, например, в болюсной инъекции от примерно 0,1 до примерно  $200 \text{ см}^3$ , или доза, вводимая внутривенно, обеспечивала дозу, по меньшей мере, среднюю эффективную дозу, или менее чем в 100 раз ED50, или менее чем в 10 или 5 раз ED50. Раствор для инъекций может быть составлен таким образом, чтобы общее количество антибактериального агента (или антибактериальных агентов), представленное (при введении) в инъекциях 100, 50, 25, 10, 5, 2,5 или  $1 \text{ см}^3$ , обеспечивало бы терапевтически эффективное количество и/или дозу ED50 для пациента, или меньше чем в 100 раз ED50, или меньше чем в 10 или 5 раз ED50. В других вариантах осуществления количество антибактериального агента (или антибактериальных агентов), представленное при введении, в общем инъецируемом объеме 100 см<sup>3</sup>, 50, 25, 5 или 2 см<sup>3</sup>, по меньшей мере, обеспечивало 24-часовой период времени, режим обеспечивающий, в среднем, средний уровень в плазме антибактериального агента(ов) в терапевтически эффективном количестве и/или, по меньшей мере, концентрацию ED50, или менее чем в 100 раз ED50, или менее чем в 10 или 5 раз ED50. В других вариантах осуществления, инъекция однократной дозы представляет примерно от 40 мг до 3000 мг или примерно от 100 мг до примерно 1000 мг антибактериального агента. В случае в.м. введения, в принципе, действуют такие же указания по количеству. Однако верхний предел диапазона стандартной дозы может быть ниже в зависимости от растворимости соединения лекарственного средства и максимально переносимого количества для инъекции.

#### Стандартные дозированные формы

Если лечение пациента фармацевтическими композициями по настоящему изобретению осуществляется путем перорального введения, разовая стандартная доза фармацевтической композиции по настоящему изобретению обычно вводится один, два или три раза в сутки. Суточная дозировка определяется врачом в соответствии с указаниями, приведенными выше, с учетом тяжести инфекции, пола, массы тела, возраста и общего состояния пациента. Предпочтительные пероральные суточные дозы составляют от 40 до 3000 мг, предпочтительно от 100 до 2000 мг. Как следствие, типичные стандартные дозированные формы могут варьироваться от 40 до 2000 мг, в зависимости от предполагаемой частоты введения.

В случае парентерального введения (например, при в.в. или в.м. введении) фармацевтические композиции по настоящему изобретению обычно вводят два, три или более раз в сутки. Предпочтительные суточные дозировки находятся в диапазоне от 40 до 3000 мг, так что типичные стандартные дозированные формы находятся в интервале от 40 до 3000 мг и, предпочтительно, от 100 до 1000 мг. Верхние пределы указанных диапазонов зависят от их возможностей. Например, в случае в.м. введения, может случиться так, что максимальная доза, которую можно ввести за один раз, ограничена из-за низкой растворимости и, соответственно, увеличения объема раствора лекарственного средства. В таком случае максимальные стандартные дозированные формы ограничиваются

максимально переносимой дозой.

# Комбинации лекарственных средств

В настоящем документе также рассматриваются композиции, которые включают одно или несколько из раскрытых соединений со вторым компонентом. Вторые компоненты в таких композициях по настоящему изобретению обычно представляют собой антибиотический агент, отличный от описанного соединения. Также могут присутствовать дополнительные компоненты, включая ингибиторы FabI или другие антибиотические агенты. Рассматриваемые способы лечения, описанные в настоящем документе, в некоторых вариантах осуществления могут дополнительно включать введение другого агента, такого как описан ниже. Например, представлен способ лечения бактериальной инфекции, который включает введение описанного соединения и дополнительно включает введение антибиотического агента или антибактериального агента, описанного ниже. Соединение, описанное в настоящем документе, и второй компонент могут быть частью одной и той же дозированной формы, или могут быть составлены в виде двух отдельных дозированных форм. Если они составлены в виде двух отдельных дозированных форм, дозированную форму со вторым компонентом можно вводить одновременно, до или после дозированной формы с соединением, описанным в настоящем документе.

Неограничивающие примеры антибиотических агентов, которые могут применяться в антибактериальных композициях по настоящему описанию, включают цефалоспорины, хинолоны и фторхинолоны, пенициллины, пенициллины и ингибиторы бета-лактамазы, карбепенемы, монобактамы, макролиды и линкозамины, гликопептиды, рифампин, оксазолидононы, тетрациклины, аминогликозиды, стрептограмины, сульфонамиды и другие. Каждое семейство содержит много членов.

Цефалоспорины могут быть далее разделены на категории по поколениям. Неограничивающие примеры цефалоспоринов по поколениям включают следующие. Примеры цефалоспоринов: соединения первого поколения включают Цефадроксил, Цефазолин, Цефалексин, Цефалотин, Цефапирин и Цефрадин. Соединения второго поколения включают Цефаклор, Цефамандол, Цефоницид, Цефотетан, Цефокситин, Цефпрозил, Цефтметазол, Цефуроксим, Цефуроксим аксетил и Лоракарбеф. Третье поколение включает Цефдинир, Цефтибутен, Цефдиторен, Цефетамет, Цефподоксим, Цефпрозил, Цефуроксим (аксетил), Цефуроксим (натрий), Цефоперазон, Цефиксим, Цефотаксим, Цефподоксим проксетил, Цефтизидим, Цефтизоксим и Цефтриаксон. Соединения четвертого поколения включают Цефепим.

Неограничивающие примеры хинолонов и фторхинолонов включают Циноксацин, Ципрофлоксацин, Эноксацин, Гатифлоксацин, Грепафлоксацин, Левофлоксацин, Ломефлоксацин, Моксифлоксацин, Налидиксовую кислоту, Норфлоксацин, Офлоксацин, Спарфлоксацин, Тровафлоксацин, Оксолиновую кислоту, Гемифлоксацин и Пперфлоксацин.

Неограничивающие примеры пенициллинов включают Амоксициллин, Ампициллин, Бакампициллин, Карбенициллин инданил, Мезлоциллин, Пиперациллин и

#### Тикарциллин.

Неограничивающие примеры ингибиторов пенициллинов и бета-лактамазы включают Амоксициллин-Клавулановую кислоту, Ампициллин-Сульбактам, Бензилпенициллин, Клоксациллин, Диклоксациллин, Метициллин, Оксациллин, Пенициллин G (Бензатин, Калий, Прокаин), Пенициллин V, Пиперациллин+Тазобактам, Тикарциллин+Клавулановая кислота и Нафциллин. Неограничивающие примеры карбапенемов включают Имипенем-Циластатин и Меропенем.

Неограничивающий пример монобактама включает Азтреонам. Неограничивающие примеры макролидов и линкозаминов включают Азитромицин, Кларитромицин, Клиндамицин, Диритромицин, Эритромицин, Линкомицин И Тролеандомицин. Неограничивающие примеры гликопептидов включают Тейкопланин и Ванкомицин. Неограничивающие примеры рифампинов включают Рифабутин, Рифампин и Рифапентин. Неограничивающий пример оксазолидононов включает Линезолид. Неограничивающие Доксициклин, примеры тетрациклинов включают Демеклоциклин, Метациклин, Миноциклин, Окситетрациклин, Тетрациклин и Хлортетрациклин.

Неограничивающие примеры аминогликозидов включают Амикацин, Арбакацин, Гентамицин, Канамицин, Сизомицин, Арбекацин, Неомицин, Нетилмицин, Стрептомицин, Тобрамицин и Паромомицин. Неограничивающий пример стрептограминов включает Хинопристин+Далфопристин.

Неограничивающие примеры сульфонамидов включают Мафенид, Сульфадиазин Серебра, Сульфацетамид, Сульфадиазин, Сульфаметоксазол, Сульфасалазин, Сульфисоксазол, Триметоприм-Сульфаметоксазол и Сульфаметизол.

Неограничивающие примеры других антибиотических агентов Бацитрацин, Хлорамфеникол, Колистиметат, Фосфомицин, Изониазид, Метенамин, Метронидазол, Мупироцин, Нитрофурантоин, Нитрофуразон, Новобиоцин, Полимиксин В, Спектиномицин, Тобрамицин, Тигециклин, Триметоприм, Колистин, Циклосерин, Капреомицин, Пиразинамид, пара-Аминосалициловая кислота Эритромицин И этилсукцинат+сульфизоксазол.

# Терапевтическое применение

#### Медицинские показания

Соединения по настоящему изобретению могут применяться для лечения бактериальных инфекций у пациента. Они в частности подходят для лечения инфекций, вызванных N. gonorrhoeae. Другие терапевтические показания, для которых могут использоваться соединения по настоящему изобретению, включают следующие:

Bacillus Spp, в частности Bacillus cereus, Bacillus coagulans, Bacillus megaterium, Bacillus subtilis, Bacillus anthacis

Bartonella Spp.

Brucella Spp, в частности, Brucella abortus, Brucella melitensis.

Campylobacter Spp., в частности, Campylobacter jejuni, Campylobacter coli.

Enterococcus faecalis, Enterococcus faecium, Legionella pneumophila.

Listeria Spp., в частности, Listeria monocytogenes.

Proteus mirabilis, Providencia stuartii.

Rickettsia Spp., в частности, Rickettsia rickettsii.

Burkholderia Spp., в частности, Burkholderia pseudomallei, Burkholderia mallei, Burkholderia cenocepacia.

Bordetella pertussis, Bordetella parapertussis. Haemophilus influenza, Kingella kingae, Moraxella catarrhalis.

Streptomyces Spp.

Nocardioides Spp.

Frankia Spp.

Propionibacterium acnes.

Mycobacterium Spp., в частности, Mycobacterium smegmatis, Mycobacterium abscessus, Mycobacterium leprae, Mycobacterium tuberculosis, Mycobacterium avium.

## Пациенты

Соединения по настоящему изобретению можно использовать для лечения бактериальных инфекций у пациентов, которые являются пациентами-людьми или животными, не относящимися к человеку, предпочтительно, людьми и млекопитающими, не относящимися к человеку.

## Суточные дозы

Дозировка любого описанного соединения или композиции будет варьироваться в зависимости от симптомов, возраста и массы тела пациента, природы и тяжести расстройства, подлежащего лечению или профилактике, способа введения и формы рассматриваемой композиции. Любой из рассматриваемых составов можно вводить в виде разовой дозы или разделенных доз. Дозировки композиций могут быть легко определены методами, известными специалистам в данной области техники, или как указано в настоящем документе.

В некоторых вариантах осуществления, дозировка рассматриваемых соединений обычно находится в диапазоне от примерно 0,01 нг до примерно 10 г на кг массы тела, в частности, в диапазоне от примерно 1 нг до примерно 0,1 г на кг, и более конкретно, в диапазоне от примерно 100 нг до примерно 10 мг на кг.

Может потребоваться определить эффективную дозу или количество и любые возможные эффекты на время введения состава для любой конкретной композиции по настоящему описанию. Это может быть выполнено в обычном эксперименте, как описано в настоящем документе, с использованием одной или нескольких групп животных (предпочтительно, по меньшей мере, 5 животных на группу) или в испытаниях на людях, если это приемлемо. Эффективность любой рассматриваемой композиции и способа лечения или профилактики можно оценить через введение композиции и оценку эффекта от введения через измерение одного или нескольких применимых показателей, и сравнение значений этих показателей после лечения со значениями тех же показателей до лечения.

Точное время введения и количество любой конкретной рассматриваемой

композиции, которые обеспечат наиболее эффективное лечение у данного пациента, будут зависеть от активности, фармакокинетики и биодоступности рассматриваемой композиции, физиологического состояния пациента (включая возраст, пол, тип и стадию заболевания, общее физическое состояние, чувствительность к данной дозировке и тип лекарственного средства), способа введения и подобного. Инструкции, представленные в настоящем документе, могут применяться для оптимизации лечения, например, определения оптимального времени и/или количества введения, что потребует не более чем рутинного экспериментирования, состоящего из наблюдения за субъектом и корректировки дозировки и/или времени.

Во время лечения субъекта, здоровье пациента можно отслеживать через измерение одного или нескольких соответствующих показателей в заранее определенные моменты времени в течение периода лечения. Лечение, включая композицию, количества, время введения и состав, можно оптимизировать в соответствии с результатами такого отслеживания. Пациента можно периодически повторно обследовать, чтобы определить степень улучшения через измерение тех же параметров. На основании этих повторных оценок могут быть сделаны корректировки количества вводимой рассматриваемой композиции и, возможно, времени введения.

Лечение может быть начато с меньших доз, которые меньше оптимальной дозы соединения. После этого дозу можно увеличивать небольшими приращениями до достижения оптимального терапевтического эффекта.

Использование рассматриваемых композиций может снизить требуемую дозировку для любого отдельного агента, содержащегося в композициях, поскольку начало и продолжительность действия разных агентов могут дополнять друг друга.

Токсичность и терапевтическая эффективность рассматриваемых композиций могут быть определены стандартными фармацевтическими процедурами в клеточных культурах или у экспериментальных животных, например, для определения LD50 и ED50.

Данные, полученные из анализов клеточных культур и исследований на животных, могут применяться для определения диапазона доз для применения у человека. Дозировка любой рассматриваемой композиции находится предпочтительно концентраций в кровотоке, которые включают ED50 с низкой или отсутствующей токсичностью и/или которые вызывают статистически значимое снижение инфекции у, по меньшей мере, 50%, например 60%, 70%, 80%, 90%, 100% индивидуумов с низкой или отсутствующей токсичностью, где низкая токсичность может, например, означать не серьезную и/или предсказуемую и временную токсичность. Например, дозировка рассматриваемой композиции может быть выбрана так, чтобы при лечении достигалось разумное соотношение польза/риск. Дозировка может варьироваться в этом диапазоне в зависимости от применяемой дозированной формы и используемого пути введения. Для композиций по настоящему описанию терапевтически эффективная доза может быть первоначально оценена из анализов клеточной культуры.

#### Частота введения

Соединения и композиции, описанные в настоящем документе, могут быть введены один или несколько раз в день, в частности один раз в день (qd), два раза в день (bid), три раза в день (tid) или четыре раза в день (qid).

#### Длительность лечения

Соединения и композиции, описанные в настоящем документе, могут вводиться в течение неограниченного периода времени. Предпочтительно, вводить их в течение периода времени, достаточного для искоренения бактериальной инфекции полностью или, по меньшей мере, до такой степени, чтобы иммунная система пациента могла справиться с любыми оставшимися патологическими бактериями. Типовая продолжительность введения составляет от 1 дня до 2 недель, и особенно от 1 до 5 дней. В случае в.м. введения, типовая продолжительность введения может составлять от 1 укола до 4 уколов и, предпочтительно, 1 укол. Множество уколов можно вводить в один и тот же день, в дни, идущие подряд, или с промежуточными днями без введения.

## Способы лечения

В другом аспекте, в настоящем документе описаны способы лечения бактериальной инфекции, включающие введение пациенту, нуждающемуся в этом, фармацевтической композиции, содержащей описанное соединение.

В определенных вариантах осуществления, в настоящем документе описаны способы лечения инфекции *N. gonorrhoeae* у пациента, нуждающегося в этом, включающие введение соединения по изобретению как описано в настоящем документе. Другие рассматриваемые способы включают лечение инфекций, вызванных одной или несколькими бактериями или микробами, перечисленными выше, у пациента, нуждающегося в этом.

Например, в настоящем документе описан способ лечения *N. gonorrhoeae* или другой бактериальной инфекции у пациента, нуждающегося в этом, включающий введение композиции, содержащей описанное соединение, где способ дополнительно включает введение в той же самой или в отдельной дозированной форме дополнительного антибактериального или антибиотического агента, как описано в настоящем документе.

# Сокращения

Следующие сокращения применяют в настоящем описании

КХ Колоночная хроматография

**DCM** Дихлорметан

N Нормальный

г Грамм

рН Показатель концентрации водородных ионов

моль Моль

об./об. Объем/объем

об. Объем

m/z Отношение массы к заряду

°С градус Цельсия

ТЭА Триэтиламин

Еt<sub>2</sub>О Диэтиловый эфир

ВЭЖХ Высокоэффективная жидкостная хроматография

Вос трет-бутилоксикарбонил

ч час

мл миллилитр экв. Эквивалент

M Macca

Ме Метил, СН<sub>3</sub>

МеОН Метанол

АсОН Уксусная кислота

ТГФ Тетрагидрофуран

ДИПЭА N, N-диизопропилэтиламин

Pd(OAc)<sub>2</sub> Ацетат палладия(II)

EtOH Этанол

ДХЭ 1,2-дихлорэтан

EtOAc Этилацетат  $Et_3N$  Триэтиламин

вод. Водный

КТ, кт Комнатная температура

 $R^{t},\,t_{ret}$  Время удержания ДМФ Диметилформамид

АЦН Ацетонитрил

NH<sub>4</sub>OAc Ацетат аммония

ТФК Трифторуксусная кислота ГОБТ/ГОБт 1-Гидроксибензотриазол

ТСХ Тонкослойная хроматография

Н2О Вода

насыщ. Насыщенный

р-р Раствор

ЭДКИ 1-Этил-3-(3-диметиламинопропил)карбодиимид

ЯМР Ядерный магнитный резонанс

с синглетд дублет

т триплет

м мультиплет

дд дублет дублетов

МГц Мегагерц

ч./млн. части на миллион

Н Протон

J Константа сочетания

УЭЖХ-МС Ультраэффективная жидкостная хроматография - тандемная масс

спектрометрия

ДМСО Диметилсульфоксид

CDCl<sub>3</sub> Дейтерированный хлороформ

МЖ Маточный раствор

СКХ Сильная катионообменная хроматография

ЖХМС Жидкостная хроматография масс спектрометрия

ГАТУ 3-оксидкегсафторфосфат 1-[бис(диметиламино) метилен]-1*H*-1,2,3-

триазоло[4,5-b] пиридиния

ВЭЖХ Высокоэффективная жидкостная хроматография

ГБТУ Гексафторфосфат (2-(1Н-бензотриазол-1-ил)-1,1,3,3-тетраметилурония,

гексафторфосфат бензотриазолтетраметилурония

ГХТУ Гексафторфосфат 2-(6-хлор-1Н-бензотриазол-1-ил)-1,1,3,3-

тетраметиламиния

ТБТУ Тетрафторборат О-(бензотриазол-1-ил)-N, N,N',N'-тетраметилурония

СОМИ Гексафторфосфат (1-циано-2-этокси-2-

оксоэтилиденаминоокси) диметиламиномофролинокарбения

ТОМВИ Гексафторфосфат N-{[1,3-диметил-2,4,6-триоксотетрагидропиримидин-

5(6Н)-илиденаминоокси] (диметиламино)метилен}-N-

метилметанаминия

СОМВИ Гексафторфосфат 4-{[1,3-диметил-2,4,6-триоксотетрагидропиримидин-

5(6Н)илиденаминоокси] (диметиламино)метилен}морфолин-4-ия

РМВ р-Метоксибензил

ТАБН Триацетоксиборгидрид натрия

ВМ или в.м. Внутримышечное введение

ВВ или в.в. Внутривенное введение

Следующие ниже примеры никаким образом не предназначены для ограничения

объема настоящего изобретения, а представлены только для иллюстрации соединений по изобретению и их получения.

#### Примеры

#### Общие методы

Все исходные материалы и растворители были получены либо из коммерческих источников, либо получены в соответствии с литературными ссылками. Если не указано иное, все реакции перемешивают. Органические растворы обычно сушат над безводным сульфатом магния или сульфатом натрия.

Колоночную хроматографию проводят на предварительно упакованных картриджах с диоксидом кремния (230-400 меш, 40-63 мкм), используя указанный элюент. СКХ покупают у Silicycle и перед использованием обрабатывают 1М хлористоводородной кислотой. Если не указано иное, очищаемую реакционную смесь сначала разбавляют МеОН и подкисляют несколькими каплями АсОН. Этот раствор загружают непосредственно в СКХ и промывают МеОН. Затем желаемый продукт элюируют промыванием 0,7 М NH<sub>3</sub> в МеОН.

#### Аналитические способы

## Аналитическая ЖХМС

Аналитическую ЖХМС проводят с применением либо кислых, либо основных способов следующим образом:

#### Способ 1а:

Колонку Waters X-Select CSH C18, 2,5 мкм, 4,6×30 мм элюируют градиентом 0,1% муравьиной кислоты в MeCN в 0,1% муравьиной кислоте в воде. Градиент от 5-95% 0,1% муравьиной кислоты в MeCN имеет место между 0,00-3,00 минут при 2,5 мл/мин при промывании от 3,01-3,5 минут при 4,5 мл/мин. Колонку повторно уравновешивают до 5% МеСN от 3,60-4,00 минут при 2,5 мл/мин. УФ спектр элюированных пиков измеряют с применением Agilent 1260 Infinity или Agilent 1200 VWD при 254 нм. Масс спектр измеряют применением Agilent 6120 или Agilent 1956 MSD. прогоняя положительном/отрицательном переключении, или Agilent 6100 MSD, прогоняя в либо положительном, либо в отрицательном режиме.

#### Способ 1b:

Колонку Waters X-Select BEH C18, 2,5 мкм, 4,6×30 мм элюируют градиентом MeCN в водном 10 мМ бикарбонате аммония. Градиент от 5-95% MeCN имеет место между 0,00-3,00 минутами при 2,5 мл/мин с промыванием от 3,01-3,5 минут при 4,5 мл/мин. Колонку повторно уравновешивают до 5% MeCN от 3,60-4,00 минут при 2,5 мл/мин. УФ спектр элюированных пиков измеряют с применением Agilent 1260 Infinity или Agilent 1200 VWD при 254 нм. Масс спектр измеряют с применением Agilent 6120 или Agilent 1956 MSD, прогоняя при положительном/отрицательном переключении, или Agilent 6100 MSD, прогоняя в либо положительном, либо в отрицательном режиме.

#### Способ 1с:

Продукт анализируют УЭЖХ (система Acquity и SQD Waters, вода (для ВЭЖХ)

UPLC® BEH C18,  $50\times2,1$  мм, 1,7 мкм, (0,1% HCOOH в воде, 0,1% HCOOH в ацетонитриле) 3 мин способ, 5-95% MeCN/вода).

Все анализы УЭЖХ-МС проводят на УЭЖХ системе Acquity и SQD Waters. Программу Masslynx применяют запуска и анализа экспериментов с применением OALogin и автоматических или ручных интеграций. Подробности способа перечислены ниже.

Химические реагенты:

Вода (для ВЭЖХ)

Ацетонитрил АЦН (для ВЭЖХ)

Муравьиная кислота 98% (для ЖХ-МС)

### Описание подвижной фазы

| Раствор А1:          | 0,06% НСООН в воде         |
|----------------------|----------------------------|
| Раствор В1:          | 0,06% НСООН в ацетонитриле |
| Раствор А2:          | Вода                       |
| Раствор В2:          | Ацетонитрил                |
| Слабая промывка      | Вода-АЦН (7:3)             |
| Сильная промывка     | Вода-АЦН (1:9)             |
| Уплотняющая промывка | Вода-АЦН (1:1)             |

Параметры УЭЖХ:

| Колонка:             |             | УЭЖХ® ВЕН С18, 50×2,1 мм, 1,7 мкм                        |        |        |
|----------------------|-------------|----------------------------------------------------------|--------|--------|
| Подвижная фаза:      |             | A1: 0,06% HCOOH в воде<br>B1: 0,06% HCOOH в ацетонитриле |        |        |
| Градиент             | Время [мин] | Скорость потока<br>[мл/мин]                              | A1 [%] | B1 [%] |
|                      | 0,00        | 0,9                                                      | 95     | 5      |
|                      | 0,10        | 0,9                                                      | 95     | 5      |
|                      | 3,00        | 0,9                                                      | 0      | 100    |
|                      | 3,10        | 0,9                                                      | 95     | 5      |
| Температура колонки: |             | 40°C                                                     |        |        |
| УФ определение:      |             | 210-400 нм                                               |        |        |
| Объем впрыска:       |             | 1-10 мкл (по требованию)                                 |        |        |

# **Способ МАСС СПЕКТРОСТКОПИИ:** Проводят на основе параметров MS Tune: Routine.ipr как показано ниже.

| Источник AS+  |      |
|---------------|------|
| Напряжение    |      |
| Капилляр (кВ) | 3,50 |
| Конус (В)     | 30   |

| Экстрактор (В)           | 3    |
|--------------------------|------|
| РЧ линза (В)             | 0,1  |
| Температуры              |      |
| Темп. источника (°C)     | 150  |
| Темп. десольватации (°С) | 350  |
| Источник AS+             |      |
| Анализатор               |      |
| LM разрешение            | 15,0 |
| НМ разрешение            | 15,0 |
| Энергия ионов            | 0,6  |
| Увеличение               | 1,00 |

Способ проводят на основе информации «MS Method: pos\_neg\_3mn\_30v». Точек на пик: 3846. Общее время прогона: 3,0 мин. МС сканирование, время 0,00-3,00, масса 100,00-900,00  $3P^+$ .

УЭЖХ-МС масс спектр проводят на SQ датчике Acquity Waters (Waters Corporation, Waters Milford, 34 Maple St., Milford, USA), оборудованном программой Empower 2 pro в режиме положительной ионизации. Условия ионизации: капилляр 2,25 кВ, конус 160 В, источник  $100^{\circ}$ С, десольватация  $150^{\circ}$ С; поток газа  $\rightarrow$  десольватация 500 л/ч, конус 50 л/ч.

#### Аналитическая УЭЖХ/МС

Альтернативно проводят аналитическую УЭЖХ/МС с применением либо кислых, либо основных способов, следующим образом:

**Способ 2а:** Колонку Waters Acquity CSH C18, 1,7 мкм,  $2,1\times30$  мм элюируют градиентом 0,1% муравьиной кислоты в MeCN в 0,1% муравьиной кислоты в воде. Градиент структурируют с исходной точкой 5% MeCN, удерживаемой от 0,0-0,11 минуты. Градиент от 5-95% имеет место между 0,11-2,15 минутами с промыванием 2,15-2,56 минут. Повторное уравновешивание колонки до 5% MeCN проводят от 2,56-2,83 минут. УФ спектр элюированных пиков измеряют с применением Acquity PDA, и масс спектр записывают с применением QDa детектора с ИЭР пол/отр переключением.

Способ 2b: Колонку Waters Acquity BEH C18, 1,7 мкм, 2,1×30 мм элюируют градиентом MeCN в водном 10 мМ бикарбонате аммония. Градиент структурируют с исходной точкой 5%, удерживаемой от 0,0-0,11 минуты. Градиент от 5-95% имеет место между 0,11-2,15 минутами с промыванием от 2,15-2,56 минуты. Повторное уравновешивание колонки до 5% MeCN проводят от 2,56-2,83 минуты. УФ спектр элюированных пиков измеряют с применением Acquity PDA, и масс спектр записывают с применением QDa детектора с ИЭР пол/отр переключением.

#### Препаративная ВЭЖХ

Препаративную ВЭЖХ проводят с применением колонки Waters Xselect CSH C18, 5 мкм,  $19\times50$  мм с применением либо градиента 0.1% муравьиной кислоты в MeCN в 0.1%

водной муравьиной кислоте, либо градиента MeCN в водном 10 мМ бикарбонате аммония; или с применением колонки Waters Xbridge BEH C18, 5 мкм, 19×50 мм с применением градиента MeCN в водном 10 мМ бикарбонате аммония. Фракции собирают после определения УФ при одной длине волны, измеряемой датчиком с переменной длиной волны на Gilson 215 препаративной ВЭЖХ или Varian PrepStar препаративной ВЭЖХ; с применением масс и УФ при одной длине волны, измеренной на ZQ одноквадрупольном масс спектрометре, с положительным и отрицательным ионным электрораспылением, и детектором с двойной длиной волны на Waters FractionLynx ЖХМС.

#### Препаративная хиральная высокоэффективная жидкостная хроматография

**Способ За:** Колонка Chiralpak® IA (Daicel Ltd.) ( $2\times25$  см), скорость потока 13,5 мл мин<sup>-1</sup>, элюируя смесью (% этанола) этанола в 4:1 смеси гептана+0,2% ТФК и хлороформа, УФ определение при 254 нм. Образцы загружают в колонку через разгружающий насос на колонке, закачивая хлороформ (1,5 мл мин<sup>-1</sup>) в течение всего прогона, с получением объединенной скорости потока 15 мл мин<sup>-1</sup>.

**Способ 3b**: Колонка Chiralpak® IC (Daicel Ltd.) ( $2\times25$  см), скорость потока 13,5 мл мин<sup>-1</sup>, элюируя смесью (% этанола) этанола в 4:1 смеси гептана+0,2% диэтиламина, УФ определение при 254 нм. Образцы загружают в колонку через разгружающий насос на колонке, закачивая хлороформ (1,5 мл мин<sup>-1</sup>) в течение всего прогона, с получением объединенной скорости потока 15 мл мин<sup>-1</sup>.

#### Аналитическая хиральная высокоэффективная жидкостная хроматография

**Способ 4а**: Колонка Chiralpak® IA (Daicel Ltd.) (4,6 мм х 25 мм), скорость потока 1 мл мин<sup>-1</sup>, элюируя смесью (% этанола) этанола в 4:1 смеси гептана $\pm$ 0,2% ТФК и хлороформа, УФ определение при 254 нм.

**Способ 4b**: Колонка Chiralpak® IC (Daicel Ltd.) (4,6 мм х 25 мм), скорость потока 1 мл мин<sup>-1</sup>, элюируя смесью (% этанола) этанола в 4:1 изогексане+0,2% диэтиламина, УФ определение при 254 нм.

### <sup>1</sup>Н ЯМР Спектроскопия

<sup>1</sup>Н ЯМР спектр получают на спектрометре Bruker Avance III при 400 МГц с применением остаточного не дейтерированного растворителя в качестве эталона.

**Пример 1.** Синтез (E)-N-((4-амино-3-метилбензофуран-2-ил)метил)-N-метил-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриламид (соединение **5**).

Общая схема синтеза.

H<sub>2</sub>N 
$$\xrightarrow{OEt}_{\text{Стадия}} \xrightarrow{1} H_2$$
N  $\xrightarrow{OEt}_{\text{Стадия}} \xrightarrow{2} H_2$ N  $\xrightarrow{OEt}_{\text{Стадия}} \xrightarrow{2} H_2$ N  $\xrightarrow{OEt}_{\text{Стадия}} \xrightarrow{3} G$ 

**Условия реакции**: a) MeNH2, EtOH; b) BH3,  $T\Gamma\Phi$ , кипение с обратным холодильником; c)  $\Gamma$ ATУ, ДИПЭА ДМ $\Phi$ 

Синтез (E)-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриловой кислоты (соединение **4**) ранее описан у AFFINIUM PHARMECEUTICALS, INC: WO2007/67416, 2007, A2.

Стадия 1. 4-Амино-N,3-диметилбензофуран-2-карбоксамид (соединение 2). Этил 4-амино-3-метилбензофуран-2-карбоксилат 1 (0,1 г, 0,46 ммоль) растворяют в метанамине (10 мл, 80 ммоль, 33% в ЕtOH), и реакционную смесь перемешивают при КТ в течение ~36 ч. Растворитель удаляют *в вакууме* с получением желаемого продукта 2 в виде бледно-коричневого кристаллического твердого вещества (0,097 г, количественный).  $R^t$  1,25 мин (Способ 1а); m/z 205  $[M+H]^+$  ( $P^+$ ),  $P^+$   $P^+$ 

Стадия 2. 3-Метил-2-((метиламино)метил)бензофуран-4-амин (соединение 3). К суспензии соединения 2 (300 мг, 1,47 ммоль) в сухом ТГФ (30 мл) при 0°С добавляют комплекс бора с тетрагидрофураном (7,34 мл, 7,34 ммоль, 1 М в ТГФ). После нагревания до КТ реакционную смесь нагревают при кипении с обратным холодильником в течение 3 ч. Смесь гасят метанолом (20 мл) все еще кипятя с обратным холодильником, затем добавляют 1 N хлористоводородную кислоту (2 мл) и смесь продолжают нагревать при кипении с обратным холодильником в течение 30 мин. Смесь охлаждают до КТ, затем выпаривают досуха. Остаток помещают в метанол (50 мл) и наносят на колонку СКХ. Колонку промывают метанолом (50 мл), и продукт элюируют 10% метанольным аммиаком. Растворитель удаляют *в вакууме* с получением желаемого продукта **3** в виде желтого масла (0,20 г, 68%).  $\mathbb{R}^{\mathfrak{t}}$  0,17 мин (Способ 1а);  $\mathbb{m}/\mathbb{z}$  160 [М - NHCH<sub>3</sub>]<sup>+</sup> (ЭР<sup>+</sup>).  $\mathbb{E}/\mathbb{z}$  1 ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\mathbb{E}/\mathbb{z}$  4,  $\mathbb{E}/\mathbb{z}$  7,9 Гц, 1H), 6,63 (дд,  $\mathbb{E}/\mathbb{z}$  1,  $\mathbb{E}/\mathbb{z}$  1,  $\mathbb{E}/\mathbb{z}$  1,  $\mathbb{E}/\mathbb{z}$  1,  $\mathbb{E}/\mathbb{z}$  1,  $\mathbb{E}/\mathbb{z}$  1,  $\mathbb{E}/\mathbb{z}$  2,  $\mathbb{E}/\mathbb{z}$  1,  $\mathbb{E}/\mathbb{z}$  2,  $\mathbb{E}/\mathbb{z}$  2,  $\mathbb{E}/\mathbb{z}$  1,  $\mathbb{E}/\mathbb{z}$  3,  $\mathbb{E}/\mathbb{z}$  3,  $\mathbb{E}/\mathbb{z}$  1,  $\mathbb{E}/\mathbb{z}$  3,  $\mathbb{E}/\mathbb{z}$  1,  $\mathbb{E}/\mathbb{z}$  2,  $\mathbb{E}/\mathbb{z}$  1,  $\mathbb{E}/\mathbb{z}$  3,  $\mathbb{E}/\mathbb{z}$  4,  $\mathbb{E}/\mathbb{z}$  3,  $\mathbb{E}/\mathbb{z}$  3,  $\mathbb{E}/\mathbb{z}$  3,  $\mathbb{E}/\mathbb{z}$  3,  $\mathbb{E}/\mathbb{z}$  3,  $\mathbb{E}/\mathbb{z}$  4,  $\mathbb{E}/\mathbb{z}$  4,  $\mathbb{E}/\mathbb{z}$  4,  $\mathbb{E}/\mathbb{z}$  5,  $\mathbb{E}/\mathbb{z}$  6,  $\mathbb{E}/\mathbb{z}$  7,  $\mathbb{E}/\mathbb{z}$  7,  $\mathbb{E}/\mathbb{z}$  8,  $\mathbb{E}/\mathbb{z}$  9,  $\mathbb{E}/\mathbb{$ 

$$H_2N$$
 $NH + HO$ 
 $NH + HO$ 

**Стадия 3.** (Е)-N-((4-Амино-3-метилбензофуран-2-ил)метил)-N-метил-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриламид (соединение 5). Раствор 3-метил-2-((метиламино)метил)бензофуран-4-амина **3** (0,07 г, 0,35 ммоль), (Е)-3-(8-оксо-

6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриловой кислоты **4** (0,07 г, 0,29 ммоль) и ДИПЭА (0,26 мл, 1,47 ммоль) в ДМФ (2 мл) перемешивают в течение 10 мин. Затем ГАТУ (0,17 г, 0,44 ммоль) добавляют одной порцией, и реакционную смесь перемешивают в течение 2 ч. Воду (20 мл) добавляют к смеси, и полученный осадок собирают фильтрацией. Твердое вещество промывают водой (10 мл) и сушат на фильтровальной бумаге, затем растворяют в минимальном возможном количестве ДМСО и осаждают добавлением воды. Твердое вещество собирают, затем неочищенный продукт дополнительно очищают хроматографией (0-10% МеОН в ДХМ) с получением соединения **5** в виде рыжевато-коричневого твердого вещества (0,04 г, 29%). R<sup>t</sup> 1,54 мин (Способ 1а); m/z 405 [M+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (400 МГц, ДМСО-d6, 363 К): δ, ч./млн. 9,56 (с, 1H), 8,48 (д, J=2,2 Гц, 1H), 8,02 (д, J=2,2 Гц, 1H), 7,51 (д, J=15,4 Гц, 1H), 7,27 (д, J=15,6 Гц, 1H), 6,92 (т, J=8,0 Гц, 1H), 6,66 (дд, J=8,2 Гц, 0,9 Гц, 1H), 6,41 (дд, J=7,8 Гц, 0,8 Гц, 1H), 4,93 (с, 2H), 4,77 (с, 2H), 3,07 (с, 3H), 2,77 (т, J=7,1 Гц, 2H), 2,43 (с, 3H), 2,32 (т, J=7,2 Гц, 2H), 2,15 (п, J=7,7, 7,3 Гц, 2H).

**Пример 2.** Синтез (E)-N-((4-амино-3-метилбензофуран-2-ил)метил)-N-метил-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламида (соединение 7).

Общая схема синтеза.

## Условия реакции: (а) ГАТУ, ДИПЭА, ДМФ

Синтез гидрохлорида (E)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты (соединение **6**) ранее описан у AFFINIUM PHARMECEUTICALS, INC: WO2007/67416, 2007, A2; AURIGENE DISCOVERY TECHNOLOGIES LIMITED; AURIGENE DISCOVERY TECHNOLOGIES LIMITED: WO2013/80222, 2013, A1; Ramnauth Jailall и соавторы, Bioorg. Med. Chem. Lett., 2009, 19, pp. 5359-5362.

$$H_2N$$
  $NH^+$  HO  $NH^+$  HO  $NH^+$   $NH^+$ 

Стадия 1. (Е)-N-((4-Амино-3-метилбензофуран-2-ил)метил)-N-метил-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламид (соединение 7). Раствор 3-метил-2-((метиламино)метил)бензофуран-4-амина 3 (0,05 г, 0,26 ммоль), соли ТФК (Е)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты 6 (0,05 г, 0,22 ммоль) и ДИПЭА (0,38 мл, 2,19 ммоль) в ДМФ (2 мл) перемешивают в течение 10 мин. Затем гексафторфосфат 2-(3H-[1,2,3]триазоло[4,5-b]пиридин-3-ил)-1,1,3,3-тетраметилизоурония (0,13 г, 0,33 ммоль) добавляют одной порцией, и реакционную смесь

перемешивают в течение 2 часов. Воду (20 мл) добавляют к смеси, и полученный осадок собирают фильтрацией. Твердое вещество промывают водой (10 мл) и сушат на фильтровальной бумаге, затем растворяют в минимальном возможном количестве ДМСО и осаждают добавлением воды. Твердое вещество собирают, затем неочищенный продукт дополнительно очищают хроматографией (0-10% MeOH в ДХМ) с получением желаемого продукта 7 в виде желтого твердого вещества (0,05 г, 53%).  $R^t$  1,43 мин (Способ 1а); m/z 406  $[M+H]^+(3P^+)$ .  $^1H$  ЯМР (400 МГц, ДМСО-d<sub>6</sub>, 363 K):  $\delta$ , ч./млн. 9,14 (c, 1H), 7,97 (д, J=1,9 Гц, 1H), 7,45-7,34 (м, 2H), 7,09 (д, J=15,7 Гц, 1H), 6,92 (т, J=8,0 Гц, 1H), 6,66 (дд, J=8,2 Гц, 0,8 Гц, 1H), 6,41 (дд, J=7,8 Гц, 0,8 Гц, 1H), 5,82 (д, J=4,6 Гц, 1H), 4,93 (c, 2H), 4,74 (c, 2H), 3,48-3,40 (м, 2H), 3,05 (c, 3H), 2,69-2,62 (м, 2H), 2,43 (c, 3H).

**Пример 3.** Синтез (Е)-N-метил-N-((3-метилбензофуран-2-ил)метил)-3-(3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)акриламида (соединение **10**).

Общая схема синтеза.

**Условия реакции**: a) Pd-162, Bu<sub>4</sub>N<sup>+</sup>Cl<sup>-</sup>, Cy<sub>2</sub>NCH<sub>3</sub> диоксан 80 гр. С, 2 ч

Синтез 7-бром-1,4-дигидропиридо[2,3-b]пиразин-3(2H)-он (соединение **8**) ранее описан у CEPHALON, INC - WO2007/130468, 2007, A2.

N-Метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение **9**) получают как описано в патентах AFFINIUM PHARMACEUTICALS, INC. - WO2007/67416, 2007, A2 и VITAS PHARMA RESEARCH PRIVATE LIMITED, WO2013/42035, 2013, A1.

Стадия 1. (Е)-N-Метил-N-((3-метилбензофуран-2-ил)метил)-3-(3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)акриламид (соединение 10). В реакционную пробирку загружают N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид 9 (23,12 мг, 0,101 ммоль), 7-бром-1,2-дигидропиридо[2,3-b]пиразин-3(4H)-он 8 (23 мг, 0,10 ммоль), гидрата хлорида тетрабутиламмония (2,98 мг, 10,09 мкмоль), [P(tBu)3]Pd(кротил)C1 (Pd-162) (4,03 мг, 10,09 мкмоль). Пробирку затем промывают азотом (5 мин). Добавляют 1,4-диоксан (3 мл) и N-циклогексил-N-метилциклогексанамин (43,2 мкл, 0,20 ммоль), и реакционную смесь продувают азотом (5 мин). Смесь нагревают до 80°С в течение 2 ч и охлаждают до комнатной температуры. Растворитель выпаривают досуха. Остаток помещают в ДХМ (5 мл) и добавляют насыщ. NaHCO<sub>3</sub> (5 мл). Водную фазу отделяют и экстрагируют ДХМ (2 х 5 мл). Объединенные органические фазы пропускают через фазовый сепаратор и концентрируют *6 вакууме*. Неочищенный продукт очищают

хроматографией на двуокиси кремния (0-10% MeOH/ДХМ) с получением указанного в заголовке соединения **10** в виде желтого твердого вещества (6,2 мг, 0,016 ммоль, 16% выход).  $R^t$  1,20 мин (Способ 2а); 377,0 [M+H]<sup>+</sup>(ЭР<sup>+</sup>),  $^1$ H ЯМР Получено при 360К (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 10,49 (c, 1H), 7,83 (д, J=1,9 Гц, 1H), 7,58-7,54 (м, 1H), 7,47 (дт, J=8,2, 0,8 Гц, 1H), 7,42 (д, J=15,4 Гц, 1H), 7,31-7,23 (м, 3H), 7,07 (д, J=15,9 Гц, 1H), 5,99 (c, 1H), 4,84 (c, 2H), 3,85 (д, J=1,9 Гц, 2H), 3,10 (c, 3H), 2,28 (c, 3H).

**Пример 4**. Синтез (Е)-3-(2,2-диметил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение **19**). Общая схема синтеза.

**Условия реакции**: а) 2-амино-2-метилпропановая кислота **12**,  $K_2CO_3/T\Gamma\Phi$  кипение с обратным холодильником, в течение ночи; b) Fe, вода, EtOH, NH<sub>4</sub>Cl; c) три-(отолил)фосфин,  $Pd(AcO)_2$ , ДИПЭА, ДМ $\Phi$ :пропионитрил (1:4 об./об.); d)  $T\Phi K/ДXM$ ; e)  $T_3P$ , ДИПЭА, ДМ $\Phi$ 

Стадия 1. 2-((5-Бром-2-нитропиридин-3-ил)амино)-2-метилпропановая кислота (соединение 13). Смесь 5-бром-3-фтор-2-нитропиридин 11 (30,0 г, 135,7 ммоль), К<sub>2</sub>СО<sub>3</sub> (38,96 г, 282,31 ммоль) и 2-амино-2-метилпропановой кислоты 12 (20,9 г, 203,6 ммоль) в ТГФ (500 мл) нагревают при 90°С в течение 16 часов. Развитие реакции отслеживают ТСХ. Реакционную смесь охлаждают до КТ и концентрируют досуха. Неочищенный продукт растворяют в воде (500 мл) и промывают этилацетатом (100 мл). Водный слой подкисляют 1N HCl раствором до рН 2 и экстрагируют этилацетатом (2 х 250 мл). Органический слой сушат над NaSO<sub>4</sub>, фильтруют и концентрируют *в вакууме* с получением неочищенного соединения. К неочищенному соединению добавляют 50 мл диэтилового эфира и перемешивают в течение 30 мин, фильтруют твердую массу и сушат под вакуумом с получением указанного в заголовке соединения 13 в виде желтого твердого вещества (26,0

г, 63% выход). m/z 304/306 [M+H] $^+$  (ЭР $^+$ ),  $^1$ H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 13,48 (с, 1H), 7,90 (с, 1H), 8,10 (с,1H), 7,97 (с, 1H), 7,39 (с, 1H), 1,60 (с, 6H).

Стадия 2. 7-Бром-2,2-диметил-1,4-дигидропиридо[2,3-b]пиразин-3(2H)-он (соединение 14). К перемешиваемому раствору 2-((5-бром-2-нитропиридин-3-ил)амино)-2-метилпропановой кислоты 13 (26,0 г, 85,4 ммоль) в ЕtOH:воде (1:1, 520 мл) добавляют NH<sub>4</sub>Cl (10,42 г, 194 ммоль), затем порошок железа (10,31 г, 184,6 ммоль). Реакционную смесь перемешивают при 80°C в течение 2 ч. Развитие реакции отслеживают ТСХ. Реакционную смесь охлаждают до КТ и разбавляют этилацетатом (500 мл), фильтруют через Celite® и промывают ТГФ (200 мл), МеОН (200 мл). Фильтрат концентрируют в вакууме с получением неочищенного соединения. К неочищенному соединению добавляют 50 мл диэтилового эфира и перемешивают в течение 30 мин, фильтруют твердую массу и сушат под вакуумом с получением указанного в заголовке соединения 14 в виде беловатого твердого вещества (12,5 г, 57% выход). m/z 256/258 [М+Н]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 10,83 (с, 1H), 7,63 (д, J=2,0 Гц, 1H), 7,09 (д, J=2,0 Гц, 1H), 6,54 (с,1H), 1,25 (с, 6H).

**3.** трет-Бутил (E)-3-(2,2-диметил-3-оксо-1,2,3,4-тетрагидропиридо[2,3b]пиразин-7-ил)акрилат (соединение **16**). В герметично закрытой пробирке, перемешиваемый раствор 7-бром-2,2-диметил-1,4-дигидропиридо[2,3-b]пиразин-3(2H)-она 14 (5,0 г, 19,5 ммоль) и ДИПЭА (14,3 г, 78,12 ммоль) в ДМФ:пропионитриле (1:4, 75 мл) продувают газообразным азотом в течение 10 мин. Затем добавляют трет-бутилакрилат 15 (7,5 г, 58,5 ммоль), три-(о-толил)фосфин (1,18 г, 3,9 ммоль) и ацетат палладия(II) (4,37 г, 1,95 ммоль) к реакционной смеси и снова продувают газообразным азотом в течение 5 мин. Реакционную смесь нагревают при 90°C в течение 18 ч. Развитие реакции отслеживают ТСХ и ЖХМС. Реакционную смесь охлаждают до КТ и разбавляют 10% МеОН в ДХМ (50 мл), фильтруют через Celite®, промывают 10% MeOH в ДХМ (50 мл) и фильтрат концентрируют в вакууме с получением неочищенного продукта, который растирают с диэтиловым эфиром (20 мл) и н-пентаном (20 мл), фильтруют и сушат под вакуумом с получением указанного в заголовке соединения 16. Примечание: Реакцию проводят в еще одной партии (каждая 5 г, всего 10,0 г) с получением всего 6,5 г, 55% в виде желтого твердого вещества. m/z 304,41  $[M+H]^+$  (ЭР<sup>+</sup>),  ${}^1H$  ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн, 10,88 (c, 1H), 7.87 (c, 1H), 7.45-7.41 (д, J=16.0  $\Gamma$ ц, 1H), 7.18 (c, 1H), 6.32-6.27 (м, 2H), 1.47 (c, 9H),1,26 (c, 6H).

Стадия 4. трифторацетат ((Е)-3-(2,2-диметил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)акриловой кислоты (соединение 17). Трифторуксусную кислоту (30,0 мл) добавляют к холодной суспензии трет-бутил (Е)-3-(2,2-диметил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)акрилата 16 (6,0 г, 19,8 ммоль) в ДХМ (60 мл) при 0°С. Реакционную смесь перемешивают при КТ в течение 3 ч. Развитие реакции отслеживают ТСХ и ЖХМС, затем концентрируют *в вакууме*. Остаток растирают с диэтиловым эфиром (2 × 50 мл) и твердое вещество собирают фильтрацией с получением указанного в заголовке соединения 17 в виде желтого твердого вещества (4,5 г, 92% выход). m/z 248,05 [M+H]+ (ЭР+).  $^{1}$ Н ЯМР (400 МГц, ДМСО-d6):  $^{5}$ 8, ч./млн. 12,33 (с, 1H), 10,89 (с, 1H), 9,78 (с, 1H), 7,86 (д,  $^{5}$ 9-16,0 Гц, 1H), 7,50-7,46 (д,  $^{5}$ 9-16,0 Гц, 1H), 7,19 (д,  $^{5}$ 9-12,2 Гц, 1H), 6,36 (с, 1H), 6,32-6,28 (д,  $^{5}$ 9-16,0 Гц, 1H), 1,26 (с, 6H).

Синтез N-метил-1-(3-метилбензофуран-2-ил)метанамина (соединение **18**) описан ранее у AFFINIUM PHARMACEUTICALS, INC. - WO2008/98374, 2008, A1 и/или VITAS PHARMA RESEARCH PRIVATE LIMITED, WO2013/42035, 2013, A1.

**Стадия 5.** (E)-3-(2,2-диметил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение **19**). ДИПЭА (16,7,0 мл, 91,0 ммоль) добавляют по каплям к перемешиваемому раствору N-метил-1-(3метилбензофуран-2-ил)метанамина 18 (3,8 г, 18,21 ммоль) и трифторацетата (Е)-3-(2,2диметил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)акриловой кислоты 17 (4,5 г, 13,04 ммоль) в ДМФ (25 мл) и ТГФ (25 мл). Реакционную смесь перемешивают в течение 5мин, затем  $T_3P$  50% в этилацетате (34,7 мл, 54,6 ммоль) добавляют при 0°С, и реакционную смесь перемешивают в течение еще 4 ч при КТ. Развитие реакции отслеживают ТСХ. Реакционную смесь разбавляют водой (500 мл) и твердое вещество собирают, промывают водой (2 х 50 мл) и сушат под вакуумом. Неочищенное соединение помещают в диэтиловый эфир (50 мл) и перемешивают в течение 15 мин при КТ. Фильтруют твердую массу и промывают диэтиловым эфиром (25 мл), сушат под вакуумом с получением (Е)-3-(2,2диметил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)-N-метил-N-((3метилбензофуран-2-ил)метил)акриламида 19 в виде светло-желтого твердого вещества (3,55 г, 67,5% выход). Фильтрат концентрируют с получением 3,5 г смеси. m/z 405,21 [M+H]<sup>+</sup>(ЭР<sup>+</sup>), <sup>1</sup>Н ЯМР (400 МГц, ДМСО-d6): δ, ч./млн. 10,84 (с, 1H), 7,90 (с, 1H), 7,57-7,55  $(д, J=7,2 \Gamma ц, 1H), 7,50-7,42 (м, 2H), 7,30-7,22 (м, 3H), 7,03-6,99 (д, J=15,2 \Gamma ц, 1H), 6,35-6,33$ 

 $(\pi, J=9,6, \Gamma \mu, 1H), 4,94-4,78 (\pi, J=64,8 \Gamma \mu, 2H), 3,16-2,94 (\pi, 3H), 2,26 (c, 3H), 1,25 (c, 6H).$ 

**Пример** 5. Синтез (е)-(8-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-1,2,3,4-тетрагидро-5h-пиридо[2,3-b][1,4]диазепин-5-ил)метилфосфата 2-гидроксиэтан-1-аминия (соединение **23**).

Общая схема синтеза.

**Условия реакции**: а) 1. 18-краун-6, NMP/N-этилпирролидон, КТ 2. t-BuOK при -  $20^{\circ}$ C до - $35^{\circ}$ C, затем хлорметил бис[2-(триметилсилил)этил]фосфат **21**; b) ТФК/ДХМ, длительная обработка

Полный синтез (Е)-N-метил-N-((3-метилбензофуран-2-ил)метил)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламида (соединение **20**) описан ранее в Bioorganic & Medicinal Chemistry Letters (2009), 19(18), 5359-5362 и WO 2007067416.

(Е)-(8-(3-(метил((3-Стадия 1. бис(2-(триметилсилил)этил)фосфат метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-1,2,3,4-тетрагидро-5Нпиридо[2,3-b][1,4]диазепин-5-ил)метила (соединение 22). В герметично закрытую 10 мл пробирку под азотом, содержащую (Е)-N-метил-N-((3-метилбензофуран-2-ил)метил)-3-(4оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)акриламид 20 (250 мг; 1 экв.; ранее измельченный при сухом перемешивании в течение 10 минут) и 18-краун-6 (208 мг; 1,24 экв.), добавляют N-метил-2-пирролидон (1,0 мл; 4 об.) и N-этилпирролидон (0,275 мл; 1,10 об.). Затем смесь перемешивают при 25°C в течение 10 минут, и проводят циклы дегазирования (5 циклов; вакуум/азот). Реакционную смесь затем охлаждают до -20°C (не измерена; темп. бани −30°С) и добавляют трет-бутоксид калия (82 мг; 1,1 экв.) порциями в течение 2 минут. Реакционную смесь затем снова подвергают циклам дегазирования (3 циклов; вакуум/азот) и затем перемешивают при -20°C (температура бани: -30°C) в течение 1 ч 30 мин до практически полной солюбилизации (темно-зеленая смесь). Реакционную смесь охлаждают до  $-35^{\circ}$ С (не измерено; темп. бани  $-45^{\circ}$ С) и дегазируют (5 циклов; вакуум/азот), раствор хлорметил бис[2-(триметилсилил)этил]фосфата 21 (Carbogen Amcis) (1,058 г; 1,4 экв.; 29,1% масс./масс. в гептане) добавляют в течение 4 минут, сохраняя температуру -35°C (не измерено; темп. бани -45°C). Реакционную смесь (двухфазную)

перемешивают при -35°C в течение 16 ч до почти полного завершения, как показано УЭЖХ/МС: (Исходный материал:  $R_t$ =1,62 мин; 34,5% (ППК); Э $P^+$ : 391,5. Продукт:  $R_t$ =2,50 мин; 34,25% (ППК);  $3P^+$ : 701,79). N-Метил-2-пирролидон (0,64 мл), метилциклогексан (1,25 мл), толуол (0,35 мл) и вода (0,37 мл) добавляют к реакционной смеси, сохраняя температуру -20°C (не измерено; темп. бани -30°C). Затем после перемешивания и разделения фаз, нижнюю фазу экстрагируют МТБЭ (3 x 2 мл), сохраняя температуру –20°С. Затем все верхние фазы объединяют и промывают полунасыщенным раствором хлорида натрия (2 x 6 мл). Все промывания осуществляют, сохраняя температуру -10°C (не измерено; темп. бани -20°C). Органическую фазу затем сушат над сульфатом натрия, фильтруют и промывают МТБЭ (2 х 3 мл) при 25°С. Концентрируют досуха, сохраняя температуру бани ниже 25°C с получением неочищенного соединения в виде оранжевой пены (м=150,73 мг; чистота: 88,36% (ППК)). Хранят в течение ночи под азотом при  $-25^{\circ}$ С. Неочищенное соединение очищают хроматографией с нормальной фазой (SiO<sub>2</sub>; 40-63 мкм). неочищенное Проводят кондиционирование н-гептаном, затем соединение солюбилизируют в смеси н-гептана/МТБЭ/ДИПЭА: 2/1/0,75% (3 мл) и МТБЭ (2 мл) и впрыскивают. Элюирование проводят с холодными элюентами (хранят несколько часов в льдогенераторе). Первый элюент (н-гептан/МТБЭ/ДИПЭА: 2/1/0,75%), второй элюент (МТБЭ/ДИПЭА: 100/0,2%), третий элюент (метилацетат/ДИПЭА: 100/0,2%). Продукт наконец элюируют третьим элюентом. Фракции объединяют и концентрируют досуха (температура бани: 25°C) с получением указанного в заголовке соединения 22 в виде желтого масла (м=122,5 мг; чистота: 96% (ППК); ЭР<sup>+</sup>: 701,7; выход: 26,5%). Хранят при -25°С до следующей стадии.

Стадия 2. (Е)-(8-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-1,2,3,4-тетрагидро-5H-пиридо[2,3-b][1,4]диазепин-5-ил)метилфосфат 2-гидроксиэтан-1-аминия (соединение 23). В герметично закрытой 2,5 мл пробирке под азотом готовят раствор ТФК (0,369 мл; 19,3 экв.) в безводном дихлорметане (0,32 мл; 2,6 объема) при −20°С, этот раствор называют №1. В герметично закрытой 2,5 мл пробирке под азотом готовят раствор бис(2-(триметилсилил)этил)фосфата (Е)-(8-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-1,2,3,4-тетрагидро-5H-пиридо[2,3-b][1,4]диазепин-5-ил)метила 22 (123 мг; 1 экв.) в безводном толуоле (0,408 мл; 3,33 объема) при −10°С, этот раствор называют раствор №2. Затем раствор №2 добавляют к раствору № 1 при перемешивании в течение 10 минут, сохраняя температуру −20°С (не

измерено; темп. бани -30°C). затем пробирку, содержащую раствор №2, промывают безводным дихлорметаном (0,404 мл; 3,3 объема), который затем добавляют к раствору №1. Реакционную смесь затем перемешивают в течение 25 минут под азотом, сохраняя температуру -20°C (не измерено; температуру корректируют, сохраняя желтоватую реакционную смесь на пределе замерзания (ТФК): слегка взбалтывая). Завершение гидролиза подтверждают УЭЖХ/МС (продукт: R<sub>t</sub>=1,34 мин; ЭР<sup>-</sup>: 499,3. Исходный материал: R<sub>t</sub>=2,49 мин; 0% (ППК)). В герметично закрытой 20 мл пробирке под азотом готовят раствор этаноламин (274 мг; 26,5 экв.) в смеси ацетона (1,814 мл; 14,8 объема) и воды (0,050 мл; 0,41 объема) при  $0^{\circ}\text{C}$  (не измерено; температура бани:  $-5^{\circ}\text{C}$ ), этот раствор называют раствор №3. Затем предыдущую реакционную смесь охлаждают до -20°C (не измерено; слегка выше температуры замерзания) и добавляют через канюлю к раствору №3 при осторожном перемешивании (100 об./мин.; может быть повышено для получения гомогенного раствора (двухфазного)) в течение 10 минут, сохраняя температуру 0°С (темп. бани -5°C). Затем пробирку, содержащую реакционную смесь, промывают дихлорметаном (0,208 мл; 1,7 объема), затем добавляют к раствору №3. Затем конечную реакционную смесь перемешивают при 200 об./мин. при 0°С (измерена внутренне) в течение 30 минут и хранят при 4°C в течение 14 ч в холодильнике до наблюдения выпадения осадка. Реакционную смесь нагревают вплоть до 25°C и фильтруют через стеклянный фильтр. Полученную лепешку промывают этанолом (2 х 2 мл), но наблюдают полное растворение. Фильтрат концентрируют досуха (температура бани 25°C), и полученное масло растворяют в смеси ацетона (1,5 мл), толуола (1,5 мл) и МТБЭ (3 мл). Полученный раствор хранят при  $-25^{\circ}$ С в течение 1 ч 30 мин до полного выпадения осадка. Суспензию фильтруют через стеклянный фильтр, и полученное твердое вещество промывают смесью 1-бутанола (2 мл) и МТБЭ (4 мл), затем МТБЭ(2 х 2 мл) и наконец 2-бутаноном (1 х 3 мл и 1 х 2 мл). Однако после сушки, ЯМР анализ на выделенном твердом веществе промывают только ТФК солью этаноламина. Фильтрат хранят при -25°C в течение 16 ч до наблюдения выпадения осадка. Суспензию фильтруют через стеклянный фильтр, и полученное желтое твердое вещество промывают несколько раз 2-бутаноном (2 мл) до тех пор, пока приемлемое количество ТФК соли этаноламина не измеряют ЯМР. Наконец, после сушки при 25°C под вакуумом, указанное в заголовке соединение 23 получают в виде желтого порошка (м=42,41 мг; чистота: 100% (ППК); ЭР-: 499,3; 2 экв. этаноламина через ЯМР; 2,4% масс./масс. ТФК соли этаноламина; выход: 40,6%). <sup>1</sup>H ЯМР (400 МГц, D<sub>2</sub>O):  $\delta$ , ч./млн. 8,13 (д, J=1,7 Гц, 1H), 7,47 (дд, J=1,8 Гц, 6,6  $\Gamma$ ц, 1H), 7,43-7,08 (м, 5H), 6,87 (д, J=15,8  $\Gamma$ ц, 1H), 5,46 (д, J=5,6  $\Gamma$ ц, 2H), 4,68 (с, 1H), 4,60(c, 1H), 3,72 (т, J=5,2 Гц, 4H), 3,65-3,55 (м, 2H), 3,05 (т, J=5,2 Гц, 4H), 3,05 (с, 1,8H), 2,92 (с, 1,2H), 2,53-2,42 (м, 2H, м), 2,09 (с, 1,8H), 2,08 (с, 1,2H) (ротамеры).

**Пример 6.** Синтез(E)-3-(3-(гидроксиметил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **31**), а также двух энантиомеров (S, E)-3-(3-(гидроксиметил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **32**) и (R, E)-3-(3-

(гидроксиметил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **33**).

Общая схема синтеза.

**Условия реакции**: а)  $K_2CO_3$ , (HCHO)<sub>n</sub>, EtOH; b) HCl в 1,4 диоксане, PtO<sub>2</sub>·H<sub>2</sub>O, EtOH; c) 5-бром-3-фтор-2-нитропиридин **11**, ТЭА, EtOH,  $\Delta$ ; d) LiOH, вода/ТГ $\Phi$ ; e) Fe, NH<sub>4</sub>Cl, EtOH, H<sub>2</sub>O, 90°C; f) ГАТУ, ДИПЭА, ДМ $\Phi$ ; g) Pd-162, Cy<sub>2</sub>NMe, NBu<sub>4</sub>Cl, 1,4-диоксан, 80°C; h) хиральное разделение

Стадия 1. Этил 2-циано-3-гидрокси-2-метилпропаноат (соединение 25). Смесь параформальдегида (3,54 г, 118 ммоль), этил 2-цианопропаноата 24 (TCI - Tokyo Chemical Industry) (10 г, 79 ммоль) и карбоната калия (32,6 г, 236 ммоль) в этаноле (500 мл) перемешивают в течение 18 часов. Твердое вещество удаляют фильтрацией через слой Celite® и фильтрат выпаривают досуха. Неочищенный продукт очищают хроматографией на двуокиси кремния (0-50% EtOAc/изогексан) с получением указанного в заголовке соединения 25 в виде прозрачного бесцветного масла (6,01 г, 48%),  $^{1}$ H ЯМР (400 МГц, CDCl<sub>3</sub>):  $\delta$ , ч./млн. 4,30 (кв, J=7,1 Гц, 2H), 3,98-3,83 (м, 2H), 2,59 (с, 1H), 1,58 (с, 3H), 1,34 (т, J=7,1 Гц, 3H).

25 26

Стадия 2. Гидрохлорид этил 3-амино-2-(гидроксиметил)-2-метилпропаноата (соединение 26). Смесь оксида платины(IV) (0,14 г, 0,64 ммоль), этил 2-циано-3-гидрокси-2-метилпропаноата 25 (1,00 г, 6,36 ммоль) и HCl (4M в 1,4-диоксане, 3,18 мл, 12,73 ммоль) в растворителе этаноле (12 мл) перемешивают в атмосфере водорода при 5 бар в течение 18 часов. Катализатор удаляют фильтрацией, и фильтрат выпаривают досуха. Остаток растворяют в ацетонитриле (10 мл) и выпаривают досуха с получением указанного в заголовке соединения 26 в виде бесцветной камеди (1,38 г, колич. выход),  $^{1}$ H ЯМР (400 МГц, ДМСО-d<sub>6</sub>)  $\delta$  8,11 (c, 3H), 5,31 (c, 1H), 4,13-4,07 (м, 2H), 3,64-3,44 (м, 2H), 3,09-2,91 (м, 2H), 1,21 (т, J=7,1 Гц, 3H), 1,13 (c, 3H).

Стадия 3. Этил 3-((5-бром-2-нитропиридин-3-ил)амино)-2-(гидроксиметил)-2-метилпропаноат (соединение 27). Смесь гидрохлорида этил 3-амино-2-(гидроксиметил)-2-метилпропаноата 26 (322 мг, 1,63 ммоль), триэтиламина (757 мкл, 5,43 ммоль) и 5-бром-3-фтор-2-нитропиридина 11 (300 мг, 1,36 ммоль) в растворителе этаноле (20 мл) нагревают и перемешивают при кипении с обратным холодильником в течение 1 часа. Реакционную смесь выпаривают досуха. Неочищенный продукт очищают хроматографией на двуокиси кремния (0-100% EtOAc/изогексан) с получением указанного в заголовке соединения 27 в виде желтой камеди (485 мг, 94%). R<sup>t</sup> 1,17 мин (Способ 2b) m/z 362/364 [M+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>Н ЯМР (ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 8,24 (т, J=6,0 Гц, 1H), 8,05 (д, J=1,9 Гц, 1H), 7,87 (д, J=1,9 Гц, 1H), 5,19 (т, J=5,2 Гц, 1H), 4,08 (квд, J=7,1 Гц, 2,2 Гц, 2H), 3,66-3,60 (м, 3H), 3,54 (дд, J=10,6 Гц, 5,0 Гц, 1H), 1,19-1,16 (м, 3H).

Стадия 4. 3-((5-Бром-2-нитропиридин-3-ил)амино)-2-(гидроксиметил)-2-метилпропановая кислота (соединение 28). Смесь этил 3-((5-бром-2-нитропиридин-3-ил)амино)-2-(гидроксиметил)-2-метилпропаноат 27 (480 мг, 1,38 ммоль) и моногидрат гидроксида лития (49,5 мг, 2,07 ммоль) в смеси растворителей ТГФ (20 мл) и вода (5 мл) перемешивают в течение 1 часа при КТ. Смесь подкисляют до рН  $\sim$ 3 добавлением водного раствора 1М HCl, и смесь выпаривают досуха с получением указанного в заголовке соединения 28 (501 мг, колич. выход), которое применяют на следующей стадии без дальнейшей очистки.  $\mathbb{R}^t$  0,59 мин (Способ 2b) 332/334 [М - H] $^-$  (ЭР $^-$ ).

3-((2-Амино-5-бромпиридин-3-ил)амино)-2-(гидроксиметил)-2-Стадия 5. кислота Смесь 3-((5-бром-2-нитропиридин-3-(соединение 29). метилпропановая ил)амино)-2-(гидроксиметил)-2-метилпропановой кислоты 28 (460 мг, 1,38 ммоль), порошка железа (615 мг, 11,01 ммоль) и хлорида аммония (147 мг, 2,75 ммоль) в смеси растворителей этанол (30 мл) и вода (8 мл) нагревают и перемешивают при кипении с обратным холодильником в течение 1 часа. Реакционную смесь фильтруют через слой Celite®, и фильтрат выпаривают досуха. Остаток растирают с ледяной водой (10 мл), твердое вещество собирают и сушат в вакууме с получением указанного в заголовке соединения 29 в виде серого твердого вещества (180 мг, 41% выход). Rt 0,71 мин (Способ 1b) m/z 304/306 [M+H]<sup>+</sup> (ЭP<sup>+</sup>); 302/304 [M - H]<sup>-</sup> (ЭP<sup>-</sup>), <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 7,32 (с, 1H), 7,17 (с, 2H), 6,79 (с, 1H), 5,78 (с, 2H), 4,79 (д, Ј=59,7 Гц, 2H), 3,54 (кв, J=10,6 Гц, 2H), 3,25-3,12 (м, 2H), 1,13 (с, 3H).

Стадия 6. 8-Бром-3-(гидроксиметил)-3-метил-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он (соединение **30**). К раствору 3-((2-амино-5-бромпиридин-3-ил)амино)-2-(гидроксиметил)-2-метилпропановой кислоты **29** (165 мг, 0,54 ммоль) и ДИПЭА (284 мкл, 1,63 ммоль) в ДМФ (5 мл) добавляют ГАТУ (309 мг, 0,81 ммоль), и смесь перемешивают в течение 1 часа. Реакционную смесь выпаривают досуха, и неочищенный продукт очищают хроматографией на двуокиси кремния (0-100% EtOAc/изогексан) с получением указанного в заголовке соединения **30** в виде рыжевато-коричневого твердого вещества (31 мг, 20% выход). R<sup>t</sup> 1,33 мин (Способ 1b) m/z 286/288 [М+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 9,51 (с, 1H), 7,67 (д, J=2,1 Гц, 1H), 7,25 (д, J=2,1 Гц, 1H), 6,38 (т, J=4,5 Гц, 1H), 4,79 (т, J=5,5 Гц, 1H), 3,60 (дд, J=10,5 Гц, 5,7 Гц, 1H), 3,44 (дд, J=10,6 Гц, 5,3 Гц, 1H), 3,20 (дд, J=13,8 Гц, 3,7 Гц, 1H), 3,07 (дд, J=13,8 Гц, 5,3 Гц, 1H), 1,08 (с, 3H).

**Стадия** 7. (Е)-3-(3-(Гидроксиметил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение **31**). В реакционную пробирку загружают N-метил-N-((3-метилбензофуран-2-

ил)метил)акриламид **9** (61,7 мг, 0,27 ммоль), 8-бром-3-(гидроксиметил)-3-метил-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он **30** (70 мг, 0,25 ммоль), гидрат хлорида тетрабутиламмония (7,24 мг, 0,02 ммоль), [P(tBu)<sub>3</sub>]Pd(кротил)Cl (Pd-162) (Johnson Matthey) (9,77 мг, 0,02 ммоль). Реакционную пробирку промывают азотом в течение 5 мин, добавляют 1,4-диоксан (10 мл) и N-циклогексил-N-метилциклогексанамин (0,11 мл, 0,49 ммоль), и реакционную смесь продувают азотом в течение еще 5 мин. Смесь нагревают до 80°С в течение 30 мин. Реакционную смесь выпаривают досуха, и неочищенный продукт очищают хроматографией на двуокиси кремния (0-10% MeOH/ДХМ) с получением указанного в заголовке соединения **31** в виде желтого твердого вещества (71,2 мг, 66% выход). R¹ 1,85 мин (Способ 1b) m/z 435 [M+H]+ (ЭР)+, ¹H ЯМР (400 МГц, ДМСО-d<sub>6</sub>, 363 K): δ, ч./млн. 8,88 (с, 1H), 7,95 (д, J=2,0 Гц, 1H), 7,58-7,54 (м, 1H), 7,49-7,36 (м, 3H), 7,32-7,22 (м, 2H), 7,17-7,04 (м, 1H), 5,90 (с, 1H), 4,84 (с, 2H), 3,67 (д, J=10,5 Гц, 1H), 3,51 (д, J=10,6 Гц, 1H), 3,27 (д, J=13,9 Гц, 1H), 3,15-3,07 (м, 4H), 2,28 (с, 3H), 1,15 (с, 3H).

Стадия 8. Хиральное разделение соединения 31.

**Хиральный способ разделения:** Аппарат: Isolera (Biotage). Chiralpak® IA (Daicel Ltd.) стеклянная колонка (20 мкм; 250 мм х 25 мм), скорость потока 40 мл мин<sup>-1</sup>, элюируя смесью ацетонитрил/этанол (8/2 об./об.). УФ определение при 254 нм. Температура: 30°C. Время прогона: 25 мин. Образцы загружают после фильтрации через 0,2 мкм ПТФЭ фильтр непосредственно в колонку. Впрыскиваемое количество: 46,4 мг **31** в 10 мл элюента (окончательная фильтрация через 0,2 мкм ПТФЭ фильтр).

- (S, E)-3-(3-(Гидроксиметил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение **32**). Чистые фракции первого энантиомера собирают и концентрируют. Первый энантиомер получают в виде желтого твердого вещества (M=12,95 мг; хиральная чистота: 99,66%).  $R^t$  1,53 мин (Способ 1c) m/z 435,5 (M+H)+ ( $\Theta$ P+). Стереохимию полученного энантиомера определяют произвольно.
- (R, E)-3-3-(3-(Гидроксиметил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид

(соединение 33). Чистые фракции второго энантиомера собирают и концентрируют. Первый энантиомер получают в виде желтого твердого вещества (м=8,97 мг; хиральная чистота: 98,20%).  $R^t$  1,53 мин (Способ 1c) m/z 435,5  $[M+H]^+$  (Э $P^+$ ). Стереохимию полученных энантиомером определяют произвольно.

**Пример** 7. Синтез(E)-3-(3-(гидроксиметил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1Hпиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((2-метилбензофуран-3ил)метил)акриламида (соединение **39**) а также двух энантиомеров (S, E)-3-(3-(гидроксиметил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((2-метилбензофуран-3-ил)метил)акриламида (соединение 40) и (R, E)-3-(3-(гидроксиметил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((2-метилбензофуран-3-ил)метил)акриламида (соединение **41**).

Общая схема синтеза.

Условия реакции: a) Cl<sub>2</sub>CHOMe, TiCl<sub>4</sub>, ДХМ; b) PhCH<sub>2</sub>NHMe, Na(OAc)<sub>3</sub>BH, ДХЭ; с) Pd/C, H<sub>2</sub>, MeOH, водн. HCl; d) Акрилоилхлорид, ТЭА, ТГФ; e) Pd-162, NCy<sub>2</sub>Me, NBu<sub>4</sub>Cl, 1,4-диоксан, 80°С; f) хиральное разделение

Стадия 1. 2-Метилбензофуран-3-карбальдегид (соединение 35). К раствору дихлор(метокси)метана (5,1 мл, 56,7 ммоль) и 2-метилбензофурана **34** (5,0 г, 37,8 ммоль) в ДХМ (100 мл) перемешивают при 0°С добавляют по каплям хлорид олова(IV) (1М в ДХМ) (60,5 мл, 60,5 ммоль) в течение 30 мин. После завершения добавления смесь нагревают до КТ в течение 30 мин, затем выливают в ледяной насыщенный раствор гидрокарбоната натрия (500 мл). Смесь экстрагируют в ДХМ (2 х 100 мл) и органические вещества отделяют и сушат. Фильтрация и выпаривание дают неочищенный продукт, который очищают хроматографией на двуокиси кремния (0-50% EtOAc/изогексан) с получением указанного в заголовке соединения 35 в виде желтого твердого вещества (5,30 г, 86%), <sup>1</sup>Н ЯМР (400 МГц, СDCl<sub>3</sub>):  $\delta$ , ч./млн. 10,16 (с, 1H), 8,06-8,01 (м, 1H), 7,41-7,35 (м, 1H), 7,34-7,23 (м, 2H), 2,70 (с, 3H).

**Стадия 2.** N-Бензил-N-метил-1-(2-метилбензофуран-3-ил)метанамин (соединение **36**). К раствору 2-метилбензофуран-3-карбальдегида **35** (1,00 г, 6,24 ммоль) и N-метил-1-фенилметанамин (0,98 мл, 7,49 ммоль) в ДХЭ (20 мл) добавляют триацетоксиборгидрид натрия (1,99 г, 9,37 ммоль), и смесь перемешивают в течение 72 часов. Реакционную смесь промывают насыщенным раствором бикарбоната натрия (20 мл) и сушат над сульфатом натрия. Фильтрация и выпаривание дают указанное в заголовке соединение **36** в виде бледно-желтого масла (1,60 г, 94% выход), которое применяют без дальнейшей очистки.  $^1$ H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 7,63-7,58 (м, 1H), 7,48-7,43 (м, 1H), 7,33 (д, J=4,8 Гц, 4H), 7,28-7,20 (м, 3H), 3,56 (с, 2H), 3,52 (с, 2H), 2,42 (с, 3H), 2,08 (с, 3H).

Стадия 3. Гидрохлорид N-Мметил-1-(2-метилбензофуран-3-ил)метанамина (соединение 37). Смесь N-бензил-N-метил-1-(2-метилбензофуран-3-ил)метанамина 36 (1,60 г, 6,03 ммоль) и Pd-C 87 л 5% на угле (0,64 г, 6,03 ммоль) в метаноле (20 мл) подкисляют до рН 1 1М хлористоводородной кислой, гидрируют при 5 бар и перемешивают при КТ в течение 18 часов. Катализатор удаляют фильтрацией, и фильтрат выпаривают досуха с получением указанного в заголовке соединения 37 в виде белого твердого вещества (737 мг, 56%), <sup>1</sup>Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 9,24 (c, 2H), 7,89-7,80 (м, 1H), 7,59-7,49 (м, 1H), 7,34-7,23 (м, 2H), 4,24 (c, 2H), 2,57 (c, 3H), 2,55 (c, 3H).

Стадия 4. N-Метил-N-((2-метилбензофуран-3-ил)метил)акриламид (соединение 38). К суспензии гидрохлорида N-метил-1-(2-метилбензофуран-3-ил)метанамина 37 (300 мг, 1,42 ммоль) и триэтиламина (600 мкл, 4,25 ммоль) в сухом ТГФ (10 мл) добавляют акрилоилхлорид (154 мг, 1,70 ммоль) по каплям при КТ в течение 15 мин. Смесь перемешивают в течение 1 часа и затем выливают в воду (30 мл). Органический растворитель удаляют роторным выпариванием с получением твердого вещества. Твердое вещество собирают фильтрацией, промывают водой (10 мл) и сушат с получением указанного в заголовке соединения 38 (316 мг, 95%) в виде бесцветного твердого вещества.

 $R^{t}$  1,94 мин (Способ 1b) m/z 230 [M+H]<sup>+</sup> (ЭP<sup>+</sup>).

5. (Е)-3-(3-(Гидроксиметил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1Н-Сталия пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((2-метилбензофуран-3-ил)метил)акриламид (соединение 39). В реакционную пробирку загружают N-метил-N-((2-метилбензофуран-3ил)метил)акриламид **38** (72,0 мг, 0,32 ммоль), 8-бром-3-(гидроксиметил)-3-метил-2,3дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он **30** (90,0 мг, 0,32 ммоль), гидрат хлорида тетрабутиламмония (9,3 мг, 0,031 ммоль), [P(tBu)<sub>3</sub>]Pd(кротил)Cl (Pd-162) (12,6 мг, 0,03 ммоль). Реакционную пробирку промывают азотом в течение 5 мин. Добавляют 1,4-диоксан (10 мл) и N-циклогексил-N-метилциклогексанамин (0,14 мл, 0,63 ммоль), и реакционную смесь продувают азотом в течение еще 5 мин. Смесь нагревают до 80°C в течение 30 мин. Реакционную смесь выпаривают досуха и неочищенный продукт очищают хроматографией на двуокиси кремния (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения **39** в виде желтого твердого вещества (94,3 мг, 68% выход).  $R^t$  1,21 мин (Способ 2a) m/z 435 [M+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>, 363 K): δ, ч./млн. 8,88 (с, 1H), 7,95  $(д, J=2,0 \Gamma ц, 1H), 7,58-7,36 (м, 4H), 7,28-7,04 (м, 3H), 5,88 (т, J=4,7 \Gamma ц, 1H), 4,77 (с, 2H), 4,45$ (т, Ј=5,5 Гц, 1Н), 3,67 (дд, Ј=10,6 Гц, 5,7 Гц, 1Н), 3,54-3,48 (м, 1Н), 3,26 (дд, Ј=13,9 Гц, 3,9 Гц, 1Н), 3,11 (дд, Ј=13,9 Гц, 5,3 Гц, 1Н), 3,01 (шс, 3Н), 1,14 (с, 3Н). Примечание: Метильная группа на бензофуране под пиком растворителя.

Стадия 6. Хиральное разделение соединения 39.

**Хиральный способ разделения**: Aппарат: Isolera (Biotage). Chiralpak® IA (Daicel Ltd.) стеклянная колонка (20 мкм; 250 мм х 25 мм), скорость потока 40 мл мин<sup>-1</sup>, элюируя смесью ацетонитрил/этанол (8/2 об./об.). УФ определение при 254 нм. Температура: 30°C. Время прогона: 25 мин. Образцы загружают после фильтрации через 0,2 мкм ПТФЭ фильтр непосредственно в колонку. Впрыскиваемое количество: 56,1 мг **39** в 10 мл элюента

(окончательная фильтрация через 0,2 мкм ПТФЭ фильтр).

(S, E)-3-(3-(Гидроксиметил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((2-метилбензофуран-3-ил)метил)акриламид (соединение **40**). Чистые фракции первого энантиомера собирают и концентрируют. Первый энантиомер получают в виде желтого твердого вещества (M=21,11 Mг; хиральная чистота: 98,82%).  $R^t$  1,50 мин (Стандарт) m/z 435,5  $[M+H]^+$  ( $P^+$ ). Стереохимию полученного энантиомера определяют произвольно

(R, E)-3-(3-(Гидроксиметил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((2-метилбензофуран-3-ил)метил)акриламид (соединение **41**). Чистые фракции второго энантиомера собирают и концентрируют. Первый энантиомер получают в виде желтого твердого вещества (M=18,22 мг; хиральная чистота: 99,49%).  $R^t$  1,50 мин (Стандарт) m/z 435,5  $[M+H]^+$  (Э $P^+$ ). Стереохимию полученного энантиомера определяют произвольно.

**Пример 8.** Синтез (R, E)-3-(3-Гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **49**) и (S, E)-3-(3-гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **50**).

Общая схема синтеза.

**Условия реакции**: a) 5-бром-3-фтор-2-нитропиридин **11**,  $K_2CO_3$ , кипение с обратным холодильником; b) Fe, AcOH, 90°C; c) LiOH,  $T\Gamma\Phi$ : $H_2O$ , KT; d)  $\Gamma$ ATУ, основание Хюнига, ДМ $\Phi$ , KT; e) Chiralpack IA, EtOH/гептан/CHCl<sub>3</sub>; f) Pd-162, NBu<sub>4</sub>Cl, Cy<sub>2</sub>NMe, 80°C

**Стадия 1.** Метил 3-((5-бром-2-нитропиридин-3-ил)амино)-2-гидрокси-2-метилпропаноат (соединение **43**). К перемешиваемому раствору 5-бром-3-фтор-2-нитропиридина **11** (0,33 г, 1,47 ммоль) в ТГ $\Phi$  (5 мл) добавляют гидрохлорид метил 3-амино-2-гидрокси-2-метилпропаноата **42** (енамин) (0,25 г, 1,47 ммоль), затем карбонат калия (0,41 г, 2,95 ммоль). Реакционную смесь перемешивают при кипении с обратным холодильником

в течение 2 ч. Реакционную смесь охлаждают до комнатной температуры. Растворитель удаляют в вакууме с получением указанного в заголовке соединения **43** в виде желтого масла (0,48 г, 94% выход).  $R^t$  1,03 мин (Способ 2a) m/z 334/336 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

Стадия 2. 3-((2-Амино-5-бромпиридин-3-ил)амино)-2-гидрокси-2-метилпропаноат (соединение 44). К перемешиваемому раствору метил 3-((5-бром-2-нитропиридин-3-ил)амино)-2-гидрокси-2-метилпропаноат 43 (0,48 г, 1,44 ммоль) в EtOH (6 мл) добавляют уксусную кислоту (1,64 мл, 28,7 ммоль), затем порошок железа (0,80 г, 14,4 ммоль). Реакционную смесь перемешивают при 90°С в течение 30 мин. Реакционную смесь охлаждают до комнатной температуры и нейтрализуют до рН 8 с твердым NaHCO<sub>3</sub>. Полученную реакционную смесь разбавляют  $H_2O$  (10 мл) и EtOAc (10 мл). Водную фазу отделяют и экстрагируют EtOAc (2 х 10 мл). Объединенные органические фазы промывают  $H_2O$  (10 мл), пропускают через гидрофобную фритту, и концентрируют в вакууме с получением указанного в заголовке соединения 44 (0,43 г, 50%).  $R^t$  0,58 мин (Способ 2а) m/z 304/306  $[M+H]^+$  ( $\Theta$ P<sup>+</sup>).

Стадия 3. 3-((2-Амино-5-бромпиридин-3-ил)амино)-2-гидрокси-2-метилпропановая кислота (соединение 45). К перемешиваемому раствору метил 3-((2-амино-5-бромпиридин-3-ил)амино)-2-гидрокси-2-метилпропаноата 44 (0,35 г, 1,15 ммоль) в ТГФ (1,5 мл) добавляют раствор LiOH (0,14 г, 5,8 ммоль) в  $H_2O$  (1,5 мл). Реакционную смесь перемешивают при комнатной температуре в течение ночи. Растворитель выпаривают досуха с получением указанного в заголовке соединения 45 в виде бесцветного твердого вещества (320 мг, 34% выход), которое применяют на следующей стадии без дальнейшей очистки.  $R^t$  0,73 мин (Способ 2а) m/z 290/292  $[M+H]^+$  ( $\Theta P^+$ ).

**Стадия 4.** 8-Бром-3-гидрокси-3-метил-1,2,3,5-тетрагидро-4H-пиридо[2,3-b][1,4]диазепин-4-он (соединение **46**). К перемешиваемому раствору 3-((2-амино-5-бромпиридин-3-ил)амино)-2-гидрокси-2-метилпропановой кислоты **45** (0,32 г, 1,1 ммоль) в ДМФ (4 мл) добавляют ДИПЭА (0,58 мл, 3,3 ммоль), затем ГАТУ (0,63 г, 1,65 ммоль).

Реакционную смесь перемешивают при комнатной температуре в течение 1 ч. Добавляют воду (4 мл). Водную фазу отделяют и экстрагируют EtOAc (2 х 5 мл). Объединенные органические фазы промывают  $H_2O$  (3 х 5 мл), пропускают через гидрофобную фритту, и концентрируют *в вакууме* с получением указанного в заголовке соединения **46** в виде бесцветного твердого вещества (41 мг, 14% выход).  $R^t$  0,83 мин (Способ 2a) m/z 272/274  $[M+H]^+$  ( $P^+$ ),  $P^+$  400 мГц, ДМСО- $P^+$ 0,  $P^+$ 0,  $P^+$ 0,  $P^+$ 1,  $P^+$ 1,  $P^+$ 2,  $P^+$ 3,  $P^+$ 4,  $P^+$ 4,  $P^+$ 4,  $P^+$ 4,  $P^+$ 5,  $P^+$ 6,  $P^+$ 9,  $P^+$ 9,

Стадия 5. Хиральное разделение рацемата 46.

Энантиомеры разделяют хиральной преп. ВЭЖХ с применением способа 3а. Хиральность определяют произвольно.

(R)-8-Бром-3-гидрокси-3-метил-1,2,3,5-тетрагидро-4H-пиридо[2,3-b][1,4]диазепин-4-он (соединение 47). Первый элюированный изомер:  $R^t$  6,4 мин (Способ 4a);  $R^t$  0,83 мин (Способ 2a) m/z 272/274  $[M+H]^+$  ( $\Theta P^+$ ).

(S)-8-Бром-3-гидрокси-3-метил-1,2,3,5-тетрагидро-4H-пиридо[2,3-b][1,4]диазепин-4-он (соединение **48**). Второй элюированный изомер:  $R^t$  11,7 мин (Способ 4a);  $R^t$  0,83 мин (Способ 2a) m/z 272/274  $[M+H]^+$  ( $\Theta$ P<sup>+</sup>).

Стадия 6а. (R, E)-3-(3-Гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение 49). В реакционную пробирку загружают N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид 9 (22 мг, 0,1 ммоль), (R)-8-бром-3-гидрокси-3-метил-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он 47 (27 мг, 0,1 ммоль), гидрат хлорида тетрабутиламмония (3 мг, 0,01 ммоль),  $[P(tBu)_3]Pd(кротил)Cl (Pd-162) (4 мг, 0,01 ммоль)$ . Пробирку затем промывают азотом в течение 5 мин. Добавляют 1,4-диоксан (2 мл) и N-

**Стадия 6b.** (S, E)-3-(3-Гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение 50). В реакционную пробирку загружают N-метил-N-((3-метилбензофуран-2ил)метил)акриламид 9 (23 мг, 0,1 ммоль), (S)-8-бром-3-гидрокси-3-метил-2,3-дигидро-1Hпиридо[2,3-b][1,4]диазепин-4(5H)-он **48** (27 MΓ, 0,1ммоль), гидрат тетрабутиламмония (3 мг, 0,01 ммоль), [P(tBu)<sub>3</sub>]Pd(кротил)Cl (Pd-162) (4 мг, 0,01 ммоль). Пробирку затем промывают азотом в течение 5 мин. Добавляют 1,4-диоксан (2 мл) и Nциклогексил-N-метилциклогексанамин (43 мкл, 0,20 ммоль), и реакционную смесь продувают азотом в течение еще 5 мин. Смесь нагревают до 80°C в течение 3 ч и охлаждают до комнатной температуры. Растворитель выпаривают досуха. Неочищенный продукт очищают хроматографией на двуокиси кремния (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 50 в виде желтого твердого вещества (34 мг, 80% выход). R<sup>t</sup> 33 мин (Способ 4a). R<sup>t</sup> 1,23 мин (Способ 2a) m/z 421 [M+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 9,37 (c, 1H), 7,95 (д, J=1,9 Гц, 1H), 7,60-7,53 (м, 1H), 7,49-7,45 (м, 1H), 7.42 ( $\mu$ , J=15.4  $\Gamma\mu$ , IH), 7.36 ( $\mu$ , J=2.0  $\Gamma\mu$ , IH), 7.30-7.24 ( $\mu$ , IH), 7.18-7.07 ( $\mu$ , IH), 6.06(c, 1H), 4,92 (c, 1H), 4,84 (c, 2H), 3,20 (дд, J=6,7, 4,7 Гц, 2H), 3,10 (c, 3H), 2,28 (c, 3H), 1,29 (с, 3H).

**Пример 9.** Синтез 8-((E)-3-оксо-3-((3aS,6aR)-5-(4-(пиримидин-2-илокси)фенил)-3,3a,4,6a-тетрагидроциклореnta[c]пиррол-2(1H)-ил)проп-1-ен-1-ил)-1,2,3,5-тетрагидро-4H-пиридо[2,3-b][1,4]диазепин-4-он (соединение **60**).

Общая схема синтеза.

**Условия реакции**: a) Cs<sub>2</sub>CO<sub>3</sub>, NMP, 80°C, 2 ч; b) Бис(пинаколато)диборон **54**, Pd(dppf)Cl<sub>2</sub>, AcOK, 1,4-диоксан; c) LHMDS, pearent Коминса, ТГФ, -78°C до КТ; d) Na<sub>2</sub>CO<sub>3</sub>, Pd(PPh<sub>3</sub>)<sub>4</sub>, H<sub>2</sub>O, 1,4-диоксан, 90°C; e) ТФК, ДХМ; f) ДИПЭА, ГАТУ, ДМФ

Стадия 1. 2-(4-Бромфенокси)пиримидин (соединение 53). Смесь 2-хлорпиримидина 51 (Alfa Aesar) (2 г, 17 ммоль), 4-бромфенола 52 (Sigma-Aldrich) (3,6 г, 21 ммоль) и  $Cs_2CO_3$  (17 г, 52 ммоль) в N-метил-2-пирролидоне (50 мл) нагревают при  $80^{\circ}C$  в течение 2 часов. Реакционную смесь охлаждают до комнатной температуры, и выливают в воду (200 мл). Смесь экстрагируют EtOAc (2 х 100 мл). Органические вещества объединяют и промывают насыщенным раствором соли (2 х 100 мл), пропускают через гидрофобную фритту и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-50% EtOAc/изогексан) с получением указанного в заголовке соединения EtOAc мин (Способ EtOAc) выход). EtOAc0 мл EtOAc1 выход). EtOAc2 мл EtOAc3 мл EtOAc4 мл EtOAc4 мл EtOAc6 мин (Способ EtOAc6 мин) (Способ EtOAc7 мл EtOAc8 мин) (Способ EtOAc9 мл EtOAc9

**Стадия 2.** 2-(4-(4,4,5,5-Тетраметил-1,3,2-диоксаборолан-2-ил)фенокси)пиримидин. Стадия 2 (соединение **55**). Смесь 2-(4-бромфенокси)пиримидина **53** (0,5 г, 2,0 ммоль), 4,4,4',4',5,5,5',5'-октаметил-2,2'-би(1,3,2-диоксаборолана) **54** (Fluorochem) (0,7 г, 2,8 ммоль), ацетата калия (0,6 г, 6,0 ммоль) и PdCl<sub>2</sub>(dppf) (0,07 г, 0,1 ммоль) в 1,4-диоксане (20 мл)

перемешивают при  $85^{\circ}$ С в течение 16 ч. Реакционную смесь охлаждают до комнатной температуры, фильтруют через Celite®, и концентрируют в вакууме. Неочищенный остаток разделяют между EtOAc (50 мл) и водой (50 мл). Водную фазу экстрагируют EtOAc ( $2 \times 50$  мл). Объединенные органические слои пропускают через фазовый сепаратор и выпаривают досуха с получением неочищенного продукта 55 в виде темно-коричневого твердого вещества (0,6 г, 0,0 ммоль, колич. выход). 00 мин (Способ 01 м/z 029 мнн 01 м/г.

Стадия 3. Получение трет-бутил (3аS,6аS)-5-(((трифторметил)сульфонил)окси)-3,3а,4,6а-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилата (соединение 57). К перемешиваемому раствору трет-бутил 5-оксогексагидроциклопента[с]пиррол-2(1H)карбоксилата **56** (Ark Pharm) (3 г, 13,3 ммоль) в  $T\Gamma\Phi$  (60 мл) медленно добавляют раствор LHMDS (1M в  $T\Gamma\Phi$ ) (17 мл, 17,3 ммоль) при  $-78^{\circ}$ С. Реакционную смесь перемешивают при -78°C в течение 30 мин, затем медленно добавляют раствор N-(5-хлорпиридин-2-ил)-1,1,1трифтор-N-((трифторметил)сульфонил)метансульфонамида (7,3 г, 18,6 ммоль) в ТГФ (20 мл). Смесь перемешивают в течение дополнительного 1 ч при -78°C, нагревают до комнатной температуры и перемешивают в течение 2 ч. Реакционную смесь концентрируют в вакууме. Неочищенный остаток очищают хроматографией (0-50% EtOAc/изогексан) с получением указанного в заголовке соединения 57 в виде бледно-желтого масла (4,4 г, 91% выход).  $R^t$  1,29 мин (Способ 1a) m/z 302 [M+H- $^t$ Bu]+ (ЭP+).  $^1$ H ЯМР (400 МГц, CDCl<sub>3</sub>):  $\delta$ , ч./млн. 5,58 (д, Ј=1,9 Гц, 1Н), 3,72 (дд, Ј=11,4 Гц, 8,5 Гц, 1Н), 3,53 (дд, Ј=11,8 Гц, 8,3 Гц, 1Н), 3,40 (ддт, Ј=8,6 Гц, 6,0 Гц, 2,7 Гц, 2Н), 3,16 (дд, Ј=11,4, 6,5 Гц, 1Н), 3,04-2,80 (м, 2Н), 2,51-2,33 (M, 1H), 1,46 (c, 9H).

Стадия 4. трет-Бутил (3aS,6aR)-5-(4-(пиримидин-2-илокси)фенил)-3,3a,4,6a-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилат (соединение 58). К перемешиваемой суспензии (3aS,6aS)-трет-бутил 5-(((трифторметил)сульфонил)окси)-3,3a,6,6a-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилата 57 (0,28 г, 0,77 ммоль), 2-(4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси)пиримидина 55 (0,30 г, 1,00 ммоль), Pd(Ph<sub>3</sub>P)<sub>4</sub> (0,09 г, 0,08 ммоль) в 1,4-диоксане (20 мл) добавляют раствор Na<sub>2</sub>CO<sub>3</sub> (0,5 г, 5,0 ммоль) в H<sub>2</sub>O (2,5 мл). Реакционную смесь перемешивают при 85°C в течение 16 ч. Реакционную смесь охлаждают до комнатной температуры, фильтруют через Celite®, и концентрируют в вакууме. Неочищенный остаток разбавляют водой (50 мл), экстрагируют ЕtOAc (2 х 50 мл). Объединенные органические слои пропускают через фазовый сепаратор

и выпаривают досуха. Неочищенный продукт очищают хроматографией (0-100% EtOAc/изогексан) с получением указанного в заголовке соединения **58** в виде прозрачного бесцветного масла (0,18 г, 60% выход).  $R^t$  2,44 мин (Способ 1а) m/z 324 [M+H- $^t$ Bu]+ (ЭР+).  $^t$ H ЯМР (400 МГц, CDCl<sub>3</sub>):  $\delta$ , ч./млн,8,59 (д, J=4,8 Гц, 2H), 7,50 (д, J=8,7 Гц, 2H), 7,21-7,15 (м, 2H), 7,06 (т, J=4,8 Гц, 1H), 6,03 (с, 1H), 3,72 (дд, J=10,7 Гц, 8,4 Гц, 1H), 3,61-3,47 (м, 3H), 3,14-2,93 (м, 3H), 2,62 (д, J=15,5 Гц, 1H), 1,47 (с, 9H).

Стадия 5. (3aS,6aR)-5-(4-(Пиримидин-2-илокси)фенил)-1,2,3,3a,4,6a-гексагидроциклопента[с]пиррол (соединение 59). К перемешиваемому раствору (3aR,6aS)-трет-бутил 5-(4-(пиримидин-2-илокси)фенил)-3,3a,6,6a-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилата 58 (0,18 г, 0,47 ммоль) в ДХМ (1 мл) добавляют ТФК (1 мл). Реакционную смесь перемешивают при комнатной температуре в течение 2 ч. Растворитель удаляют в вакууме. Полученное масло помещают в МеОН (5 мл) и наносят на колонку СКХ. Колонку промывают метанолом (5 мл) и продукт элюируют 10% метанольным аммиаком (5 мл) с получением указанного в заголовке соединения 59 в виде бесцветного кристаллического твердого вещества (0,09 г, 69%). Rt 0,92 мин (Способ 1a) m/z 280 [M+H]+ (ЭР+).

Стадия 6. 8-((Е)-3-Оксо-3-((3аS,6аR)-5-(4-(пиримидин-2-илокси)фенил)-3,3а,4,6а-тетрагидроциклопента[с]пиррол-2(1H)-ил)проп-1-ен-1-ил)-1,2,3,5-тетрагидро-4H-пиридо[2,3-b][1,4]диазепин-4-он (соединение 60). К перемешиваемому раствору (3аS,6аR)-5-(4-(пиримидин-2-илокси)фенил)-1,2,3,3а,4,6а-гексагидроциклопента[с]пиррола 59 (0,09 г, 0,31 ммоль) в ДМФ (2 мл) добавляют трифторацетат (Е)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты 6 (79 мг, 0,34 ммоль) и N-этил-N-изопропилпропан-2-амин (0,27 мл, 1,54 ммоль). Реакционную смесь перемешивают при КТ в течение 5 мин и добавляют ГАТУ (0,14 г, 0,37 ммоль). Реакционную смесь перемешивают при комнатной температуре в течение 2 ч. Добавляют  $H_2O$  (1 мл), и реакционную смесь обрабатывают ультразвуком. Твердое вещество фильтруют и промывают  $H_2O$  (2 х 2 мл). Фильтрат отбрасывают. Неочищенное твердое вещество очищают хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 60 в виде желтого твердого вещества (0,13 г, 79% выход).  $R^t$  1,65 мин (Способ 1а) m/z 495  $[M+H]^+$  (Э $P^+$ ),  $^1H$  ЯМР (400 МГц, ДМСО- $^1$ 6):  $^1$ 6,  $^1$ 7,  $^1$ 7,  $^1$ 8,  $^1$ 7,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 9,  $^1$ 

7,14 (м, 2H), 6,87 (дд, J=15,5  $\Gamma$ ц, 9,4  $\Gamma$ ц, 1H), 6,22-6,15 (м, 1H), 6,03 (д, J=14,4  $\Gamma$ ц, 1H), 4,06-3,77 (м, 2H), 3,72-3,50 (м, 2H), 3,45-3,39 (м, 2H), 3,24-2,84 (м, 3H), 2,69-2,55 (м, 3H).

**Пример 10.** Получение (Е)-N-метил-N-((2-метилбензофуран-3-ил)метил)-3-(3'-оксо-2,3,3',4',5,6-гексагидро-1'H-спиро[пиран-4,2'-пиридо[2,3-b]пиразин]-7'-ил)акриламида (соединение **64**).

Общая схема синтеза.

**Условия реакции**: а)  $K_2CO_3$ ,  $T\Gamma\Phi$ ; b)  $NH_4Cl$ , Fe, EtOH/вода; c)  $Pd(OAc)_2$ , три-о-толилфосфан, ДИПЭА в ДМФ/АЦН

1. 4-((5-Бром-2-нитропиридин-3-ил)амино)тетрагидро-2Н-пиран-4-Стадия карбоновая кислота (соединение 62). 5-Бром-3-фтор-2-нитропиридин 11 (800 мг, 3,62 ммоль, 1,0 экв.) и 4-аминотетрагидро-2H-пиран-4-карбоновую кислоту **61** (Combi-Blocks) (735 мг, 5,06 ммоль, 1,4 экв.) растворяют в  $T\Gamma\Phi$  (10 мл), затем добавляют  $K_2CO_3$  (1 г). Полученную реакционную смесь нагревают до 90°C в течение ночи в герметично закрытой пробирке. УЭЖХ анализ показал почти полное превращение ИМ с образованием ожидаемого продукта ( $R_{t=1},11$  мин;  $\Im P^{+}=348,1$ ). Растворитель удаляют под вакуумом, и остаток растворяют в смеси вода/EtOAc. Водную фазу подкисляют водн. 1M HCl до рН 1 и дважды экстрагируют ЕОАс. Объединенные органические слои промывают насыщенным раствором соли, сушат над MgSO<sub>4</sub> и концентрируют досуха. Полученное желтое твердое вещество разбавляют EtOAc. Образовавшийся осадок отфильтровывают с получением продукта 62 в виде желтого твердого вещества с чистотой 99% (535 мг, 42% выход). Фильтрат концентрируют досуха с получением менее чистого продукта 62 в виде коричневого твердого вещества с чистотой 93% (550 мг, 43,8% выход). Обе партии используют на следующей стадии без очистки.  $R^t$  1,09 мин (Способ 1c) m/z 346,1/348,1  $[M+H]^+$  (ЭР<sup>+</sup>) (эффект изотопа)

2. 7'-Бром-1',2,3,4',5,6-гексагидро-3'Н-спиро[пиран-4,2'-пиридо[2,3-Стадия перемешиваемому 4-((5-бром-2b]пиразин]-3'-он (соединение **63**). К раствору нитропиридин-3-ил)амино)тетрагидро-2H-пиран-4-карбоновую кислоту 62 (535 мг, 1,5 ммоль, 1,0 экв.), NH<sub>4</sub>Cl (165 мг, 3,1 ммоль, 2,0 экв.) и железо (170 мг, 3,1 ммоль, 2,0 экв.) суспендируют в смеси EtOH/Boда (1:1 об./об., 10 мл). Полученную суспензию нагревают до 80°C в течение 1,5 ч. УЭЖХ анализ показал образование продукта (Rt=1,09 мин;  $3P^{+}=300,1$ ) при полном превращении исходного материала. Реакционную смесь разбавляют EtOAc (и небольшим количеством MeOH), фильтруют через 0,22 мкМ фильтр и промывают ацетонитрилом. Раствор концентрируют досуха и разбавляют AcOEt и промывают водой. Органическую фазу сушат (MgSO<sub>4</sub>), фильтруют и концентрируют досуха. Остаток очищают на силикагеле с применением картриджа SNAP Ultra 25 г и ДХМ/МеОН от 99:1 до 95:5 об./об. в качестве элюента. Фракции, содержащие продукт, объединяют с получением 7'-бром-1',2,3,4',5,6-гексагидро-3'Н-спиро[пиран-4,2'-пиридо[2,3-b]пиразин]-3'-она 63 в виде серо-зеленого порошка с чистотой 99% (220 мг, 48% выход). УЭЖХ-МС m/z: 300,1 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 10,94 (с, 1H), 7,69 (д, J=2,1  $\Gamma$ ц, 1H), 7,33 (д, J=2,0  $\Gamma$ ц, 1H), 6,77 (с, 1H), 3,75-3,70 (м, 4H), 2,00-1,90 (м, 2H), 1,46 (д, J=13,6) Гц, 2Н).

Стадия 3. (Е)-N-Метил-N-((2-метилбензофуран-3-ил)метил)-3-(3'-оксо-2,3,3',4',5,6-гексагидро-1'Н-спиро[пиран-4,2'-пиридо[2,3-b]пиразин]-7'-ил)акриламид (соединение 64). В высушенную в печи пробирку загружают 7'-бром-1',2,3,4',5,6-гексагидро-3'Н-спиро[пиран-4,2'-пиридо[2,3-b]пиразин]-3'-он 63 (50 мг, 0,16 ммоль), добавляют безводный ДМФ (0,9 мл) и ацетонитрил (0,1 мл). Реакционную смесь дегазируют азотом в течение 5 мин. Затем добавляют N-метил-N-((2-метилбензофуран-3-ил)метил)акриламид 38 (58 мг, 0,25 ммоль) и ДИПЭА (109 мкл), и смесь дегазируют второй раз в течение 10 мин. Наконец, Рd(ОАс)<sub>2</sub> (0,4 мг) и три-о-толилфосфане (1,0 мг) добавляют одной порцией, и азот барботируют через смесь в течение 1 мин, и раствор и нагревают при 100°С в течение ночи. Реакционную смесь охлаждают до КТ и фильтруют на слое Celite®. Лепешку промывают смесью MeOH/AcOEt, и фильтрат концентрируют в высоком вакууме с получением неочищенного коричневого твердого вещества (250 мг), которое очищают Isolera (от ДХМ 100% до ДХМ/АсOEt 0/100%). Все фракции, содержащие продукт, выпаривают с

получением указанной в заголовке молекулы **64** в виде белого твердого вещества с чистотой 97% (46 мг, 0,10 ммоль, 64% выход).  $R^t$  1,55 мин (Способ 1с). УЭЖХ-МС m/z: 447,1 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).  $^1$ H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 10,97 (c, 1H), 8,00 (c, 1H), 7,96 (c, 1H), 7,57 (д, J=7,3 Гц, 1H), 7,52 (д, J=15,4 Гц, 1H), 7,49-7,44 (м, 2H), 7,27-7,15 (м, 2H), 6,99 (д, J=15,3 Гц, 1H), 6,63-6,56 (м, 1H), 4,89 (c, 2H), 4,75 (c, 2H), 3,79-3,66 (м, 4H), 3,05 (c, 2H), 2,83 (c, 1H), 1,99-1,89 (м, 2H), 1,46 (д, J=14,3 Гц, 2H), 1,24 (c, 3H) (ротамеры).

**Пример 11.** Синтез(E)-N-((7-Амино-2-метилбензофуран-3-ил)метил)-N-метил-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламида (соединение **75**). Общая схема синтеза.

**Условия реакции**: а) Этил 2-бромпропаноат 66,  $K_2CO_3$ , MeCN, кипение с обратным холодильником, затем водн. NaOH, ТГФ, кипение с обратным холодильником; b) NaOAc, Ac<sub>2</sub>O, кипение с обратным холодильником; c) дихлор(метокси)метан, SnCl<sub>4</sub>, 1M в ДХМ, ДХМ, 0°C до КТ; d) 1-(4-метоксифенил)-N-метилметанамин **70**, Na(OAc)<sub>3</sub>BH, ДХЭ; e)  $Pd_2(dba)_3$ , Xantphos, бензофенонимин **72**,  $Cs_2CO_3$ , PhCh<sub>3</sub>, 100°C; f) 1-хлорэтилхлорформиат, ДХМ, 0°C - кт; g) ГАТУ, ДИПЭА, ДМФ, кт.

Стадия 1. 2-(2-Бром-6-формилфенокси) пропановая кислота (соединение 67). К<sub>2</sub>СО<sub>3</sub> (13,8 г, 99 ммоль) добавляют одной порцией к перемешиваемому раствору 3-бром-2-гидроксибензальдегида 65 (10 г, 49,7 ммоль) и этил 2-бромпропаноата 66 (5,9 мл, 45,2 ммоль) в МеСN (80 мл), и реакционную смесь нагревают до кипения с обратным холодильником в течение 3 ч. Реакционную смесь охлаждают до КТ, фильтруют для удаления К<sub>2</sub>СО<sub>3</sub> и затем концентрируют *в вакууме*. Полученный остаток растворяют в ТГФ (50 мл) и добавляют раствор NаOH (2M в H<sub>2</sub>O, 57 мл, 113 ммоль). Смесь нагревают до кипения с обратным холодильником в течение 2 ч, затем охлаждают до КТ и

концентрируют в вакууме. Оставшийся водный продукт подкисляют до рН 1 добавлением по каплям концентрированной HCl и продукт выпадает в осадок. Продукт собирают фильтрацией и сушат азеотропной перегонкой с MeCN (2 x 50 мл) с получением желаемого продукта **67** в виде оранжевого масла, которое кристаллизуется при выстаивании, с получением беловатого твердого вещества (13,5 г, 99% выход).  $R^t$  1,19 мин (Способ 2a) m/z 273/275 [M+H]<sup>+</sup> (ЭР<sup>+</sup>),  $^1$ H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 13,23 (с, 1H), 10,41 (д, J=0,8 Гц, 1H), 7,97 (дд, J=7,9, 1,7 Гц, 1H), 7,74 (дд, J=7,7 Гц, 1,7 Гц, 1H), 7,25 (тд, J=7,8 Гц, 0,9 Гц, 1H), 4,93 (кв, J=6,8 Гц, 1H), 1,60 (д, J=6,8 Гц, 3H).

Стадия 2. 7-Бром-2-метилбензофуран (соединение 68). Смесь 2-(2-бром-6-формилфенокси)пропановую кислоту 67 (13 г, 48 ммоль) и ацетат натрия (39 г, 48 ммоль) в уксусном ангидриде (70 мл) нагревают до кипения с обратным холодильником в течение 2 ч. Смесь охлаждают до КТ, затем выливают в ледяную воду (800 мл). Смесь затем экстрагируют ДХМ (3 х 300 мл), и объединенные органические слои промывают NaOH (2М водн., 2 х 200 мл), затем насыщенным раствором соли (200 мл). Органический слой сушат пропусканием через фазоразделитель, затем концентрируют в вакууме. Неочищенный продукт очищают колоночной хроматографией (5-10% EtOAc/изогексан) с получением желаемого продукта 68 в виде бесцветного масла (6,72 г, 66% выход). R<sup>t</sup> 1,67 мин (Способ 2а) m/z не наблюдается. <sup>1</sup>Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 7,53 (дд, J=7,7 Гц, 1,0 Гц, 1H), 7,43 (дд, J=7,8 Гц, 1,0 Гц, 1H), 7,13 (т, J=7,8 Гц, 1H), 6,71 (кв, J=1,1 Гц, 1H), 2,48 (д, J=1,1 Гц, 3H).

Стадия 3. 7-Бром-2-метилбензофуран-3-карбальдегид (соединение 69). Хлорид олова(IV) (38 мл, 38 ммоль, 1М в ДХМ) добавляют по каплям в течение ~30 мин к перемешиваемому раствору дихлор(метокси)метана (3,2 мл, 35 ммоль) и 7-бром-2-метилбензофурана 68 (6,7 г, 32 ммоль) в ДХМ (120 мл) при 0°С. Реакционную смесь возвращают к КТ в течение ~90 мин, затем выливают в ледяной насыщенный раствор гидрокарбоната натрия (500 мл). Органический продукт отделяют, и водную фазу снова экстрагируют ДХМ (3 х 150 мл). Объединенные органические слои промывают насыщенным раствором соли (200 мл), затем сушат пропусканием через картридж фазоразделителя и концентрируют в вакууме. Неочищенный продукт очищают перекристаллизацией из EtOAc/гексана (1:1) с получением желаемого продукта 69 в виде бледно-желтого твердого вещества (4,5 г, 59% выход). Rt 1,48 мин (Способ 2а) m/z 239/241

[M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 10,20 (c, 1H), 7,98 (дд, J=7,7 Гц, 1,1 Гц, 1H), 7,59 (дд, J=7,9 Гц, 1,1 Гц, 1H), 7,29 (т, J=7,8 Гц, 1H), 2,84 (c, 3H).

Стадия 4. 1-(7-Бром-2-метилбензофуран-3-ил)-N-(4-метоксибензил)-Nметилметанамин (соединение 71). Триацетоксиборгидрид натрия (4,4 г, 21 ммоль) добавляют одной порцией к перемешиваемому раствору 7-бром-2-метилбензофуран-3карбальдегида **69** (2 г, 8,37 ммоль) и 1-(4-метоксифенил)-*N*-метилметанамина **70** (1,3 мл, 8,37 ммоль) в ДХЭ (40 мл) при КТ. Реакционную смесь перемешивают в течение ~16 ч, затем растворитель концентрируют в вакууме и полученный остаток помещают в NaHCO3 (100 мл, насыщ. водн.). Водный продукт экстрагируют ДХМ (3 х 100 мл) и объединенные органические слои промывают насыщенным раствором соли (100 мл), затем сушат пропусканием через картридж фазоразделителя. Неочищенный продукт очищают колоночной хроматографией (0-5% МеОН/ДХМ) с получением желаемого продукта 71 в виде бесцветного масла (3,11 г, 92%).  $R^t$  0,98 мин (Способ 2a) m/z 374/376  $[M+H]^+$  (Э $P^+$ ),  $^1H$ ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 7,59 (дд, J=7,7 Гц, 1,0 Гц, 1H), 7,44 (дд, J=7,8 Гц, 1,0  $\Gamma_{\text{U}}$ , 1H), 7,25-7,19 (M, 2H), 7,16 (T, J=7,8  $\Gamma_{\text{U}}$ , 1H), 6,92-6,84 (M, 2H), 3,73 (c, 3H), 3,52 (c, 2H), 3,44 (c, 2H), 2,45 (c, 3H), 2,04 (c, 3H).

5. N-(Дифенилметилен)-3-(((4-метоксибензил)(метил)амино)метил)-2метилбензофуран-7-амин (соединение 73). 20 мл пробирку вакуумируют и обратно заполняют  $N_2$  три раза, затем добавляют 1-(7-бром-2-метилбензофуран-3-ил)-N-(4метоксибензил)-N-метилметанамин 71 (0,3)0,80 Γ, ммоль), трис(дибензилиденацетон)дипалладий(0) (75 мг, 0,08 ммоль), карбонат цезия (0,52 г, 1,60 ммоль) и Xantphos (70 мг, 0.12 ммоль) и снова вакуумируют и обратно заполняют  $N_2$  три раза. Затем добавляют толуол (5 мл) и бензофенонимин 72 (0,14 мл, 0,80 ммоль), и реакционную смесь нагревают до 100°C и перемешивают в течение ~16 ч. Реакционную смесь охлаждают до КТ, фильтруют через Celite® и лепешку промывают ДХМ (100 мл). Фильтрат концентрируют в вакууме и очищают колоночной хроматографией (0-50% EtOAc/изогексан) с получением желаемого продукта 73 в виде желтого масла (0,36 г, 70% выход). R<sup>t</sup> 1,97 мин (Способ 1a); m/z 475 [M+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (500 МГц, ДМСО-d6): δ,

ч./млн. 7,74-7,69 (м, 2H), 7,60-7,53 (м, 1H), 7,53-7,48 (м, 2H), 7,25-7,21 (м, 3H), 7,21-7,17 (м, 2H), 7,14-7,07 (м, 3H), 6,94 (т, J=7,7  $\Gamma$ ц, 1H), 6,91-6,85 (м, 2H), 6,48 (дд, J=7,6  $\Gamma$ ц, 1,1  $\Gamma$ ц, 1H), 3,73 (с, 3H), 3,43 (с, 2H), 3,38 (с, 2H), 2,32 (с, 3H), 1,99 (с, 3H).

Стадия 6. 2-Метил-3-((метиламино)метил)бензофуран-7-амин (соединение 74). 1-хлорэтил хлорформиат (0,12 мл, 1,14 ммоль) добавляют по каплям к перемешиваемому раствору N-(дифенилметилен)-3-(((4-метоксибензил)(метил)амино)метил)-2-метилбензофуран-7-амина 73 (0,36 г, 0,76 ммоль) в ДХМ (5 мл) при 0°С под  $N_2$ . Реакционную смесь нагревают до комнатной температуры и перемешивают в течение  $\sim$ 16 ч. Реакционную смесь концентрируют 6 вакууме, затем помещают в МеОН (15 мл) и нагревают до кипения с обратным холодильником в течение 1 ч. Реакционную смесь охлаждают до КТ, затем концентрируют 6 вакууме u очищают колоночной хроматографией (0-10% MeOH (0,7M nH3)/ДХМ) с получением желаемого продукта 74 в виде желтого масла (78 мг, 46% выход). nRt 0,77 мин (Способ 1b); nZ 191 nZ 191 nZ 191, n

Стадия 7. (Е)-N-((7-Амино-2-метилбензофуран-3-ил)метил)-N-метил-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламид (соединение 75). ДИПЭА (0,2 мл, 1,15 ммоль) добавляют по каплям к перемешиваемому раствору 2-метил-3-((метиламино)метил)бензофуран-7-амина 74 (78 мг, 0,41 ммоль) и трифторацетата (Е)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты 6 (50 мг, 0,14 ммоль) в ДМФ (2 мл) при КТ. Реакционную смесь перемешивают в течение 10 мин, затем добавляют ГАТУ (70 мг, 0,18 ммоль) и реакционную смесь перемешивают в течение 2 ч. Реакционную смесь разбавляют водой (10 мл) и осадок собирают фильтрацией. Неочищенный продукт очищают колоночной хроматографией (0-4% MeOH/ДХМ) с получением желаемого продукта 75 в виде бледно-желтого твердого вещества (18 мг, 31% выход).  $\mathbb{R}^1$  1,30 мин (Способ 1а);  $\mathbb{R}^1$  2406 [M+H]<sup>+</sup> (ЭР<sup>+</sup>),  $\mathbb{R}^1$  1  $\mathbb{R}^1$  1  $\mathbb{R}^1$  2  $\mathbb{R}^1$  3  $\mathbb{R}^1$  4  $\mathbb{R}^1$  3  $\mathbb{R}^1$  4  $\mathbb{R}^1$  3  $\mathbb{R}^1$  4  $\mathbb{R}^1$  4  $\mathbb{R}^1$  5  $\mathbb{R}^1$  4  $\mathbb{R}^1$  5  $\mathbb{R}^1$  6  $\mathbb{R}^1$  6  $\mathbb{R}^1$  7, 97 (д,  $\mathbb{R}^1$  1, 97 (д,

7,08 (д, J=15,4 Гц, 1H), 6,87 (т, J=7,7 Гц, 1H), 6,74 (д, J=7,7 Гц, 1H), 6,53 (дд, J=7,7, 1,1 Гц, 1H), 5,79 (с, 1H), 4,86 (с, 2H), 4,71 (с, 2H), 3,46-3,40 (м, 2H), 2,98 (с, 3H), 2,68-2,61 (м, 2H), 2,46 (с, 3H).

**Пример 12.** Синтез (Е)-N-((7-(4-цианофенокси)-2-метилбензофуран-3-ил)метил)-N-метил-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламида (соединение **80**).

**Условия реакции**: a) Pd-175, tBuBrettPhos, KOH, H<sub>2</sub>O, диоксан, 80°C; b) 4-фторбензонитрил 77, K<sub>2</sub>CO<sub>3</sub>, NMP, 100°C; c) 1-хлорэтил хлорформиат, ДХМ, 0°C до КТ; d) ГАТУ, ДИПЭА, ДМФ

80

Стадия 4

79

Стадия 1. 3-(((4-Метоксибензил)(метил)амино)метил)-2-метилбензофуран-7-ол (соединение 76). 100 мл круглодонную колбу загружают 1-(7-бром-2-метилбензофуран-3-ил)-N-(4-метоксибензил)-N-метилметанамином 71 (2,7 г, 7,21 ммоль), Pd-175 (Johnson Matthey) (0,11 г, 0,14 ммоль), tBuBrettPhos (0,07 г, 0,14 ммоль) и гидроксидом калия (1,21 г, 21,6 ммоль). Затем ее вакуумируют и повторно заполняют азотом три раза и затем добавляют дегазированный 1,4-диоксан (15 мл) и дегазированную воду (2,6 мл). Полученную смесь нагревают до 80°С и перемешивают в течение 2 ч. Смесь охлаждают до КТ и разбавляют EtOAc (20 мл), затем подкисляют 1М НС1 (20 мл) и перемешивают в течение 5 мин до растворения всего твердого вещества. Реакционную смесь нейтрализуют NaHCO<sub>3</sub> (25 мл, насыщ. водн.) и фазы разделяют. Водную фазу экстрагируют EtOAc (2 х 25 мл) и объединенные органические фазы промывают насыщенным раствором соли (25 мл), сушат над MgSO<sub>4</sub>, фильтруют и концентрируют *в вакууме*. Неочищенный продукт очищают хроматографией (0-5% MeOH/ДХМ) с получением указанного в заголовке соединения 76 в

виде бежевого твердого вещества (1,80 г, 80%).  $R^t$  1,12 мин (Способ 1a) m/z 312  $[M+H]^+$  ( $\Im P^+$ ).

Стадия 2. 4-((3-(((4-Метоксибензил)(метил)амино)метил)-2-метилбензофуран-7-ил)окси)бензонитрил (соединение 78). Смесь 3-(((4-метоксибензил)(метил)амино)метил)-2-метилбензофуран-7-ола 76 (150 мг, 0,48 ммоль), 4-фторбензонитрила 77 (70 мг, 0,58 ммоль) и карбоната калия (133 мг, 0,96 ммоль) в растворителе N-метил-2-пирролидоне (6 мл) нагревают при 100°С в течение 12 ч. Реакционную смесь охлаждают до КТ, и смесь выливают в воду (20 мл). Водную фазу экстрагируют этилацетатом (2 х 30 мл) и объединенные органические слои промывают насыщенным раствором соли (30 мл), сушат над Na<sub>2</sub>SO<sub>4</sub> и концентрируют *в вакууме*. Неочищенный продукт очищают хроматографией (1% МеОН/ДХМ) с получением указанного в заголовке соединения 78 в виде бесцветного масла (170 мг, 86%). R<sup>t</sup> 1,65 мин (Способ 1а) m/z 413 [М+Н]<sup>+</sup> (ЭР<sup>+</sup>).

4-((2-метил-3-((метиламино)метил)бензофуран-7-Стадия 3. Гидрохлорид 4-((3-(((4ил)окси)бензонитрила (соединение 79). К ледяному раствору метоксибензил)(метил)амино)метил)-2-метилбензофуран-7-ил)окси)бензонитрила 78 (185 мг, 0,45 ммоль) в ДХМ (2 мл) добавляют 1-хлорэтил карбонохлоридат (0,10 мл, 0,90 ммоль) при 0°C. Реакционную смесь нагревают до КТ и перемешивают в течение 1 ч, и затем концентрируют в вакууме. Остаток растворяют в метаноле (5 мл) и нагревают при кипении с обратным холодильником в течение 1 ч. Реакционную смесь выпаривают досуха и растирают с ТБМЭ (10 мл) с получением указанного в заголовке соединения 79 в виде желтого твердого вещества (185 мг, 47%). Rt 1,31 мин (Способ 1a) m/z 293 [M+H]+ (ЭР+).

Стадия 4. (Е)-N-((7-(4-Цианофенокси)-2-метилбензофуран-3-ил)метил)-N-метил-3-(4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)акриламид (соединение **80**). Раствор гидрохлорида 4-((2-метил-3-((метиламино)метил)бензофуран-7ил)окси)бензонитрила 79 (69 мг, 0,20 ммоль) в ДМФ (4 мл) обрабатывают трифторацетатом (E)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты **6** (80 мг, 0,23 ммоль), основанием Хюнига (180 мкл, 1,05 ммоль) и ГАТУ (96 мг, 0,25 ммоль) и затем перемешивают при КТ в течение 1 ч. Реакционную смесь гасят водой (10 мл), и твердое вещество собирают фильтрацией и сушат. Неочищенный продукт очищают колоночной хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 80 в виде бледно-желтого твердого вещества (23 мг, 21% выход). Rt 2,01 мин (Способ 1a) m/z 508 [M+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (500 МГц, ДМСО-d<sub>6</sub>, 363 K): δ, ч./млн. 9,15 (с, 1H), 7,99 ( $\mu$ , J=1,9  $\mu$ , 1H), 7,83-7,77 ( $\mu$ , 2H), 7,50-7,44 ( $\mu$ , 2H), 7,38 ( $\mu$ , J=2,0  $\mu$ , 1H), 7,25 ( $\mu$ , 1H), 7,25 ( $\mu$ , 2H), 7,99 ( $\mu$ , 2H), 7,81-7,44 ( $\mu$ , 2H), 7,81-7  $J=7.9 \Gamma \mu$ , 1H), 7,15-7,06 (M, 3H), 7,06-7,01 (M, 1H), 5,81 (c, 1H), 4,79 (c, 2H), 3,47-3,40 (M, 2H), 3,04 (c, 3H), 2,69-2,62 (M, 2H), 2,46 (c, 3H).

**Пример 13**. Синтез (Е)-3-(2-(гидроксиметил)-2-метил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение **84**).

Общая схема синтеза.

**Условия реакции**: а)  $K_2CO_3$ ,  $T\Gamma\Phi$ ; b)  $NH_4Cl$ , Fe, EtOH/вода; c)  $Pd(OAc)_2$ , три-о-толилфосфан, ДИПЭА в ДМФ/АЦН.

Стадия 1. 2-((5-Бром-2-нитропиридин-3-ил)амино)-3-гидрокси-2-метилпропановая кислота (соединение 82). 5-Бром-3-фтор-2-нитропиридин 11 (800 мг, 3,62 ммоль, 1,0 экв.) и 2-амино-3-гидрокси-2-метилпропановую кислоту 81 (Sigma-Aldrich) (736 мг, 5,07 ммоль, 1,4 экв.) растворяют в ТГФ (16,0 мл), затем добавляют  $K_2CO_3$  (999 мг). Полученную

реакционную смесь нагревают до  $90^{\circ}$ С в течение ночи в герметично закрытой пробирке. УЭЖХ-МС анализ показал практически полное превращение ИМ с образованием хорошего продукта (Rt=0,94 мин;  $9P^{+}=322,0$ ). Растворитель удаляют под вакуумом. Остаток растворяют в смеси вода и EtOAc. Водный слой подкисляют 1М HCl до pH 1-2. Фазы разделяют, и водн. фазу повторно экстрагируют EtOAc. Объединенные органические фазы промывают насыщенным раствором соли, сушат над MgSO<sub>4</sub> и концентрируют досуха. Неочищенный продукт (800 мг) очищают системой Isolera с применением AcOEt/MeOH (100% до 80/20 об./об.) с получением указанного в заголовке соединения **82** в виде оранжевого твердого вещества с чистотой 60% (320 мг, 17% выход). Вторую партию с чистотой 80% также выделяют (40 мг, 3,45% выход).  $\mathbb{R}^t$  0,94 мин (Способ 1c). УЭЖХ-МС  $\mathbb{R}^t$  322,0 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

Стадия 2. 7-Бром-2-(гидроксиметил)-2-метил-1,4-дигидропиридо[2,3-b]пиразин-3(2H)-он (соединение 83). К перемешиваемому раствору 2-((5-бром-2-нитропиридин-3-ил)амино)-3-гидрокси-2-метилпропановой кислоты 82 (40 мг, 0,124 ммоль, 1,0 экв.), NH4Cl (13,4 мг, 0,25 ммоль, 2,0 экв.) и железа (14 мг, 0,25 ммоль, 2,0 экв.) суспендируют в смеси ЕtOH/Вода (1:1 об./об., 2 мл). Полученную суспензию нагревают до 80°C в течение 1,5 ч. УЭЖХ анализ показал образование продукта (Rt=0,89 мин; ЭР+=272,1) при полном превращении исходного материала. Реакционную смесь разбавляют EtOAc/MeOH, фильтруют через 0,22 мкМ фильтр и фильтр промывают ацетонитрилом. Полученный раствор выпаривают досуха, затем разбавляют AcOEt, промывают водой, сушат (MgSO4) и концентрируют. Выделяют неочищенный продукт 83 (37 мг, 0,136 ммоль) в виде красного твердого вещества с чистотой 60%. Полученный продукт используют на следующей стадии без очистки. Rt 0,89 мин (Способ 1с). ЖХМС: m/z: 272,1 [M+H]+ (ЭР+). Н ЯМР (400 МГц, ДМСО-d6): δ, ч./млн. 10,80 (с, 1H), 7,52 (с, 1H), 7,07 (с, 1H), 6,47 (с, 1H), 5,12 (т, J=5,6 Гц, 1H), 3,58 (дд, J=6,1 Гц, 10,4 Гц, 1H), 3,29 (с, 1H), 1,25 (с, 3H).

Стадия 3. (Е)-3-(2-(Гидроксиметил)-2-метил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение 84). В высушенную в печи пробирку загружают 7-бром-2-(гидроксиметил)-2-метил-1,4-дигидропиридо[2,3-b]пиразин-3(2H)-он 83 (37 мг, 0,13 ммоль), добавляют безводный ДМФ (0,9 мл) и АЦН (0,1 мл) и реакционную смесь дегазируют азотом в течение 5 мин. Затем

добавляют N-метил-N-((2-метилбензофуран-3-ил)метил)акриламид **9** (47 мг, 0,204 ммоль) и ДИПЭА (93 мкл), и смесь дегазируют второй раз в течение 10 мин. Наконец добавляют  $Pd(OAc)_2$  (0,3 мг) и три-о-толилфосфане (0,83 мг) одной порцией, и азот барботируют через смесь в течение 1 мин, и раствор нагревают при  $100^{\circ}$ C в течение ночи. Реакционную смесь охлаждают до КТ, фильтруют на 0,22 мкМ фильтре, промывают смесью MeOH/AcOEt и концентрируют в высоком вакууме. Неочищенное коричневое масло очищают Isolera (н-Гептан/AcOEt 7/3 об./об.  $\rightarrow$  100% AcOEt  $\rightarrow$  AcOEt/MeOH 8/2 об./об.) и затем повторно очищают еще 2 раза ДХМ/MeOH (100% до 95/5 об./об.). Целевую молекулу **84** выделяют в виде бежевого твердого вещества с чистотой 94% (4,9 мг, 8,6% выход).  $R^t$  1,47 мин (Способ 1с). ЖХМС: m/z: 421,3  $[M+H]^+$  ( $\mathbb{P}^+$ ).  $\mathbb{P}^+$  ЯМР (400 МГц, ДМСО- $\mathbb{P}^+$ 6,  $\mathbb{P}^+$ 7,  $\mathbb{P}^+$ 8,0 (c, 1H), 7,58 (д,  $\mathbb{P}^+$ 7,4 Гц, 1H), 7,51 (д,  $\mathbb{P}^+$ 7,4 Гц, 1H), 7,43 (д,  $\mathbb{P}^+$ 8,1 Гц, 1H), 7,32-7,22 (м, 4H), 6,99 (д,  $\mathbb{P}^+$ 8,4 Гц, 1H), 6,20 (д,  $\mathbb{P}^+$ 8,1 Гц, 1H), 5,06 (т,  $\mathbb{P}^+$ 9,5 Гц, 1H), 4,95 (с, 2H), 4,80 (с, 2H), 3,62-3,53 (м, 1H), 2,96 (с, 1H), 2,28 (с, 3H), 1,25 (с, 6H) (ротамеры).

**Пример 14.** Синтез8-((E)-3-оксо-3-((3rS,6rR)-5-(4-(пиридин-4-илокси)фенил)-3,3r,4,6r-тетрагидроциклопента[c]пиррол-2(1H)-ил)проп-1-ен-1-ил)-1,2,3,5-тетрагидро-4H-пиридо[2,3-b][1,4]диазепин-4-он (соединение **90**).

Общая схема синтеза.

**Условия реакции**: a) B<sub>2</sub>(pin)<sub>2</sub> 85, KOAc, PdCl<sub>2</sub>(dppf), 1,4-диоксан, 100°C; b) 4-(4-бромфенокси)пиридин **87**, K<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>O, PdCl<sub>2</sub>(dppf), 1,4-диоксан, 80°C; c) ТФК, ДХМ; d) ГАТУ, ДИПЭА, ДМФ.

**Стадия 1.** трет-Бутил (3rR,6rS)-5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)- 3,3r,4,6r-тетрагидроциклопента[c]пиррол-2(1H)-карбоксилат (соединение **86**). Смесь *трет*-бутил 5-(((трифторметил)сульфонил)окси)-3,3r,6,6r-тетрагидроциклопента[c]пиррол-

2(1H)-карбоксилат **57** (2 г, 5,6 ммоль), 4,4,4',4',5,5,5',5'-октаметил-2,2'-би(1,3,2-диоксаборолан) **85** (2,42 г, 9,5 ммоль), ацетат калия (1,65 г, 16,8 ммоль) и аддукт PdCl<sub>2</sub>(dppf)-CH<sub>2</sub>Cl<sub>2</sub> (0,46 г, 0,6 ммоль) в 1,4-диоксане (20 мл) дегазируют азотом и затем нагревают при 100°С в течение ночи. Смесь разбавляют водой (30 мл), экстрагируют этилацетатом (2 х 30 мл). Объединенные органические слои промывают насыщенным раствором соли (30 мл), сушат над MgSO<sub>4</sub>, фильтруют и выпаривают досуха. Неочищенный продукт очищают колоночной хроматографией (0-50% EtOAc/изогексан) с получением указанного в заголовке соединения **86** в виде бесцветного масла (1,97 г, 94%), <sup>1</sup>H ЯМР (400 МГц, CDCl<sub>3</sub>): δ, ч./млн. 6,35 (кв, J=2,0 Гц, 1H), 3,66-3,61 (м, 1H), 3,54-3,44 (м, 2H), 3,39 (ддт, J=8,0 Гц, 5,7 Гц, 2,5 Гц, 1H), 2,97 (дд, J=10,9 Гц, 7,2 Гц, 1H), 2,89 (ддд, J=9,0 Гц, 7,3 Гц, 1,6 Гц, 1H), 2,65 (ддт, J=16,5 Гц, 7,2 Гц, 2,6 Гц, 1H), 2,38 (дкв, J=16,5 Гц, 1,8 Гц, 1H), 1,46 (с, 9H), 1,29 (с, 12H), 1,28 (с, 3H).

Стадия 2. трет-Бутил (3rR,6rS)-5-(4-(пиридин-4-илокси)фенил)-3,3r,4,6rтетрагидроциклопента[с]пирроле-2(1H)-карбоксилат (соединение 88). бромфенокси)пиридина 87 (енамин) (149 мг, 0,60 ммоль), трет-бутил 5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-3,3г,6,6г-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилата 86 (200 мг, 0,6 ммоль), K<sub>2</sub>CO<sub>3</sub> (247 мг, 1,8 ммоль) и аддукта PdCl<sub>2</sub>(dppf)-CH<sub>2</sub>Cl<sub>2</sub> (49 мг, 0,06 ммоль) в 1,4-диоксане (3 мл) дегазируют азотом и затем нагревают при 80°C в течение 5 ч. Смесь разбавляют водой (30 мл), экстрагируют этилацетатом (2 х 30 мл). Объединенные органические слои промывают насыщенным раствором соли (30 мл), сушат над MgSO<sub>4</sub>, фильтруют и выпаривают досуха. Неочищенный продукт очищают хроматографией (0-5% МеОН/ДХМ) с получением указанного в заголовке соединения 88 в виде коричневого масла (193 мг, 77%). R<sup>t</sup> 2,49 мин (Способ 1b); m/z 379 [M+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (400 МГц, CDCl<sub>3</sub>): δ, ч./млн. 8,47 (д, J=5,6  $\Gamma$ ц, 2H), 7,53-7,46 (м, 2H), 7,09-7,04 (м, 2H), 6,90-6,81 (м, 2H), 6,03 (с, 1H), 3,71-3,45 (M, 4H), 3,14-2,93 (M, 3H), 2,60 (c, 2H), 1,46 (c, 9H).

**Стадия 3.** (3rR,6rS)-5-(4-(Пиридин-4-илокси)фенил)-1,2,3,3r,4,6r-гексагидроциклопента[с]пиррол (соединение **89**). Трифторуксусную кислоту (1,5 мл) добавляют по каплям к перемешиваемому раствору трет-бутил 5-(4-(пиридин-4-

илокси)фенил)-3,3г,6,6г-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилата **88** (193 мг, 0,5 ммоль) в ДХМ (1,5 мл) при КТ. Реакционную смесь перемешивают в течение 2 ч, затем растворитель концентрируют *в вакууме* и полученный остаток помещают в метанол (30 мл) и наносят на колонку СКХ. Колонку промывают метанолом (50 мл) и продукт элюируют 10% метанольным аммиаком. Смесь затем выпаривают с получением указанного в заголовке соединения **89** в виде желтого масла (115 мг, 73%). R<sup>t</sup> 1,36 мин (Способ 1b); m/z 279 [M+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (400 МГц, CDCl<sub>3</sub>): δ, ч./млн. 8,48-8,41 (м, 2H), 7,44 (д, J=8,3 Гц, 2H), 7,02 (д, J=8,3 Гц, 2H), 6,87-6,76 (м, 2H), 5,95-5,94 (м, 1H), 3,78 (с, 2H), 3,51 (д, J=7,4 Гц, 1H), 3,10-2,80 (м, 5H), 2,51 (дд, J=15,6, 2,6 Гц, 1H).

8-((E)-3-Оксо-3-((3rS,6rR)-5-(4-(пиридин-4-илокси)фенил)-3,3r,4,6r-Стадия 4. тетрагидроциклопента[с]пиррол-2(1H)-ил)проп-1-ен-1-ил)-1,2,3,5-тетрагидро-4Hпиридо[2,3-b][1,4]диазепин-4-он (соединение 90). Суспензию (3rS,6rR)-5-(4-(пиридин-4илокси)фенил)-1,2,3,3r,4,6r-гексагидроциклопента[с]пиррола **89** (115 мг, 0,4 ммоль), (E)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8трифторацетата ил)акриловой кислоты 6 (136 мг, 0,4 ммоль), N-этил-N-изопропилпропан-2-амина (0,28 мл, 1,6 ммоль) в ДМФ (2 мл) перемешивают в течение 10 мин. ГАТУ (157 мг, 0,4 ммоль) добавляют одной порцией, и реакционную смесь перемешивают при КТ в течение 1 ч. Смесь разбавляют водой (10 мл) и осадок собирают фильтрацией. Неочищенный продукт очищают колоночной хроматографией (0-5% МеОН/ДХМ) с получением указанного в заголовке соединения 90 в виде желтого твердого вещества (92 мг, 45% выход).  $R^t$  1,74 мин (Способ 1b); m/z 494 [M+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 9,73 (д, J=6,6 Гц, 1Н), 8,47-8,43 (м, 2Н), 7,98 (дд, Ј=8,2 Гц, 2,0 Гц, 1Н), 7,61-7,56 (м, 2Н), 7,38-7,30 (м, 2Н), 7,18-7,13 (м, 2H), 6,93-6,83 (м, 3H), 6,22 (д, J=3,6  $\Gamma$ ц, 1H), 6,05-5,98 (м, 1H), 4,00 (т, J=9,9  $\Gamma$ ц, 1H), 3,88-3,78 (M, 1H), 3,70 (M, 1H), 3,65-3,52 (M, 1H), 3,45-3,39 (M, 2H), 3,21-3,13 (M, 1H), 3,04-2,88 (M, 2H), 2,68-2,57 (M, 3H).

**Пример 15.** Синтез 8-((E)-3-оксо-3-((3rS,6rR)-5-(4-(тиазол-5-илокси)фенил)-3,3r,4,6r-тетрагидроциклопента[c]пиррол-2(1H)-ил)проп-1-ен-1-ил)-1,2,3,5-тетрагидро-4H-пиридо[2,3-b][1,4]диазепин-4-она (соединение **96**).

Общая схема синтеза.

**Условия реакции**: a) 5-бромтиазол **92**, Cs<sub>2</sub>CO<sub>3</sub>, CuI, ДМФ, 110°C; b) Pd(dppf)Cl<sub>2</sub>, K<sub>2</sub>CO<sub>3</sub>, 1,4-диоксан, 90°C; c) ТФК, ДХМ; d) ГАТУ, ДИПЭА, ДМФ.

$$Cs_2CO_3$$
,  $Cul$ ,  $DM\Phi$ , 110 °C  $S$  93

Стадия 1. 5-(4-Бромфенокси)тиазол (соединение 93). К перемешиваемому раствору 5-бромтиазола 92 (Fluorochem)  $(0,2 \, \Gamma, 1,2 \, \text{ммоль})$  в ДМФ  $(6 \, \text{мл})$  добавляют 4-бромфенол 91  $(0,25 \, \Gamma, 1,5 \, \text{ммоль})$ , йодид меди(I)  $(0,23 \, \Gamma, 1,2 \, \text{ммоль})$ , затем карбонат цезия  $(1,19 \, \Gamma, 3,7 \, \text{ммоль})$ . Реакционную смесь перемешивают при  $110^{\circ}$ С в течение 5 ч и охлаждают до комнатной температуры. Реакционную смесь разделяют между водой  $(5 \, \text{мл})$  и  $EtOAc~(5 \, \text{мл})$ . Фазы разделяют и водную фазу экстрагируют  $EtOAc~(2 \, \text{х} \, 10 \, \text{мл})$ . Объединенные органические фазы промывают насыщенным раствором соли  $(15 \, \text{мл})$ , сушат над  $MgSO_4$  и концентрируют в вакууме с получением указанного в заголовке соединения 93 в виде белого твердого вещества  $(0,26 \, \Gamma, \, 84\%)$ .  $R^t~2,19~$  мин (Способ 1a) m/z~256/258~  $[M+H]^+(9P^+)$ .

Стадия 2. трет-Бутил (3гS,6гR)-5-(4-(тиазол-5-илокси)фенил)-3,3г,4,6г-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилат (соединение 94). Смесь 5-(4-бромфенокси)тиазола 93 (0,17 г, 0,7 ммоль), трет-бутил 5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-3,3г,6,6г-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилата 86 (0,22 г, 0,7 ммоль),  $K_2CO_3$  (0,28 г, 2,0 ммоль) и аддукта  $PdCl_2(dppf)-CH_2Cl_2$  (0,05 г, 0,07 ммоль) в 1,4-диоксане (4 мл) дегазируют азотом и затем перемешивают при  $90^{\circ}$ С в течение ночи. Реакционную смесь охлаждают до комнатной температуры, разбавляют водой (10 мл) и экстрагируют этилацетатом (2 х 10 мл). Объединенные органические слои промывают

насыщенным раствором соли (20 мл), сушат (MgSO<sub>4</sub>), фильтруют и концентрируют в вакууме. Неочищенный продукт очищают колоночной хроматографией (0-50% EtOAc/изогексан) с получением указанного в заголовке соединения **94** в виде густого бесцветного масла (0,06 г, 23% выход).  $R^t$  2,68 мин (Способ 1a) m/z 329 [M+H-tBu]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 8,77 (c, 1H), 7,63 (c, 1H), 7,51 (д, J=8,7 Гц, 2H), 7,12 (д, J=8,7 Гц, 2H), 6,13 (c, 1H), 3,62-3,53 (м, 1H), 3,49-3,35 (м, 3H), 3,11-2,81 (м, 4H), 1,37 (с, 9H).

**Стадия 3.** 5-(4-((3rS,6rR)-1,2,3,3r,4,6r-Гексагидроциклопента[с]пиррол-5-ил)фенокси)тиазол (соединение **95**). К перемешиваемому раствору (3rS,6rR)-трет-бутил 5-(4-(тиазол-5-илокси)фенил)-3,3r,6,6r-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилата **94** (0,06 г, 0,2 ммоль) в ДХМ (1 мл) добавляют ТФК (1 мл). Реакционную смесь перемешивают при комнатной температуре в течение 2 ч. Растворитель удаляют *в вакууме*. Полученное масло помещают в МеОН (5 мл) и наносят на колонку СКХ. Колонку промывают метанолом (5 мл), и продукт элюируют 10% метанольным аммиаком (5 мл) с получением указанного в заголовке соединения **95** в виде бесцветного кристаллического твердого вещества (34 мг, 74%). Неочищенный продукт используют на следующей стадии без очистки. R<sup>t</sup> 1,17 мин (Способ 1a) m/z 285 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

Стадия 4. 8-((Е)-3-Оксо-3-((ЗаS,6аR)-5-(4-(тиазол-5-илокси)фенил)-3,За,4,6а-тетрагидроциклопента[с]пиррол-2(1Н)-ил)проп-1-ен-1-ил)-1,2,3,5-тетрагидро-4Н-пиридо[2,3-b][1,4]диазепин-4-он (соединение 96). К перемешиваемому раствору 5-(4-((ЗгS,6гR)-1,2,3,3г,4,6г-гексагидроциклопента[с]пиррол-5-ил)фенокси)тиазола 95 (З4 мг, 0,1 ммоль) в ДМФ (2 мл) добавляют трифторацетат (Е)-3-(4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты 6 (З1 мг, 0,13 ммоль) и N-этил-N-изопропилпропан-2-амин (0,1 мл, 0,6 ммоль). Реакционную смесь перемешивают при КТ в течение 5 мин и добавляют ГАТУ (55 мг, 0,1 ммоль). Полученную смесь перемешивают в течение 3 ч. Вода (1 мл) добавляют и реакционную смесь обрабатывают ультразвуком. Твердое вещество фильтруют и промывают Н<sub>2</sub>О (2 х 2 мл). Фильтрат отбрасывают. Неочищенное твердое вещество очищают колоночной хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 96 в виде желтого твердого

вещества (25 мг, 40%).  $R^t$  1,85 мин (Способ 1а) m/z 500  $[M+H]^+$  (ЭР<sup>+</sup>),  ${}^1H$  ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 9,74 (д, J=7,3  $\Gamma$ ц, 1H), 8,76 (д, J=1,3  $\Gamma$ ц, 1H), 7,98 (дд, J=9,1  $\Gamma$ ц, 1,9  $\Gamma$ ц, 1H), 7,63 (т, J=1,2  $\Gamma$ ц, 1H), 7,53 (д, J=8,7  $\Gamma$ ц, 2H), 7,39-7,28 (м, 2H), 7,20-7,09 (м, 2H), 6,86 (дд, J=15,5  $\Gamma$ ц, 9,6  $\Gamma$ ц, 1H), 6,17 (с, 1H), 6,02 (д, J=14,0  $\Gamma$ ц, 1H), 4,02-3,78 (м, 2H), 3,68 (д, J=12,1  $\Gamma$ ц, 1H), 3,64-3,49 (м, 2H), 3,45-3,35 (м, 2H), 3,19-3,08 (м, 1H), 3,03-2,87 (м, 2H), 2,64-2,58 (м, 2H).

**Пример 16.** Синтез (Е)-N-метил-N-((2-метил-7-(тиазол-5-илокси)бензофуран-3-ил)метил)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламида (соединение **101**).

Общая схема синтеза.

**Условия реакции**: a) i) NH<sub>2</sub>Me, TAБH, EtOH; ii) Boc<sub>2</sub>O, ДМАП, ДХМ; b) Pd-175, tBuBrettPhos, KOH, 1,4-диоксан, H<sub>2</sub>O; c) 5-бромтиазол **92**, CuI, N, N-диметилглицин, Cs<sub>2</sub>CO<sub>3</sub>, ДМФ; d) ТФК, ДХМ; e) ГАТУ, ДИПЭА, ДМФ.

Стадия 1. трет-Бутил ((7-бром-2-метилбензофуран-3-ил)метил)(метил)карбамат (соединение 97). Метанамин (33% в ЕtOH, 0,5 мл, 4,4 ммоль) добавляют по каплям к перемешиваемому раствору 7-бром-2-метилбензофуран-3-карбальдегида 69 (2,8 г, 3,7 ммоль) и триацетоксиборгидрида натрия (ТАБН) (1,9 г, 9,2 ммоль) в ЕtOH (100 мл) при 0°С. Реакционную смесь возвращают к КТ и перемешивают в течение 5 ч. Реакционную смесь затем концентрируют в вакууме, и полученный остаток помещают в ЕtOAc (100 мл) и NаHCO<sub>3</sub> (водн. насыщ. 100 мл). Органический продукт отделяют, и водную фазу экстрагируют ЕtOAc (2 х 100 мл). Объединенные органические слои промывают насыщенным раствором соли (100 мл), сушат с применением MgSO<sub>4</sub> и концентрируют в вакууме. Полученный остаток растворяют в ДХМ (80 мл), затем добавляют ДМАП (0,6 г, 4,6 ммоль) и ди-трет-бутилдикарбонат (1,6 г, 7,3 ммоль), и реакционную смесь

перемешивают при КТ в течение 16 ч. Неочищенную реакционную смесь концентрируют в вакууме и очищают колоночной хроматографией (0-50% EtOAc/изогексан) с получением указанного в заголовке соединения **97** в виде желтого масла, которое кристаллизуется при выстаивании (1,0 г, 69% выход).  $R^t$  1,86 мин (Способ 1a) m/z 376/378 [M+Na]<sup>+</sup> (ЭP<sup>+</sup>),  $^1$ H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 7,55 (шс, 1H), 7,46 (д, J=7,8 Гц, 1H), 7,17 (шс, 1H), 4,48 (с, 2H), 2,67 (с, 3H), 2,51 (с, 3H), 1,44 (с, 9H).

((7-гидрокси-2-метилбензофуран-3-Стадия 2. трет-Бутил ил)метил)(метил)карбамат (соединение 98). 1,4-Диоксан (5 мл) и дегазированную Н<sub>2</sub>О (1,5 мл) добавляют смеси трет-бутил ((7-бром-2-метилбензофуран-3ил)метил)(метил)карбамата 97 (1,0 г, 2,9 ммоль), Pd-175 (0,06 г, 0,07 ммоль), tBuBrettPhos (0,03 г, 0,07 ммоль) и КОН (0,5 г, 8,8 ммоль) в атмосфере азота, и реакционную смесь перемешивают при 80°C в течение 2 ч. Реакционную смесь охлаждают до КТ, затем выливают в воду (50 мл). Водную смесь доводят до рН 6 с применением 1 М НС1 и экстрагируют EtOAc (3×50 мл). Объединенные органические экстракты промывают насыщенным раствором соли (50 мл), сушат с применением MgSO<sub>4</sub> и концентрируют в Неочищенный продукт очищают колоночной хроматографией (0-50% EtOAc/изогексан) с получением указанного в заголовке соединения 98 в виде бледнокоричневого твердого вещества (0.58 г, 67% выход). Rt 2.18 мин (Способ 1a) m/z 314[M+Na]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 9,85 (с, 1H), 6,96 (шс, 2H), 6,76-6,56 (M, 1H), 4,44 (c, 2H), 2,65 (c, 3H), 2,44 (c, 3H), 1,44 (c, 9H).

Стадия 3. трет-Бутил метил((2-метил-7-(тиазол-5-илокси)бензофуран-3-ил)метил)карбамат (соединение 99). ДМФ (5 мл) добавляют к смеси Cs<sub>2</sub>CO<sub>3</sub> (0,9 г, 2,8 ммоль), 5-бромтиазола 92 (0,17 г, 1,03 ммоль), трет-бутил ((7-гидрокси-2-метилбензофуран-3-ил)метил)(метил)карбамата 98 (0,2 г, 0,686 ммоль), 2-(диметиламино)уксусной кислоты (0,07 г, 0,69 ммоль) и CuI (0,13 г, 0,69 ммоль) в атмосфере N<sub>2</sub>, и реакционную смесь нагревают до 110°C. Реакционную смесь перемешивают при этой температуре в течение 24 ч, затем добавляют дополнительный эквивалент 5-бромтиазола (0,17 г, 1,03 ммоль) и реакционную смесь перемешивают в течение еще 16 ч при той же температуре. Реакционную смесь охлаждают до КТ, затем перемешивают в течение выходных. Неочищенную смесь загружают сухой в Celite® и очищают колоночной хроматографией

(0-100% EtOAc/изогексан) с получением указанного в заголовке соединения **99** в виде желтого масла (54 мг, 20% выход).  $R^t$  2,51 мин (Способ 1a) m/z 375  $[M+H]^+$  (ЭР<sup>+</sup>).

**Стадия 4.** Трифторацетат N-метил-1-(2-метил-7-(тиазол-5-илокси)бензофуран-3-ил)метанамин (соединение **100**). Трифторуксусную кислоту (2,5 мл) добавляют по каплям к перемешиваемому раствору трет-бутил метил((2-метил-7-(тиазол-5-илокси)бензофуран-3-ил)метил)карбамата **99** (0,05 г, 0,13 ммоль) в ДХМ (2,5 мл) при КТ. Реакционную смесь перемешивают в течение 30 мин, затем концентрируют *в вакууме* с получением **100** в виде желтого масла, которое применяют на следующей стадии без дальнейшей очистки.  $R^t$  1,39 мин (Способ 1a) m/z 275  $[M+H]^+$  (Э $P^+$ ).

Стадия 5. (Е)-N-Метил-N-((2-метил-7-(тиазол-5-илокси)бензофуран-3-ил)метил)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламид (соединение 101). ДИПЭА (0,5 мл, 2,86 ммоль) добавляют по каплям к перемешиваемому раствору трифторацетата N-метил-1-(2-метил-7-(тиазол-5-илокси)бензофуран-3-ил)метанамина 100 (0,05 г, 0,13 ммоль) и трифторацетата (Е)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты 6 (0,06 г, 0,16 ммоль) в ДМФ (2 мл) при КТ. Реакционную смесь перемешивают в течение 10 мин, затем добавляют ГАТУ (0,08 г, 0,20 ммоль), и реакционную смесь перемешивают в течение 16 ч. Реакционную смесь разбавляют водой (10 мл), и осадок собирают фильтрацией. Неочищенный продукт очищают колоночной хроматографией (0-5% MeOH/ДХМ) с получением указанного в заголовке соединения 101 в виде бледно-желтого твердого вещества (57 мг, 73% выход).  $\mathbb{R}^1$  1,78 мин (Способ 1а) m/z 490 [M+H] $^+$  (Э $^+$ ),  $^1$ H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 9,14 (с, 1H), 8,66 (с, 1H), 7,98 (д, J=1,9 Гц, 1H), 7,58 (с, 1H), 7,46 (д, J=15,4 Гц, 1H), 7,43-7,35 (м, 2H), 7,19 (т, J=7,9 Гц, 1H), 7,08 (д, J=15,5 Гц, 1H), 7,02 (д, J=8,1 Гц, 1H), 5,79 (т, J=4,2 Гц, 1H), 4,78 (с, 2H), 3,48-3,39 (м, 2H), 3,02 (с, 3H), 2,67-2,62 (м, 2H), 2,51 (с, 3H).

**Пример** 17. Синтез (E)-N-((7-амино-2-метилбензофуран-3-ил)метил)-3-(3,3-диметил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламида (соединение **109**).

Общая схема синтеза.

**Условия реакции**: а)  $K_2CO_3$ ,  $T\Gamma\Phi$ , кипение с обратным холодильником; b) Fe, AcOH, EtOH, 90°C; c) LiOH,  $T\Gamma\Phi$ : $H_2O$ , KT; d)  $\Gamma$ ATУ, ДИПЭА, ДМ $\Phi$ , KT; e) трет-бутилакрилат, Pd-116, ДИПЭА, NBu<sub>4</sub>Cl, 1,4-диоксан, 90°C; f)  $T\Phi K$ , ДХМ; g)  $\Gamma$ ATУ, ДИПЭА, ДМ $\Phi$ .

Стадия 2. Метил 3-((2-амино-5-бромпиридин-3-ил)амино)-2,2-диметилпропаноат (соединение 104). К перемешиваемому раствору метил 3-((5-бром-2-нитропиридин-3-ил)амино)-2,2-диметилпропаноата 103 (0,51 г, 1,55 ммоль) в EtOH (8 мл) добавляют уксусную кислоту (1,80 мл, 30,9 ммоль), затем железо (0,86 г, 15,5 ммоль). Реакционную смесь перемешивают при 90°С в течение 2 ч. Полученную смесь охлаждают до комнатной температуры и нейтрализуют до рН 8 твердым NaHCO<sub>3</sub>. Перемешивание продолжают до

превращения выделения газа. Реакционную смесь разбавляют  $H_2O$  (5 мл) и EtOAc (5 мл). Водную фазу экстрагируют EtOAc (2 х 5 мл). Объединенные органические фазы промывают  $H_2O$  (10 мл), сушат над MgSO<sub>4</sub>, фильтруют, и концентрируют *в вакууме* с получением указанного в заголовке соединения **104** (424 мг, 84% выход) в виде коричневого твердого вещества. Неочищенный продукт используют на следующей стадии без очистки.  $R^t$  1,25 мин (Способ 1a); m/z 302/304 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

Br 
$$NH_2$$
 OMe LiOH,  $T\Gamma\Phi:H_2O$  Br  $NH_2$  OH 105

Стадия 3. 3-((2-Амино-5-бромпиридин-3-ил)амино)-2,2-диметилпропановая кислота (соединение 105). К перемешиваемому раствору метил 3-((2-амино-5-бромпиридин-3-ил)амино)-2,2-диметилпропаноата 104 (424 мг, 1,40 ммоль) в ТГФ (1 мл) добавляют раствор гидроксида лития (170 мг, 7,01 ммоль) в  $H_2O$  (1 мл). Реакционную смесь перемешивают при комнатной температуре в течение 3 ч. Растворитель удаляют *в вакууме* с получением указанного в заголовке соединения 105 (404 мг, 1,40 ммоль, колич. выход) в виде коричневого твердого вещества. Неочищенный продукт используют на следующей стадии без очистки.  $R^t$  1,10 мин (Способ 1а); m/z 288/290 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

Стадия 4. 8-Бром-3,3-диметил-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он (соединение 106). К перемешиваемому раствору 3-((2-амино-5-бромпиридин-3-ил)амино)-2,2-диметилпропановой кислоты 105 (404 мг, 1,40 ммоль) в ДМФ (3 мл) добавляют ДИПЭА (730 мкл, 4,21 ммоль), затем ГАТУ (800 мг, 2,10 ммоль). Реакционную смесь перемешивают при комнатной температуре в течение 1 ч и затем добавляют водн. 1М НСІ (3 мл). Водную фазу экстрагируют ДХМ (2 х 5 мл). Объединенные органические экстракты промывают  $H_2O$  (3 х 5 мл), сушат над MgSO4, фильтруют, и концентрируют  $\epsilon$  вакууме. Неочищенный продукт очищают хроматографией на двуокиси кремния (0-5% МеОН в ДХМ) с получением 8-бром-3,3-диметил-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-она 106 (317 мг, 84% выход) в виде белого твердого вещества.  $R^t$  1,68 мин (Способ 1а); m/z 270/272 [M+H] $^+$  ( $9P^+$ ),  $^1H$  ЯМР (400 МГц, CDCl<sub>3</sub>):  $\delta$ , ч./млн,7,97 (с, 1H), 7,72 (д, J=2,0 Гц, 1H), 7,04 (д, J=2,0 Гц, 1H), 3,09 (с, 2H), 1,23 (с, 6H).

Стадия 5. трет-Бутил (Е)-3-(3,3-диметил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-

b][1,4]диазепин-8-ил)акрилат (соединение **107**). ДИПЭА (1,3 мл, 7,4 ммоль) и трет-бутил акрилат (1,1 мл, 7,5 ммоль) добавляют по каплям к перемешиваемому раствору 8-бром-3,3-диметил-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-она **106** (1 г, 3,7 ммоль), Ви<sub>4</sub>NCl (0,1 г, 0,4 ммоль) и [P(tBu)<sub>3</sub>]<sub>2</sub>Pd (Pd-116, Johnson Matthey) (0,1 г, 0,2 ммоль) в 1,4-диоксане (20 мл) под  $N_2$ . Реакционную смесь нагревают до 90°С и перемешивают в течение 2 ч. Реакционную смесь охлаждают до КТ и концентрируют в вакууме. Неочищенный продукт очищают колоночной хроматографией (0-100% EtOAc/изогексан) с получением указанного в заголовке соединения **107** в виде желтого масла (0,97 г, 80% выход).  $R^t$  2,07 мин (Способ 1а); m/z 318 [M+H]<sup>+</sup> (ЭР<sup>+</sup>),  $^1$ H ЯМР (400 МГц, ДМСО- $^4$ 6):  $^5$ 6, ч./млн. 9,51 (с, 1H), 7,93 (д,  $^4$ 7=2,0 Гц, 1H), 7,43 (д,  $^4$ 7=16,0 Гц, 1H), 6,21 (с, 1H), 3,05 (д,  $^4$ 8–4,4 Гц, 2H), 1,48 (с, 9H), 1,15 (с, 6H).

Стадия 6. ТФК соль (Е)-3-(3,3-диметил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты (соединение 108). Трифторуксусную кислоту (5 мл) добавляют по каплям к перемешиваемому раствору (Е)-трет-бутил 3-(3,3-диметил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акрилата 107 (0,97 г, 3,1 ммоль) в СН<sub>2</sub>Сl<sub>2</sub> (10 мл) при КТ, и реакционную смесь перемешивают в течение 2 ч. Реакционную смесь концентрируют в вакууме и получение твердое вещество растирают с МТБЭ (50 мл), затем собирают фильтрацией с получением желаемого продукта 108 в виде желтого твердого вещества (0,81 г, 70%). R<sup>t</sup> 1,25 мин (Способ 1а); m/z 262 [M+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 12,38 (шс, 1H), 9,51 (с, 1H), 7,91 (д, J=1,8 Гц, 1H), 7,47 (д, J=16,0 Гц, 1H), 7,33 (д, J=1,9 Гц, 1H), 6,33 (д, J=16,0 Гц, 1H), 6,25 (с, 1H), 3,08-3,00 (м, 2H), 1,15 (с, 6H).

$$NH_{2}$$
 $NH_{2}$ 
 $N$ 

Стадия 7. (Е)-N-((7-Амино-2-метилбензофуран-3-ил)метил)-3-(3,3-диметил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламид (соединение **109**). ДИПЭА (0,5 мл, 2,9 ммоль) добавляют по каплям к перемешиваемому раствору 2-метил-3-((метиламино)метил)бензофуран-7-амина 74 (0,04 г, 0,2 ммоль) и трифторацетата (Е)-3-(3,3-диметил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты **108** (0,07 г, 0,2 ммоль) в ДМФ (2 мл) при КТ. Реакционную смесь перемешивают в течение 10 мин, затем добавляют ГАТУ (0,09 г, 0,2 ммоль), и реакционную смесь перемешивают в течение 16 ч. Реакционную смесь разбавляют водой (10 мл) и осадок собирают фильтрацией. Неочищенный продукт очищают колоночной хроматографией (0-

5% МеОН/ДХМ) с получением указанного в заголовке соединения **109** в виде желтого твердого вещества (19 мг, 24% выход).  $R^t$  1,57 мин (Способ 1а); m/z 434 [M+H]<sup>+</sup> (ЭР<sup>+</sup>),  $^1$ H ЯМР (400 МГц, ДМСО-d6, 363 K):  $\delta$ , ч./млн. 8,77 (c, 1H), 7,92 (д, J=1,9 Гц, 1H), 7,44 (д, J=15,4 Гц, 1H), 7,35 (д, J=2,0 Гц, 1H), 7,07 (д, J=15,6 Гц, 1H), 6,87 (т, J=7,7 Гц, 1H), 6,74 (д, J=7,3 Гц, 1H), 6,53 (д, J=7,6 Гц, 1H), 6,03-5,91 (м, 1H), 4,86 (c, 2H), 4,71 (c, 2H), 3,07 (д, J=4,6 Гц, 2H), 2,97 (c, 3H), 2,47 (c, 3H), 1,18 (c, 6H).

**Пример 18.** Синтез (Е)-3-(3-гидрокси-4'-оксо-1',2',4',5'-тетрагидроспиро[цикловиtane-1,3'-пиридо[2,3-b][1,4]диазепин]-8'-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **115**).

Общая схема синтеза.

**Условия реакции**: а) 5-бром-3-фтор-2-нитропиридин **11**, ТЭА, ЕtOH, кипение с обратным холодильником; b) Fe, NH<sub>4</sub>Cl, EtOH, H<sub>2</sub>O, кипение с обратным холодильником; c) LiOH, H<sub>2</sub>O,  $T\Gamma\Phi$ ; d)  $\Gamma$ ATY, ДИПЭА, ДМ $\Phi$ ; e) Pd-162, MeNCy<sub>2</sub>, NBu<sub>4</sub>Cl, 1,4-диоксан, 80°C.

1. 1-(((5-бром-2-нитропиридин-3-ил)амино)метил)-3-Стадия Метил гидроксициклобутанкарбоксилат (соединение 111). К раствору 5-бром-3-фтор-2нитропиридина 11 (230 мг, 1,0 ммоль) в этаноле (10 мл) добавляют гидрохлорид метил 1-(аминометил)-3-гидроксициклобутанкарбоксилата 110 (Енамин)(200 мг, 1,0 ммоль) и ТЭА (0,6 мл, 4,1 ммоль). Реакционную смесь нагревают при кипении с обратным холодильником в течение ночи. Растворитель удаляют в вакууме и реакционную смесь разделяют между водой (2 мл) и этилацетатом (2 мл). Органический экстракт отделяют, сушат с MgSO<sub>4</sub>, фильтруют и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-100% EtOAc/изогексан) с получением указанного в заголовке соединения 111 в виде желтого масла (250 мг, 61% выход).  $R^t$  1,58 мин (Способ 1a); m/z 360/362  $[M+H]^+$  ( $\Im P^+$ ),  $^1H$ ЯМР (400 МГц, CDCl<sub>3</sub>):  $\delta$ , ч./млн. 8,10 (с, 1H), 7,91 (д, J=1,9 Гц, 1H), 7,63 (д, J=1,9 Гц, 1H), 4,58 (тт, Ј=7,2 Гц, 5,8 Гц, 1Н), 3,81 (с, 3Н), 3,72 (д, Ј=5,6 Гц, 2Н), 2,93-2,88 (м, 2Н), 2,10-2,06

(м, 2Н) (пропущенный ОН).

Br 
$$NO_2$$
 OMe  $NO_2$  EtOH,  $NO_2$  Br  $NO_2$  OMe  $NO_2$  111

Стадия 2. Карбоксилат метил 1-(((2-амино-5-бромпиридин-3-ил)амино)метил)-3-гидроксициклобутана (соединение 112). Смесь метил 1-(((5-бром-2-нитропиридин-3-ил)амино)метил)-3-гидроксициклобутанкарбоксилата 111 (245 мг, 0,7 ммоль), порошка железа (152 мг, 2,7 ммоль) и хлорида аммония (364 мг, 6,8 ммоль) в смеси растворителей этанола (12 мл) и воды (3 мл) нагревают при кипении с обратным холодильником в течение 1 часа. Смесь фильтруют горячей через слой Celite®, затем концентрируют в вакууме. Остаток разделяют между водой (20 мл) и ДХМ (20 мл), и водный слой экстрагируют ДХМ (2 х 20 мл). Объединенные органические слои сушат с MgSO<sub>4</sub>, фильтруют и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-10% MeOH/ДХМ) с получением указанного в заголовке соединения 112 в виде желтого масла (180 мг,76%). R<sup>t</sup> 0,91 мин (Способ 1а); m/z 330/332 [М+Н]<sup>+</sup> (ЭР<sup>+</sup>).

Br 
$$\rightarrow$$
 OH  $\rightarrow$  OH  $\rightarrow$  OH  $\rightarrow$  OH  $\rightarrow$  OH  $\rightarrow$  NH<sub>2</sub> OH  $\rightarrow$  NH<sub>2</sub> OH  $\rightarrow$  113

Стадия 3. 1-(((2-Амино-5-бромпиридин-3-ил)амино)метил)-3-гидроксициклобутанкарбоновая кислота (соединение 113). Смесь метил 1-(((2-амино-5-бромпиридин-3-ил)амино)метил)-3-гидроксициклобутанкарбоксилат 112 (175 мг, 0,5 ммоль) и гидроксид лития (66 мг, 2,7 ммоль) в смеси растворителей ТГФ (4,5 мл) и воды (1,5 мл) перемешивают при КТ в течение 3 ч. Реакционную смесь затем подкисляют до рН 3 добавлением уксусной кислоты ( $\sim$ 0,4 мл). Растворитель удаляют в вакууме с получением указанного в заголовке соединения 113 в виде желтого твердого вещества (190 мг, 98% выход), которое применяют на следующей стадии без дальнейшей очистки.  $\mathbb{R}^t$  0,53 мин (Способ 1а); m/z 316/318 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

$$Br$$
  $NH_2$   $OH$   $TATY, ДИПЭА  $Br$   $NH_2$   $OH$   $NH_2$   $N$$ 

**Стадия 4.** 8'-Бром-3-гидрокси-1',2'-дигидроспиро[циклобутан-1,3'-пиридо[2,3-b][1,4]диазепин]-4'(5'H)-он (соединение **114**). К перемешиваемому раствору 1-(((2-амино-5-бромпиридин-3-ил)амино)метил)-3-гидроксициклобутанкарбоновой кислоты **113** (172 мг, 0,5 ммоль) в ДМФ (2,5 мл) добавляют N-этил-N-изопропилпропан-2-амин (0,5 мл, 2,7

ммоль), затем ГАТУ (250 мг, 0,7 ммоль). Реакционную смесь перемешивают при КТ в течение 1 ч. Затем добавляют воду (4 мл), и полученную смесь экстрагируют ДХМ (3 х 5 мл). Объединенные органические фазы промывают насыщенным раствором соли (5 мл), сушат с MgSO<sub>4</sub>, фильтруют и концентрируют *в вакууме*. Неочищенный продукт очищают хроматографией (0-10% MeOH/ДХМ) с получением указанного в заголовке соединения **114** в виде бесцветного твердого вещества (30 мг, 17% выход).  $R^t$  1,20 мин (Способ 1а); m/z 298/300 [M+H]<sup>+</sup> (ЭР<sup>+</sup>),  $^1$ H ЯМР (400 МГц, CD<sub>3</sub>OD):  $\delta$ , ч./млн. 7,72 (д, J=2,0 Гц, 1H), 7,27 (д, J=2,0 Гц, 1H), 4,28 (п, J=7,2 Гц, 1H), 3,46 (с, 2H), 2,85-2,66 (м, 2H), 1,94-1,79 (м, 2H).

(E)-3-(3-Гидрокси-4'-оксо-1',2',4',5'-тетрагидроспиро[циклобутан-1,3'пиридо[2,3-b][1,4]диазепин]-8'-ил)-N-метил-N-((3-метилбензофуран-2ил)метил)акриламид (соединение 115). В реакционную пробирку загружают N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид 9 (25 мг, 0,1 ммоль), 8'-бром-3-гидрокси-1',2'дигидроспиро[циклобутан-1,3'-пиридо[2,3-b][1,4]диазепин]-4'(5'H)-он 114 (28 мг, 0,1 ммоль), Bu<sub>4</sub>NCl (3 мг, 9,4 мкмоль), [P(tBu)<sub>3</sub>]Pd(кротил)Cl (Pd-162) (4 мг, 9,4 мкмоль). Пробирку затем промывают азотом в течение 5 мин. Добавляют 1,4-диоксан (2,5 мл) и Nциклогексил-N-метилциклогексанамин (41 мкл, 0,2 ммоль) и реакционную смесь продувают азотом в течение еще 5 мин. Смесь нагревают до 80°C в течение 1 ч и охлаждают до комнатной температуры. Добавляют этилацетат (5 мл), и полученный раствор промывают H<sub>2</sub>O (5 мл), насыщенным раствором соли (5 мл), сушат над MgSO<sub>4</sub>, фильтруют и концентрируют в вакууме. Неочищенный продукт очищают колоночной хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 115 в виде бледножелтого твердого вещества (22 мг, 49%). R<sup>t</sup> 1,79 мин (Способ 1a); m/z 447 [M+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 9,05 (с. 1H), 7,94 (д. J=1,9 Гц, 1H), 7,56 (дд. J=7,6, 1,4 Гц, 1Н), 7,47 (д, Ј=8,0 Гц, 1Н), 7,45-7,34 (м, 2Н), 7,33-7,19 (м, 2Н), 7,10 (д, Ј=15,6 Гц, 1Н), 5,97 (д, J=4,7 Гц, 1H), 4,84 (с, 3H), 4,21-4,03 (м, 1H), 3,41 (д, J=3,9 Гц, 2H), 3,10 (с, 3H), 2,64-2,54 (M, 2H), 2,28 (c, 3H), 1,83-1,74 (M, 2H).

**Пример 19.** Синтез (E)-N-((7-(бензо[d][1,3]диоксол-5-илокси)-2-метилбензофуран-3-ил)метил)-N-метил-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламид (соединение **119**).

Общая схема синтеза.

**Условия реакции**: а) CuI, 2-(диметиламино)уксусная кислота,  $Cs_2CO_3$ , ДМФ,  $110^{\circ}C$ ; b) 1-хлорэтилхлорформиат, ДХМ,  $0^{\circ}C$  до КТ; c) ГАТУ, ДИПЭА, ДМФ.

**1.** 1-(7-(Бензо[d][1,3]диоксол-5-илокси)-2-метилбензофуран-3-ил)-N-(4метоксибензил)-N-метилметанамин (соединение 117). Смесь 3-(((4метоксибензил)(метил)амино)метил)-2-метилбензофуран-7-ола 76 (150 мг, 0,48 ммоль), 1йод-3,4-метилендиоксибензол 116 (Fluorochem) (358)мг, 1,45 ммоль), (диметиламино)уксусной кислоты (50 мг, 0,48 ммоль), йодида меди(I) (92 мг, 0,48 ммоль) и карбоната цезия (942 мг, 2,89 ммоль) вакуумируют и обратно заполняют азотом (3 раза). Добавляют ДМФ (3 мл), и смесь нагревают до 110°C в течение ночи. Реакционную смесь охлаждают до КТ, выливают в воду (30 мл) и неочищенный продукт экстрагируют в этилацетате (2 х 30 мл). Органические экстракты объединяют и сушат над Na<sub>2</sub>SO<sub>4</sub>. Неочищенный продукт очищают хроматографией [0-10% (0,7М Аммиак/МеОН)/ДХМ] с получением указанного в заголовке соединения 117 в виде прозрачной желтой камеди (85 мг, 38% выход).  $R^t$  1,69 мин (Способ 1a) m/z 432  $[M+H]^+$  (Э $P^+$ ).

Стадия 2. 1-(7-(Бензо[d][1,3]диоксол-5-илокси)-2-метилбензофуран-3-ил)-N-метилметанамин(соединение 118). К раствору 1-(7-(бензо[d][1,3]диоксол-5-илокси)-2-метилбензофуран-3-ил)-N-(4-метоксибензил)-N-метилметанамина 117 (85 мг, 0,20 ммоль) в ДХМ (2 мл) добавляют 1-хлорэтилкарбонохлоридат (0,031 мл, 0,29 ммоль) при 0°С, и смеси дают достичь КТ, затем перемешивают в течение 1 часа. Смесь выпаривают досуха, и остаток помещают в метанол (5 мл) и смесь нагревают при кипении с обратным холодильником в течение 1 часа. Реакционную смесь охлаждают до КТ, и раствор наносят непосредственно на СКХ колонку (1 г). Колонку промывают метанолом (10 мл), и неочищенный продукт элюируют 10% метанольным раствором аммиака (10 мл) с получением указанного в заголовке соединения 118 в виде желтого масла (60 мг, 90% выход). Rt 1,38 мин (Способ 1а) m/z 281[M+H]+ (ЭР+).

(E)-N-((7-(Бензо[d][1,3]диоксол-5-илокси)-2-метилбензофуран-3-Стадия 3. ил)метил)-N-метил-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8ил)акриламид (соединение 119). Раствор 1-(7-(бензо[d][1,3]диоксол-5-илокси)-2метилбензофуран-3-ил)-N-метилметанамина 118 (60 мг, 0,19 ммоль), трифторацетата (Е)-3-(4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты 9 (67 мг, 0,19 ммоль) и ДИПЭА (135 мкл, 0,77 ммоль) в ДМФ (3 мл) добавляют ГАТУ (73 мг, 0,19 ммоль) и смесь перемешивают при КТ в течение 1 часа. Реакционную смесь гасят добавлением воды (10 мл). Твердое вещество собирают фильтрацией и сушат. Неочищенный продукт изначально очищают хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 119 в виде бледно-желтого твердого вещества (ЖХМС чистота 93%). Твердое вещество затем очищают растиранием с ацетонитрилом (10 мл), затем дополнительно растирают с ДМФ (2 мл) и промывают собранное твердое вещество с ТБМЭ (10 мл) с получением указанного в заголовке соединения 119 в виде бледно-желтого твердого вещества (14 мг, 13% выход). R<sup>t</sup> 2,12 мин (Способ 1а) m/z 527[M+H]<sup>+</sup> (ЭР<sup>+</sup>),  $^{1}$ H ЯМР (500 МГц, ДМСО-d<sub>6</sub>, 363 K):  $\delta$ , ч./млн. 9,14 (с, 1H), 7,98 (д, J=1,9 Гц, 1H), 7,46 (д, J=15,4 Гц, 1H), 7,38 (д, J=1,9 Гц, 1H), 7,30 (д, J=7,8 Гц, 1H), 7,15-7,06 (м, 2H), 6,85 (д, J=8,4 Гц, 1H), 6,78 (дд, J=8,0, 1,0 Гц, 1H), 6,69 (д, J=2,5 Гц, 1H), 6,50 (дд, J=8,4, 2,5 Гц, 1H), 6,01 (с, 2H), 5,80 (с, 1H), 4,77 (с, 2H), 3,44 (дд, J=6,9, 3,5 Гц, 2H), 2,67-2,62 (м, 2H), 1,20 (с, 1H). Оба СН<sub>3</sub> протона затемнены растворителем и водой.

**Пример 20.** Синтез 3-(4-((3rS,6rR)-2-((E)-3-(4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)акрилоил)-1,2,3,3r,4,6r-гексагидроциклопента[с]пиррол-5-ил)фенокси)бензонитрила (соединение **123**).

Общая схема синтеза.

**Условия реакции**: a) K<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>O, PdCl<sub>2</sub>(dppf), 1,4-диоксан, 80°C;

b) ТФК, ДХМ; c) ГАТУ, ДИПЭА, ДМФ.

Синтез 3-(4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси)бензонитрила (соединение **120**) ранее описан у Abbott Laboratories - US2002/156081, 2002, A1. Это соединение также коммерчески доступно от Fluorochem (CAS: 330792-98-8).

**Стадия 1.** трет-Бутил (3rS,6rR)-5-(4-(3-цианофенокси)фенил)-3,3r,4,6r-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилат (соединение **121**). Смесь 3-(4-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)фенокси)бензонитрила **120** (250 мг, 0,78 ммоль), трет-бутил 5-(((трифторметил)сульфонил)окси)-3,3r,6,6r-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилата) **57** (278 мг, 0,8 ммоль), аддукта PdCl<sub>2</sub>(dppf)-CH<sub>2</sub>Cl<sub>2</sub> (64 мг, 0,08 ммоль),

карбоната калия (323 мг, 2,3 ммоль) и воды (1,5 мл) в 1,4-диоксане (4 мл) перемешивают при  $80^{\circ}$ С в течение ночи. Реакционную смесь охлаждают до КТ, фильтруют через Celite® и промывают EtOAc (50 мл). Смесь затем выпаривают под вакуумом с получением указанного в заголовке соединения **121** в виде коричневого масла (396 мг, колич. выход), которое применяют на следующей стадии без дальнейшей очистки.  $R^{t}$  2,86 мин (Способ 1b); m/z 347  $[M+H-tBu]^{+}$  ( $3P^{+}$ ).

**Стадия 2.** 3-(4-((3rS,6rR)-1,2,3,3r,4,6r-Гексагидроциклопента[с]пиррол-5-ил)фенокси)бензонитрил (соединение **122**). Трифторуксусную кислоту (2,5 мл) добавляют по каплям к перемешиваемому раствору трет-бутил 5-(4-(3-цианофенокси)фенил)-3,3r,6,6r-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилата **121** (313 мг, 0,8 ммоль) в ДХМ (2,5 мл) при КТ. Реакционную смесь перемешивают в течение 2 ч, затем растворитель концентрируют *в вакууме*, и полученный остаток помещают в метанол (30 мл) и наносят на колонку СКХ. Колонку промывают метанолом (50 мл), и продукт элюируют раствором 10% метанольным аммиаком. Смесь затем выпаривают с получением указанного в заголовке соединения **122** в виде желтого масла (154 мг, 64% выход). R<sup>t</sup> 1,75 мин (Способ 1b); m/z 303 [М+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (400 МГц, CDCl<sub>3</sub>):  $\delta$ , ч./млн. 7,44-7,39 (м, 3H), 7,34 (д, J=7,6 Гц, 1H), 7,24-7,18 (м, 2H), 6,97 (д, J=8,5 Гц, 2H), 5,93 (д, J=2,6 Гц, 1H), 3,50-3,45 (м, 1H), 3,06-2,98 (м, 2H), 2,97-2,90 (м, 2H), 2,90-2,84 (м, 1H), 2,82-2,75 (м, 1H), 2,49 (м, 1H), 2,41 (шс, 1H).

$$_{NC}$$
  $_{NC}$   $_{N$ 

Стадия 3. 3-(4-((3rS,6rR)-2-((E)-3-(4-Oксo-2,3,4,5-mempazudpo-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акрилоил)-1,2,3,3г,4,6г-гексагидроциклопента[с]пиррол-5-ил)фенокси)бензонитрил (соединение 123). Суспензию 3-(4-((3rS,6rR)-1,2,3,3r,4,6r-rексагидроциклопента[с]пиррол-5-ил)фенокси)бензонитрила 122 (70 мг, 0,2 ммоль), трифторацетата (E)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты 6 (76 мг, 0,2 ммоль), N-этил-N-изопропилпропан-2-амина (0,20 мл, 1,2 ммоль) в ДМФ (1 мл) перемешивают в течение 10 мин. ГАТУ (88 мг, 0,2 ммоль) добавляют одной порцией, и реакционную смесь перемешивают при комнатной температуре в течение 1 ч. Смесь разбавляют водой (10 мл) и осадок собирают

фильтрацией. Неочищенный продукт очищают колоночной хроматографией (0-5% MeOH/ДХМ) с получением указанного в заголовке соединения **123** в виде желтого твердого вещества (87 мг, 72% выход).  $R^t$  2,08 мин (Способ 1b); m/z 518  $[M+H]^+$  ( $\Theta P^+$ ),  $\Pi P^+$  1 ммР (400 мГц, ДМСО-d<sub>6</sub>):  $\Pi P^+$  3,  $\Pi P^+$  4,  $\Pi P^+$  4,  $\Pi P^+$  5,  $\Pi P^+$  5,  $\Pi P^+$  6,  $\Pi P^+$  7,  $\Pi P^+$  7,  $\Pi P^+$  7,  $\Pi P^+$  8,  $\Pi P^+$  7,  $\Pi P^+$  8,  $\Pi P^+$  8,  $\Pi P^+$  8,  $\Pi P^+$  9,  $\Pi P^+$  9,

**Пример 21.** Синтез 8-((E)-3-((3rS,6rR)-5-(4-(3-метоксифенокси)фенил)-3,3r,4,6r-тетрагидроциклопента[с]пиррол-2(1H)-ил)-3-оксопроп-1-ен-1-ил)-1,2,3,5-тетрагидро-4H-пиридо[2,3-b][1,4]диазепин-4-она (соединение **129**).

Общая схема синтеза.

**Условия реакции**: а) 1-бром-4-йодбензол 125, CuI, N, N-диметилглицин, Cs<sub>2</sub>CO<sub>3</sub>, ДМФ, 110°C; b)  $K_2CO_3$ ,  $H_2O$ ,  $PdCl_2(dppf)$ , 1,4-диоксан, 80°C; c)  $T\Phi K$ , ДХМ; d)  $\Gamma AT Y$ , ДИПЭА, ДМФ.

Стадия 1. 1-(4-Бромфенокси)-3-метоксибензол и 1-(4-йодфенокси)-3-метоксибензол (соединение 126). Смесь 1-бром-4-йодбензола 125 (Sigma Aldrich) (500 мг, 1,8 ммоль), йодида меди(I) (337 мг, 1,8 ммоль), N, N-диметилглицина (182 мг, 1,8 ммоль), карбоната цезия (2,30 г, 7,1 ммоль) и 3-метоксифенола 124 (Sigma Aldrich) (0,19 мл, 1,8 ммоль) вакуумируют и обратно заполняют азотом (3 раза). Добавляют ДМФ (10 мл), и смесь нагревают до 110°С в течение ночи. Смесь фильтруют через слой Celite®, промывая EtOAc (50 мл) и затем выпаривают досуха. Неочищенный продукт очищают колоночной хроматографией (0-10% EtOAc/изогексан) с получением смеси указанных в заголовке соединений 126 в виде темного масла (338 мг, 53% выход), которое применяют на

следующей стадии без дальнейшей очистки,  $^1$ H ЯМР (400 МГц, CDCl<sub>3</sub>):  $\delta$ , ч./млн. 7,66-7,62 (м, 1H), 7,51-7,43 (м, 3H), 7,28-7,24 (м, 2H), 6,96-6,89 (м, 3H), 6,82-6,79 (м, 1H), 6,71 (ддт, Ј=8,3 Гц, 2,2 Гц, 1,3 Гц, 2H), 6,60 (дкв, Ј=9,4 Гц, 1,3 Гц, 4H), 3,81 (с, 6H).

2. трет-Бутил (3rS,6rR)-5-(4-(3-метоксифенокси)фенил)-3,3r,4,6r-Стадия тетрагидроцикло пента[с]пиррол-2(1H)-карбоксилат (соединение 127). Смесь 1-(4йодфенокси)-3-метоксибензола 126 (169 мг, 0,51 ммоль), 1-(4-бромфенокси)-3метоксибензола 126 (169 мг, 0,6 ммоль), трет-бутил 5-(4,4,5,5-тетраметил-1,3,2диоксаборолан-2-ил)-3,3г,6,6г-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилата 86 (375 мг, 1,1 ммоль), аддукта PdCl<sub>2</sub>(dppf)-CH<sub>2</sub>Cl<sub>2</sub> (91 мг, 0,1 ммоль), карбоната калия (464 мг, 3,4 ммоль) и воды (2 мл) в 1,4-диоксане (6 мл) перемешивают при 80°C в течение 4 ч. Реакционную смесь охлаждают до КТ, фильтруют через Celite® и промывают EtOAc (50 мл). Смесь затем выпаривают под вакуумом. Неочищенный продукт очищают колоночной хроматографией (0-50% EtOAc/изогексан) с получением указанного в заголовке соединения **127** в виде белого твердого вещества (209 мг, 45% выход). R<sup>t</sup> 3,00 мин (Способ 1b); m/z 352 [M+H-tBu]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (400 МГц, CDCl<sub>3</sub>): δ, ч./млн. 7,44-7,38 (м, 2H), 7,23 (тд, J=8,2 Гц,  $7,4 \Gamma \mu$ ,  $1,2 \Gamma \mu$ , 1H), 7,03-6,96 (M, 2H), 6,69-6,66 (M, 1H), 6,63-6,57 (M, 2H), 5,97 (mc, 1H), 3,79 (mc, 1H)(д, Ј=2,1 Гц, 3Н), 3,75-3,69 (м, 1Н), 3,59-3,48 (м, 3Н), 3,11 (дд, Ј=11,0 Гц, 6,9 Гц, 1Н), 3,06-2,99 (м, 1H), 2,97-2,90 (м, 1H), 2,59 (д, J=15,7  $\Gamma$ ц, 1H), 1,47 (с, 9H).

Стадия 3. (3rS,6rR)-5-(4-(3-Метоксифенокси)фенил)-1,2,3,3r,4,6rгексагидроциклопента[с]пиррол (соединение 128). Трифторуксусную кислоту (1 мл) добавляют каплям перемешиваемому раствору трет-бутил 5-(4-(3метоксифенокси)фенил)-3,3г,6,6г-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилата 127 (209 мг, 0,5 ммоль) в ДХМ (1 мл) при КТ. Реакционную смесь перемешивают в течение 1 ч, затем растворитель концентрируют в вакууме. Полученный остаток помещают в метанол (30 мл) и наносят на колонку СКХ. Колонку промывают метанолом (50 мл), и продукт элюируют раствором 10% метанольного аммиака. Смесь затем выпаривают с получением указанного в заголовке соединения **128** в виде желтого масла (157 мг, 96% выход).  $R^t$  1,91

мин (Способ 1b); m/z 308 [M+H]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (CDCl<sub>3</sub>):  $\delta$ , ч./млн. 7,37 (д, J=8,5  $\Gamma$ ц, 2H), 7,23-7,17 (м, 1H), 6,99-6,93 (м, 2H), 6,67-6,62 (м, 1H), 6,59-6,55 (м, 2H), 5,89-5,87 (м, 1H), 3,75 (с, 3H), 3,47-3,42 (м, 3H), 3,05-2,78 (м, 5H), 2,50-2,46 (м, 1H), 1,36 (д, J=8,3  $\Gamma$ ц, 1H).

(3rS,6rR)-5-(4-(3-Метоксифенокси)фенил)-1,2,3,3r,4,6r-Стадия 4. гексагидроциклопента[с]пиррол 129). Суспензию (3rS,6rR)-5-(4-(3-(соединение метоксифенокси)фенил)-1,2,3,3r,4,6r-гексагидроциклопента[с]пиррола **128** (70 мг, 0,3 ммоль), трифторацетата (Е)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8ил)акриловой кислоты 6 (75 мг, 0,3 ммоль), N-этил-N-изопропилпропан-2-амина (0,2 мл, 1,2 ммоль) в ДМФ (1,5 мл) перемешивают в течение 10 мин. ГАТУ (87 мг, 0,3 ммоль) добавляют одной порцией, и реакционную смесь перемешивают при комнатной температуре в течение 1 ч. Смесь разбавляют водой (10 мл), и осадок собирают фильтрацией. Неочищенный продукт очищают колоночной хроматографией (0-5% МеОН/ДХМ) с получением указанного в заголовке соединения 129 в виде желтого твердого вещества (86 мг, 70% выход). Rt 2,19 мин (Способ 1b); m/z 523 [M+H]+ (ЭР+), 1H ЯМР (400 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 9,74 (д, J=6,8 Гц, 1H), 7,98 (дд, J=8,4 Гц, 1,9 Гц, 1H), 7,50 (д, J=8,5 Гц, 2H), 7,38-7,26 (м, 3H), 7,01-6,97 (м, 2H), 6,89-6,84 (м, 1H), 6,72 (дд, Ј=8,3 Гц, 2,4 Гц, 1H), 6,59-6,58 (м, 1H), 6,56-6,53 (м, 1H), 6,14-6,13 (м, 1H), 6,05-5,98 (м, 1H), 3,99 (т, Ј=9,8 Гц, 1H), 3,87-3,78 (M, 1H), 3,73 (Д, J=0,8  $\Gamma$ Ц, 3H), 3,68-3,51 (M, 2H), 3,42 ( $\Gamma$ Д, J=6,1  $\Gamma$ Ц, 3,4  $\Gamma$ Ц, 2H), 3,20-13,11 (м, 1Н), 3,02-2,87 (м, 2Н), 2,61 (дт, Ј=10,9 Гц, 6,0 Гц, 3Н).

**Пример 22.** Синтез(Е)-N-метил-N-((2-метил-7-((1-метилиндолин-6-ил)окси)бензофуран-3-ил)метил)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламида (соединение **134**).

Общая схема синтеза.

**Условия реакции**: a) NaH, MeI, ТГФ, 0°С; b) CuI, N, N-диметилглицин, Cs<sub>2</sub>CO<sub>3</sub>, ДМФ, 110°С; c) ТФК, ДХМ; d) ГАТУ, ДИПЭА, ДМФ.

Стадия 1. 6-Бром-1-метилиндолин (соединение 131). Гидрид натрия (60% в минеральном масле, 0,15 г, 3,8 ммоль) добавляют небольшими порциями к перемешиваемому раствору 6-броминдолина 130 (0,5 г, 2,5 ммоль) в ТГФ (20 мл) при 0°С под  $N_2$ . Реакционную смесь перемешивают в течение 30 мин, затем добавляют йодметан (0,2 мл, 2,5 ммоль) и реакционную смесь нагревают до КТ. Реакционную смесь перемешивают при КТ в течение выходных, затем охлаждают до 0°С и гасят добавлением насыщ. NH<sub>4</sub>Cl (50 мл). Водную смесь экстрагируют EtOAc (3 х 50 мл), и объединенные органические экстракты промывают насыщенным раствором соли (50 мл), сушат с MgSO<sub>4</sub>, и концентрируют в вакууме. Неочищенный продукт очищают колоночной хроматографией (0-20% EtOAc/изогексан) с получением указанного в заголовке соединения 131 в виде коричневого масла (0,44 г, 76%).  $R^t$  2,39 мин (Способ 1а) m/z 212/214 [M+H]<sup>+</sup> (ЭР<sup>+</sup>),  $^1$ H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 6,97-6,91 (м, 1H), 6,69 (дд, J=7,6 Гц, 1,8 Гц, 1H), 6,62 (д, J=1,7 Гц, 1H), 3,28 (т, J=8,3 Гц, 2H), 2,82 (т, J=8,5 Гц, 2H), 2,69 (с, 3H).

Стадия 2. трет-Бутил метил((2-метил-7-((1-метилиндолин-6-ил)окси)бензофуран-3-

Стадия 3. Трифторацетат N-метил-1-(2-метил-7-((1-метилиндолин-6-ил)окси)бензофуран-3-ил)метанамина (соединение 133). Трифторуксусную кислоту (2 мл) добавляют по каплям к перемешиваемому раствору трет-бутил метил((2-метил-7-((1-метилиндолин-6-ил)окси)бензофуран-3-ил)метил)карбамата 132 (0,04 г, 0,1 ммоль) в ДХМ (2 мл) при КТ. Реакционную смесь перемешивают в течение 30 мин, затем концентрируют в вакууме с получением указанного в заголовке соединения 133 в виде коричневого масла которое применяют на следующей стадии без дальнейшей очистки. Rt 2,02 мин (Способ 1а) m/z 323 [M+H]+ (ЭР+).

Стадия 4. (Е)-N-Метил-N-((2-метил-7-((1-метилиндолин-6-ил)окси)бензофуран-3-ил)метил)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламид (соединение 134). ДИПЭА (0,5 мл, 2,9 ммоль) добавляют по каплям к перемешиваемому раствору трифторацетата N-метил-1-(2-метил-7-((1-метилиндолин-6-ил)окси)бензофуран-3-ил)метанамина 133 (0,07 г, 0,2 ммоль) и трифторацетата (Е)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты 6 (0,06 г, 0,2 ммоль) в ДМФ (2 мл) при КТ. Реакционную смесь перемешивают в течение 10 мин, затем добавляют ГАТУ (0,08 г, 0,2 ммоль) и реакционную смесь перемешивают в течение 2 ч. Реакционную смесь разбавляют  $H_2O$  (10 мл) и осадок собирают фильтрацией. Неочищенный продукт очищают колоночной хроматографией (0-3% MeOH/ДХМ) с получением указанного в заголовке

соединения **134** в виде бледно-желтого твердого вещества (20 мг, 23% выход).  $R^t$  2,13 мин (Способ 1a) m/z 538 [M+H]<sup>+</sup> (ЭР<sup>+</sup>),  $^1$ H ЯМР (400 МГц, 363 К, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 9,14 (c, 1H), 7,98 (д, J=1,9 Гц, 1H), 7,46 (д, J=15,4 Гц, 1H), 7,38 (д, J=1,9 Гц, 1H), 7,28 (д, J=7,8 Гц, 1H), 7,16-7,04 (м, 2H), 6,95 (дт, J=7,8, 1,1 Гц, 1H), 6,78 (дд, J=8,0, 1,1 Гц, 1H), 6,21-6,13 (м, 2H), 5,79 (c, 1H), 4,77 (c, 2H), 3,46-3,41 (м, 2H), 3,33 (т, J=8,2 Гц, 2H), 3,02 (c, 3H), 2,87 (т, J=8,2 Гц, 2H), 2,67 (c, 3H), 2,66-2,62 (м, 2H), 2,49 (c, 3H).

**Пример 23.** Синтез 2-метокси-4-(4-((3rS,6rR)-2-((Е)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акрилоил)-1,2,3,3r,4,6r-гексагидроциклопента[с]пиррол-5-ил)фенокси)бензонитрила (соединение **140**).

Общая схема синтеза.

**Условия реакции**: а) 4-фтор-2-метоксибензонитрил **136**, Cs<sub>2</sub>CO<sub>3</sub>, NMP, 80°C; b) Pd(dppf)Cl<sub>2</sub>, K<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>O, 1,4-диоксан, 90°C; c) ТФК, ДХМ; d) ГАТУ, ДИПЭА, ДМФ.

Стадия 1. 4-(4-Бромфенокси)-2-метоксибензонитрил (соединение 137). Смесь 4-фтор-2-метоксибензонитрила 136 (Fluorochem) (1 г, 6,6 ммоль), 4-бромфенола 135 (1,37 г, 7,94 ммоль) и  $Cs_2CO_3$  (6,47 г, 19,9 ммоль) в N-метил-2-пирролидоне (20 мл) нагревают при 80°С в течение 2 ч. Реакционную смесь охлаждают до комнатной температуры, и выливают в воду (50 мл). Смесь экстрагируют этилацетатом (2 х 50 мл). Органические вещества объединяют и промывают насыщенным раствором соли (2 х 50 мл), пропускают через гидрофобную фритту, и концентрируют *в вакууме*. Неочищенный продукт очищают колоночной хроматографией (0-50% EtOAc/изогексан) с получением указанного в заголовке соединения 137 в виде прозрачного бесцветного масла, которое кристаллизуется при выстаивании (2,02 г, 70% выход).  $R^t$  2,56 мин (Способ 1а) m/z 304/306 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

**Стадия 2.** трет-Бутил (3rS,6rR)-5-(4-(4-циано-3-метоксифенокси)фенил)-3,3r,4,6rтетрагидроциклопента[с]пиррол-2(1H)-карбоксилат (соединение 138). Смесь 4-(4бромфенокси)-2-метоксибензонитрила 137 (0,18 г, 0,6 ммоль), (3rR,6rS)-трет-бутил 5-(4,4,5,5-тетраметил-1,3,2-диоксаборолан-2-ил)-3,3г,6,6г-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилата **86** (0,2 г, 0,6 ммоль),  $K_2CO_3$  (0,25 г, 1,8 ммоль) в воде (1 мл) и аддукта  $PdCl_2(dppf)$ - $CH_2Cl_2$  (0,05 г, 0,06 ммоль) в 1,4-диоксане (4 мл) дегазируют азотом и затем перемешивают при 80°C в течение ночи. Реакционную смесь охлаждают до комнатной температуры, разбавляют водой (10 мл), экстрагируют этилацетатом (2 х 10 мл). Объединенные органические слои промывают насыщенным раствором соли (20 мл), сушат (MgSO<sub>4</sub>), фильтруют и концентрируют в вакууме. Неочищенный продукт очищают колоночной хроматографией (0-50% EtOAc/изогексан) с получением указанного в заголовке соединения 138 в виде густого бесцветного масла (0,23 г, 73% выход).  $R^t$  2,93 мин (Способ 1a) m/z 377 [M+H-tBu]<sup>+</sup> (ЭР<sup>+</sup>), <sup>1</sup>H ЯМР (400 МГц, CDCl<sub>3</sub>): δ, ч./млн. 7,51-7,44 (м, 3H), 7,07-7,02 (м, 2H), 6,59 (д, J=2,2  $\Gamma$ ц, 1H), 6,53 (дд, J=8,6  $\Gamma$ ц, 2,2  $\Gamma$ ц, 1H), 6,06-6,01 (м, 1H), 3,88 (с, 3H), 3,77-3,68 (м, 1H), 3,59-3,48 (м, 3H), 3,12 (дд, Ј=11,0 Гц, 6,9 Гц, 1H), 3,10-2,93 (м, 2Н), 2,62 (д, Ј=15,7 Гц, 1Н), 1,47 (с, 9Н).

Стадия 3. 4-(4-((3rS,6rR)-1,2,3,3r,4,6r-Гексагидроциклопента[с]пиррол-5-ил)фенокси)-2-метоксибензонитрил (соединение 139). К перемешиваемому раствору (3rR,6rS)-трет-бутил 5-(4-(4-циано-3-метоксифенокси)фенил)-3,3r,6,6r-тетрагидроциклопента[с]пиррол-2(1H)-карбоксилата 138 (0,23 г, 0,5 ммоль) в ДХМ (2 мл) добавляют ТФК (1,6 мл). Реакционную смесь перемешивают при комнатной температуре в течение 1 ч. Растворитель удаляют в вакууме. Полученное масло помещают в МеОН (5 мл) и наносят на колонку СКХ. Колонку промывают метанолом (5 мл) и продукт элюируют 10% метанольным аммиаком (5 мл) с получением указанного в заголовке соединения 139 в виде бесцветного кристаллического твердого вещества (0,1 г, 56%).  $R^t$  1,50 мин (Способ 1а) m/z 333 [M+H]<sup>+</sup> ( $9P^+$ ).

2-Метокси-4-(4-((3rS,6rR)-2-((E)-3-(4-оксо-2,3,4,5-тетрагидро-1H-Сталия 4. пиридо[2,3-b][1,4]диазепин-8-ил)акрилоил)-1,2,3,3r,4,6r-гексагидроциклопента[с]пиррол-5-ил)фенокси)бензонитрил (соединение 140). К перемешиваемому раствору 4-(4-((3rS,6rR)-1,2,3,3г,4,6г-гексагидроциклопента[с]пиррол-5-ил)фенокси)-2-метоксибензонитрила (0,1 г, 0,29 ммоль) в ДМФ (2 мл) добавляют трифторацетат (Е)-3-(4-оксо-2,3,4,5-тетрагидро-1Нпиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты (75 мг, 0,32 ммоль) и N-этил-Nизопропилпропан-2-амин (0,26 мл, 1,46 ммоль). Реакционную смесь перемешивают при КТ в течение 5 мин и добавляют ГАТУ (0,1 г, 0,35 ммоль). Реакционную смесь перемешивают в течение 1 ч. Добавляют воду (2 мл) и водную фазу экстрагируют ДХМ (3 х 5 мл). Объединенные органические фазы промывают H<sub>2</sub>O (2 x 5 мл), насыщенным раствором соли (5 мл), сушат (MgSO<sub>4</sub>), фильтруют и концентрируют в вакууме. Неочищенное твердое вещество очищают колоночной хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 140 в виде желтого твердого вещества (0,1 г, 62% выход).  $R^t$  2,11 мин (Способ 1a) m/z 548  $[M+H]^+$  (Э $P^+$ ),  ${}^1H$  ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 9,74 (д, Ј=6,7 Гц, 1Н), 7,98 (дд, Ј=8,3, 1,9 Гц, 1Н), 7,69 (д, Ј=8,6 Гц, 1Н), 7,60-7,55 (м, 2Н), 7,39-7,29 (м, 2Н), 7,15-7,11 (м, 2Н), 6,91-6,83 (м, 2Н), 6,53 (ддд, Ј=8,5 Гц, 6,1 Гц, 2,2 Гц, 1H), 6,20 ( $\tau$ , J=3,2  $\Gamma$  $\mu$ , 1H), 6,02 ( $\tau$ , J=13,2  $\Gamma$  $\mu$ , 1H), 4,05-3,96 ( $\tau$ , 0,5H), 3,90-3,76 ( $\tau$ , 4H), 3,70  $(д, J=12,0 \Gamma ц, 0,5H), 3,67-3,48 (м, 2H), 3,45-3,39 (м, 2H), 3,20-2,92 (м, 3H), 2,70-2,57 (м, 3H)$ (ротамеры).

**Пример 24.** Синтез (R, E)-N-((4-амино-3-метилбензофуран-2-ил)метил)-3-(3-гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламида (соединение **143**).

Общая схема синтеза

$$\frac{1}{2}$$
  $\frac{1}{2}$   $\frac{1$ 

**Условия реакции**: а) хлор(кротил)(три-трет-бутилфосфин)палладий(II),

[CH<sub>3</sub>(CH<sub>2</sub>)<sub>3</sub>]<sub>4</sub>NCl, ДИПЭА, 1,4-диоксан, 90°C, 18 ч; b) ТФК, ДХМ, 0°С до КТ; c) ГОБт·Н<sub>2</sub>О, EDC·HCl, ДИПЭА, ДМФ.

**Стадия 1.** трет-Бутил (R, E)-3-(3-гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1Hпиридо[2,3-b][1,4]диазепин-8-ил)акрилат (соединение 141). В 100 мл колбу загружают (R)-8-бром-3-гидрокси-3-метил-1,2,3,5-тетрагидро-4Н-пиридо[2,3-b][1,4]диазепин-4-он 47 (ChiralTek; хиральность определена произвольно; 2,0 г, 7,2 ммоль), n-Bu<sub>4</sub>NCl (0,240 мг, 0,86 ммоль), хлор(кротил)(три-трет-бутилфосфин)палладий(II) (0,144 г, 0,36 ммоль), и смесь продувают азотом в течение 10 мин. Затем добавляют трет-бутилакрилат 15 (1,57 мл, 10,8 ммоль), 1,4-диоксан (52 мл) и ДИПЭА (2,45 мл, 14,4 ммоль), и азот барботируют через смесь в течение еще 5 мин. Реакционную смесь нагревают при 90°C в течение 18 ч и охлаждают до КТ. Реакционную смесь фильтруют с применением 0,22 мкМ фильтров, промывают МеСМ и концентрируют досуха в вакууме. Ацетонитрил добавляют к неочищенному продукту, обрабатывают ультразвуком и желтый осадок отфильтровывают с получением **141** (2,1 г, 6,5 ммоль, 91,3% выход) в виде желтого твердого вещества. R<sup>t</sup> 1,45 мин; ЖХМС: m/z: 321,3 [M+H]<sup>+</sup>. <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 9,97 (с, 1H), 7,93 (д, J=1,7 Гц, 1H), 7,42 ( $\chi$ ,  $\chi$ =16,1  $\chi$ ,  $\chi$ 1H), 7,32 ( $\chi$ ,  $\chi$ =1,7  $\chi$ ,  $\chi$ 1H), 6,34 ( $\chi$ ,  $\chi$ =16,1  $\chi$ ,  $\chi$ 1H), 6,26 ( $\chi$ ,  $\chi$ =17) (с, 1H), 3,15 (д, Ј=53,8 Гц, 2H), 1,47 (с, 9H), 1,23 (с, 3H).

Стадия 2. (R, E)-3-(3-Гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловая кислота (соединение 142) К раствору трет-бутил (R, E)-3-(3-гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акрилата 141 (0,364 г, 1,03 ммоль) в ДХМ (9,1 мл) добавляют2,2,2-трифторуксусную кислоту (0,117 г, 1,03 ммоль) при 0°С. После завершения реакции (УЭЖХ-МС контроль) все растворители удаляют под вакуумом. Затем добавляют ДХМ, и полученную смесь добавляют в холодный  $Et_2O$ . Желтый осадок отфильтровывают и промывают  $Et_2O$  с получением указанного в заголовке соединения 142 (0,287 г, 1,09 ммоль, 106% выход) в виде желтого твердого вещества.  $R^t$  0,68 мин; ЖХМС: m/z: 264,2 [M+H]<sup>+</sup>.  $^1$ H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 12,39 (с, 1H), 9,98 (с, 1H), 7,92 (д, J=1,7 Гц, 1H), 7,47 (д, J=15,6 Гц, 1H), 7,32 (д, J=1,8 Гц, 1H), 6,35 (д, J=16,3 Гц, 1H), 3,23-3,09 (м, 3H), 1,23 (с, 3H).

**Стадия 3.** (E)-N-[(4-Амино-3-метил-бензофуран-2-ил)метил]-3-[(3R)-3-гидрокси-3метил-4-оксо-2,5-дигидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил]-N-метилпроп-2-енамид (соединение 143). В микроволновой пробирке, покрытой алюминиевой фольгой, смесь (Е)-3-[(3R)-3-гидрокси-3-метил-4-оксо-2,5-дигидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил]проп-2-еновой кислоты 142 (35 мг, 0,13 ммоль) и 3-метил-2-(метиламинометил)бензофуран-4амина 3 (42,93 мг, 0,16 ммоль) растворяют в ДМФ (0,22 мл). ГОБт $H_2O$  (31,83 мг, 0,20 ммоль) и EDC·HCl (39,84 мг, 0,20 ммоль) добавляют к реакционной смеси и через 2 мин перемешивания при комнатной температуре добавляют ДИПЭА (0,08 мл, 0,46 ммоль). Полученную смесь перемешивают в темноте в течение ночи при комнатной температуре. Реакционную смесь разбавляют ацетонитрилом, выпадение осадка не наблюдают, но через еще несколько минут появляется очень тонкое твердое вещество. Смесь разбавляют ДМФ и очищают препаративной ВЭЖХ и лиофилизируют с получением 143 (25,7 мг, 0,0575 ммоль, 43,72% выход) в виде желтого твердого вещества.  $R^t$  1,11 мин; ЖХМС: m/z: 436,4 $[M+H]^+$ .  $^1H$  ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 9,93 (с, 1H), 7,98 (д, J=11,6 Гц, 1H), 7,46-7,31 (м, 2,5H), 7,10-7,00 (м, 0,5H), 6,91 (т, J=7.9 Гц, 1H), 6,67-6,61 (м, 1H), 6,38 (д, J=7.9 Гц, 1H), 6,27-6,22 (M, 1H), 5,28 (c, 1H), 5,17 (шс, 2H), 4,83 (c, 0,8H, potamep), 4,69 (c, 1,2H, ротамер), 3,23-3,07 (м, 4H), 2,92 (с, 1H), 2,46-2,38 (м, 3H), 1,23 (с, 3H).

**Пример 25**. Синтез (E)-3-((2R,3S)-3-гидрокси-2-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4] диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2ил)метил)акриламида (соединение 150).

Общая схема синтеза.

Условия реакции: a) ТЭА, EtOH, кипение с обратным холодильником; b) Fe, NH<sub>4</sub>Cl, ЕtOH, H<sub>2</sub>O, кипение с обратным холодильником; с) NaH, TГΦ, 0°C до КТ; d) хиральное разделение; e) Pd-162, MeNCy<sub>2</sub>, NBu<sub>4</sub>Cl, 1,4-диоксан, 80°C.

Стадия 1. Этил 3-((5-бром-2-нитропиридин-3-ил)амино)-2-гидроксибутаноат (соединение 145). ТЭА (2,8 мл, 20,1 ммоль) добавляют к перемешиваемому раствору 5-бром-3-фтор-2-нитропиридина 11 (1,1 г, 5,0 ммоль) и гидрохлорида этил 3-амино-2-гидроксибутаноата 144 (0,9 г, 4,9 ммоль) в ЕtOH (20 мл) и реакционную смесь нагревают до кипения с обратным холодильником в течение 4 ч. Реакционную смесь охлаждают до КТ, затем концентрируют в вакууме, и неочищенный продукт очищают колоночной хроматографией (ДХМ, затем 0-10% MeOH/ДХМ) с получением диастереомер 1 в виде желтого твердого вещества (0,55 г, 32%) и диастереомер 2 в виде желтого масла (0,50 г, 26%) вместе с другой частью, которая содержит оба диастереомера в форме желтого масла (0,22 г, 13%).

Диастереомер 1:  $R^t$  1,76 мин (Способ 1a) m/z 348/350 [M+H]<sup>+</sup>(ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 8,04 (д, J=1,9 Гц, 1H), 7,97 (д, J=9,2 Гц, 1H), 7,88 (д, J=1,8 Гц, 1H), 6,12 (д, J=4,8 Гц, 1H), 4,39-4,30 (м, 1H), 4,24 (дд, J=4,8 Гц, 2,8 Гц, 1H), 4,04 (кв, J=7,1 Гц, 2H), 1,24 (д, J=6,5 Гц, 3H), 1,09 (т, J=7,1 Гц, 3H).

Диастереомер 2:  $R^t$  1,80 мин (Способ 1a) m/z 348/350 [M+H]<sup>+</sup>(ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 8,01 (д, J=1,9 Гц, 1H), 7,99 (д, J=8,9 Гц, 1H), 7,90 (д, J=1,8 Гц, 1H), 6,09 (д, J=5,8 Гц, 1H), 4,28 (дд, J=5,9 Гц, 4,2 Гц, 1H), 4,26-4,19 (м, 1H), 4,14 (кв, J=7,1 Гц, 2H), 1,21 (т, J=7,1 Гц, 3H), 1,14 (д, J=6,3 Гц, 3H).

Br 
$$N$$
  $NO_2$   $NO_2$ 

Стадия 2. Этил 3-((2-амино-5-бромпиридин-3-ил)амино)-2-гидроксибутаноат (соединение 146). Смесь этил 3-((5-бром-2-нитропиридин-3-ил)амино)-2-гидроксибутаноата 145 (Диастереомер 1) (0,55 г, 1,6 ммоль), порошка железа (0,71 г, 12,6 ммоль) и хлорида аммония (0,34 г, 6,3 ммоль) в смеси растворителей ЕtOH (50 мл) и H<sub>2</sub>O (10 мл) перемешивают при кипении с обратным холодильником в течение 1 часа. Реакционную смесь загружают сухой на Celite® и очищают колоночной хроматографией (0-100% EtOAc/изогексан) с получением желаемого продукта 146 в виде коричневого твердого вещества (0,28 г, 56%). R<sup>t</sup> 0,99 мин (Способ 1а) m/z 318/320 [M+H]<sup>+</sup>(ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн, 7,28 (д, J=2,0 Гц, 1H), 6,72 (д, J=2,1 Гц, 1H), 5,72 (с, 2H), 5,46 (д, J=6,7 Гц, 1H), 4,64 (д, J=9,2 Гц, 1H), 4,11 (дд, J=6,7 Гц, 3,4 Гц, 1H), 4,08-3,95 (м, 2H), 3,88-3,76 (м, 1H), 1,21-1,05 (м, 6H).

Стадия 3. 8-Бром-3-гидрокси-2-метил-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он (соединение 147). Гидрид натрия (60% в минеральном масле, 0,2 г, 5,00 ммоль) добавляют небольшими порциями к перемешиваемому раствору этил 3-((2-амино-5-бромпиридин-3-ил)амино)-2-гидроксибутаноата 146 (1,0 г, 3,14 ммоль) в ТГФ (5,0 мл) при 0°С. Реакционную смесь нагревают до КТ и перемешивают в течение 4 ч. Реакционную смесь гасят осторожным добавлением NH<sub>4</sub>Cl (50 мл) и водную смесь экстрагируют EtOAc (3 х 100 мл). Объединенные органические слои промывают насыщенным раствором соли (1 х 100 мл), сушат с MgSO<sub>4</sub>, концентрируют в вакууме и очищают колоночной хроматографией (0-50% EtOAc/изогексан) с получением желаемого продукта 147 в виде коричневого твердого вещества (0,34 г, 37%).  $\mathbb{R}^{t}$  1,18 мин (Способ 1а)  $\mathbb{R}^{t}$  272/274 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).  $\mathbb{R}^{t}$  1 ЯМР (500 МГц, ДМСО-d<sub>6</sub>):  $\mathbb{R}^{t}$  3, ч./млн. 10,23 (с, 1H), 7,70 (д, J=2,1 Гц, 1H), 7,29 (д, J=2,1 Гц, 1H), 6,36 (д, J=5,6 Гц, 1H), 5,18 (д, J=4,9 Гц, 1H), 4,18 (дд, J=4,8 Гц, 3,2 Гц, 1H), 3,79-3,65 (м, 1H), 1,08 (д, J=6,5 Гц, 3H).

Хиральное разделение соединения 147.

Стадия 4. (2S,3R)-8-Бром-3-гидрокси-2-метил-2,3-дигидро-1Н-пиридо[2,3-b][1,4]диазепин-4(5H)-он (соединение 148) и (2R,3S)-8-бром-3-гидрокси-2-метил-2,3-дигидро-1Н-пиридо[2,3-b][1,4]диазепин-4(5H)-он (соединение 149). Энантиомеры отделяют хиральной препаративной ВЭЖХ с применением Chiralpak® IC (Daicel Ltd.) колонки (2×25 см), скорость потока 13,5 мл мин<sup>-1</sup>, элюируя смесью 10% этанола в гептане+0,2% диэтиламина, УФ определение при 254 нм. Образцы загружают на колонку через встроенный в колонку разрежающий насос, прокачивают этанолом (1,5 мл мин<sup>-1</sup>) в течение всего прогона, с получением объединенной скорости потока 15 мл мин<sup>-1</sup>. Хиральность определяют произвольно.

Первый элюированный энантиомер (соединение **148**).  $R^t$  9,6 мин (Способ 4b). Второй элюированный энантиомер (соединение **149**).  $R^t$  13,5 мин (Способ 4b).

(E)-3-((2R,3S)-3-Гидрокси-2-метил-4-оксо-2,3,4,5-тетрагидро-1H-Стадия 5. пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение 150). В реакционную пробирку загружают N-метил-N-((3-метилбензофуран-2ил)метил)акриламид 9 (42 мг, 0,18 ммоль), (2R,3S)-8-бром-3-гидрокси-2-метил-2,3дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он **149** (50 мг, 0,18 ммоль), NBu<sub>4</sub>Cl (5,0 мг, 0,02 ммоль) и [P(tBu)<sub>3</sub>]Pd(кротил)Cl (Pd-162) (7,0 мг, 0,02 ммоль) и пробирку вакуумируют и обратно заполняют N2 три раза. Добавляют 1,4-диоксан (5,0 мл) и N-циклогексил-Nметилциклогексанамин (79 мкл, 0,37 ммоль), и реакционную смесь нагревают до 80°C и перемешивают в течение ~16 ч. Реакционную смесь охлаждают до КТ, растворитель удаляют в вакууме и твердое вещество промывают изогексаном. Неочищенный продукт затем очищают колоночной хроматографией (0-3% MeOH/ДХМ) с получением желаемого продукта в виде бледно-желтого твердого вещества. Твердое вещество частично растворяют в MeCN и добавляют воду до тех пор, пока продукт не выпадает в осадок. Осадок собирают фильтрацией и сушат азеотропной перегонкой с MeCN (2 x 2 мл) с получением желаемого продукта 150 в виде бледно-желтого твердого вещества (35 мг. 45%). R<sup>t</sup> 1,83 мин (Способ 1a) m/z 421 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>Н ЯМР (500 МГц, ДМСО-d<sub>6</sub>, 363 K):  $\delta$ , ч./млн. 9,80 (c, 1H), 7,98 (д, J=1,9 Гц, 1H), 7,59-7,52 (м, 1H), 7,49-7,37 (м, 3H), 7,31-7,22 (м, 2Н), 7,12 (д, Ј=15,7 Гц, 1Н), 5,91 (д, Ј=5,7 Гц, 1Н), 4,84 (с, 2Н), 4,76 (д, Ј=4,7 Гц, 1Н), 4,22  $(дд, J=4,7 \Gamma ц, 3,4 \Gamma ц, 1H), 3,82-3,71 (м, 1H), 3,10 (с, 3H), 2,27 (с, 3H), 1,12 (д, J=6,5 \Gamma ц, 3H).$ 

**Пример 26.** Синтез (E)-3-((2R,3S)-3-гидрокси-2-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((2-метилбензофуран-3-ил)метил)акриламида (соединение **151**).

Общая схема синтеза.

Условия реакции: a) Pd-162, MeNCy<sub>2</sub>, NBu<sub>4</sub>Cl, 1,4-диоксан, 80°C

Стадия 1. (E)-3-((2R,3S)-3-Гидрокси-2-метил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((2-метилбензофуран-3-ил)метил)акриламид (соединение 151). В реакционную пробирку загружают N-метил-N-((2-метилбензофуран-3-ил)метил)акриламид 38 (42 мг, 0,18 ммоль), (2R,3S)-8-бром-3-гидрокси-2-метил-2,3-дигидро-1Н-пиридо[2,3-b][1,4]диазепин-4(5H)-он 149 (50 мг, 0,18 ммоль), NBu<sub>4</sub>Cl (5,0 мг, 0,02 ммоль) и [P(tBu)<sub>3</sub>]Pd(кротил)Cl (Pd-162) (7,0 мг, 0,02 ммоль) и пробирку вакуумируют и обратно заполняют  $N_2$  три раза. Добавляют 1,4-диоксан (5,0 мл) и N-циклогексил-N-метилциклогексанамин (79 мкл, 0,37 ммоль), и реакционную смесь нагревают до  $80^{\circ}$ С и

перемешивают в течение 3 ч. Реакционную смесь охлаждают до КТ, растворитель удаляют в вакууме и твердое вещество промывают изогексаном. Неочищенный продукт затем очищают колоночной хроматографией (0-3% MeOH/ДХМ) с получением желаемого продукта в виде бледно-желтого твердого вещества. Твердое вещество частично растворяют в MeCN и добавляют воду до тех пор, пока продукт не выпадет в осадок. Осадок собирают фильтрацией и сушат азеотропной перегонкой с MeCN (2 х 2 мл) с получением желаемого продукта **151** в виде бледно-желтого твердого вещества (14 мг, 17%).  $R^t$  1,80 мин (Способ 1а) m/z 421  $[M+H]^+$  ( $\Theta^+$ ).  $\Pi$  1  $\Pi$  1  $\Pi$  1  $\Pi$  2  $\Pi$  3  $\Pi$  3  $\Pi$  4  $\Pi$  3  $\Pi$  6  $\Pi$  7,798 ( $\Pi$  3  $\Pi$  7,10 ( $\Pi$  3  $\Pi$  7,54 ( $\Pi$  3  $\Pi$  7,49-7,42 ( $\Pi$  4, 2 $\Pi$  7,39 ( $\Pi$  5,39 ( $\Pi$  7,10 ( $\Pi$  5,31  $\Pi$  7,31 ( $\Pi$  7,49-7,42 ( $\Pi$  7,49-7,42 ( $\Pi$  7,49-4,47 ( $\Pi$  8,40-4,47 ( $\Pi$  8,4

**Пример 27**. Синтез (R, E)-N-((7-(4-цианофенокси)-2-метилбензофуран-3-ил)метил)-3-(3-гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламида (соединение **152**).

Общая схема синтеза.

Условия реакции: a) ГОБт·H<sub>2</sub>O, EDC·HCl, ДИПЭА, ДМФ

**Стадия 1.** (R, E)-N-((7-(4-Цианофенокси)-2-метилбензофуран-3-ил)метил)-3-(3-гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламид (соединение **152**) получают из амина **79** и кислоты **142** в виде желтого твердого вещества в стандартной реакции сочетания амина с амидом, описанной, например, для соединения **143** (Чистота=95%; Выход=38%). R¹ 1,72 мин; ЖХМС: m/z: 538,5 [M+H]<sup>+</sup>. ¹Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 9,93 (с, 1H), 7,98 (с, 1H), 7,83 (д, Ј=8,9 Гц, 2H), 7,57-7,19 (м, 4H), 7,15-6,99 (м, 4H), 6,24 (шс, 1H), 5,28 (шс, 1H), 4,91 (с, 0,3H, ротамер), 4,76 (с, 1,7H, ротамер), 3,22-3,09 (м, 2H), 3,07 (с, 2,3H, ротамер), 2,87 (с, 0,7H, ротамер), 2,48 (с, 3H, частично под пиком ДМСО), 1,23 (с, 3H).

**Пример 28.** Синтез (Е)-N-((7-(3-метоксифенокси)-2-метилбензофуран-3-ил)метил)-N-метил-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламида (соединение **155**).

Общая схема синтеза.

**Условия реакции**: a) N, N-диметилглицин, CuI,  $K_2PO_4$ , ДМСО,  $100^{\circ}C$ ; b) 1-хлорэтилхлорформиат, ДХМ,  $0^{\circ}C$  до KT; c)  $\Gamma$ AТУ, ДИПЭА, ДМФ

Стадия 1. N-(4-Метоксибензил)-1-(7-(3-метоксифенокси)-2-метилбензофуран-3-ил)-N-метилметанамин (соединение 153). Смесь 1-(7-бром-2-метилбензофуран-3-ил)-N-(4-метоксибензил)-N-метилметанамина 76 (200 мг, 0,53 ммоль), 3-метоксифенола 124 (Sigma-Aldrich) (80 мг, 0,64 ммоль), 2-(диметиламино)уксусной кислоты (11 мг, 0,11 ммоль), йодида меди(I) (10 мг, 0,05 ммоль) и трехосновного фосфата калия (230 мг, 1,1 ммоль) вакуумируют и обратно заполняют азотом (3х). Добавляют ДМСО (2 мл), и смесь нагревают до 110°С в течение ночи. Добавляют дополнительные аликвоты йодида меди(I) (10 мг, 0,05 ммоль) и 3-метоксифенола 124 (80 мг, 0,64 ммоль) и нагревание продолжают в течение еще 3 часов. Реакционную смесь охлаждают до КТ, фильтруют через Celite® и фильтрат разбавляют насыщенным раствором соли (20 мл). Неочищенную смесь экстрагируют этилацетатом (2 х 10 мл) и объединенные органические фазы сушат над Na<sub>2</sub>SO<sub>4</sub> и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-100% ЕtOAc/изогексан) с получением указанного в заголовке соединения 153 в виде светлооранжевого масла (103 мг, 43%). R<sup>t</sup> 1,76 мин (Способ 1a) m/z 418 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

Стадия 2. 1-(7-(3-Метоксифенокси)-2-метилбензофуран-3-ил)-N-метилметанамин

(соединение **154**). К ледяному раствору N-(4-метоксибензил)-1-(7-(3-метоксифенокси)-2-метилбензофуран-3-ил)-N-метилметанамина **153** (100 мг, 0,24 ммоль) в ДХМ (2 мл) добавляют 1-хлорэтилхлорформиат (0,031 мл, 0,29 ммоль). Смеси позволят достичь КТ и перемешивают в течение еще 20 мин, затем выпаривают досуха. Остаток помещают в метанол (5 мл) и нагревают при кипении с обратным холодильником в течение 1 часа. Смесь выпаривают досуха, и остаток растворяют в метаноле (4 мл) и наносят на колонку СКХ (2 г). Колонку промывают метанол (20 мл) и продукт элюируют 10% метанольным аммиаком (10 мл) с получением указанного в заголовке соединения **154** в виде бесцветной камеди (42 мг, 47%), которую применяют на следующей стадии без дальнейшей очистки. **R**<sup>t</sup> 1,40 мин (Способ 1b) m/z 267 [М - NHCH<sub>3</sub>]<sup>+</sup>(ЭР<sup>+</sup>).

Стадия 3. (Е)-N-((7-(3-Метоксифенокси)-2-метилбензофуран-3-ил)метил)-N-метил-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламид (соединение 155). К раствору 1-(7-(3-метоксифенокси)-2-метилбензофуран-3-ил)-N-метилметанамина 154 (40 мг, 0,11 ммоль), трифторацетата (Е)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты 6 (31 мг, 0,09 ммоль) и ДИПЭА (78 мкл, 0,45 ммоль) в ДМФ (2 мл) добавляют ГАТУ (41 мг, 0,11 ммоль) и смесь перемешивают при КТ в течение 1 часа. Реакционную смесь гасят добавлением воды (10 мл), и твердое вещество собирают и сушат. Неочищенный продукт очищают хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 155 в виде бледно-желтого твердого вещества (25 мг, 54%). R¹ 2,17 мин (Способ 1а) m/z 513 [М+Н]+ (ЭР+). ¹Н ЯМР (500 МГц, ДМСО-d6, 363 К): δ, ч./млн. 9,13 (с, 1H), 7,99 (д, Ј=2,0 Гц, 1H), 7,47 (д, Ј=15,5 Гц, 1H), 7,41-7,34 (м, 2H), 7,26 (т, Ј=8,2 Гц, 1H), 7,17 (т, Ј=7,9 Гц, 1H), 7,10 (д, Ј=15,6 Гц, 1H), 6,88 (дд, Ј=7,9 Гц, 1,0 Гц, 1H), 6,72 (ддд, Ј=8,3 Гц, 2,4 Гц, 0,8 Гц, 1H), 6,61 (т, Ј=2,4 Гц, 1H), 6,57 (ддд, Ј=8,1 Гц, 2,3 Гц, 0,8 Гц, 1H), 5,80 (с, 1H), 4,78 (с, 2H), 3,76 (с, 3H), 3,47-3,42 (м, 2H), 3,03 (с, 3H), 2,70-2,63 (м, 2H), 2,48 (с, 3H).

**Пример 29.** Синтез (R)-3-гидрокси-3-метил-8-((E)-3-оксо-3-((3aS,6aR)-5-(4-феноксифенил)-3,3a,4,6a-тетрагидроциклопента[c]пиррол-2(1H)-ил)проп-1-ен-1-ил)-1,2,3,5-тетрагидро-4H-пиридо[2,3-b][1,4]диазепин-4-она (соединение **159**).

**Условия реакции**: а) водн. 2М  $K_2CO_3$ , ДМЭ,  $Pd(PPh_3)_4$ ; b)  $T\Phi K/ДХМ, 0°C$  до KT; c) ГОБТ, EDC, ДИПЭА, ДМФ

1. Стадия трет-Бутил (3aS,6aR)-5-(4-феноксифенил)-3,3a,4,6aтетрагидроциклопента[с]пиррол-2(1H)-карбоксилат (соединение 157) синтезируют по методике, описанной в US2017/0174683 A1. В микроволновую пробирку добавляют, третбутил (3aR,6aR)-5-(((трифторметил)сульфонил)окси)-3,3a,4,6aтетрагидроциклопента[с]пиррол-2(1H)-карбоксилат 57 (104 мг, 0,276 ммоль), (4феноксифенил)бороновую кислоту 156 (96 мг, 0,448 ммоль) и раствор 2 М К<sub>2</sub>СО<sub>3</sub> (276 мкл, 0,552 ммоль) в этиленгликольдиметиловом эфире (1 мл) продувают азотом в течение 10 мин в микроволновой бане. Затем добавляют тетракисфенил-фосфинпалладий (30 мг. 0,025 ммоль). Полученную суспензию перемешивают при 100°C в течение 30 мин при облучении микроволнами. Полученный раствор охлаждают до КТ. Добавляют воду и EtOAc, органический слой отделяют, промывают водой, затем насыщенным раствором соли и сушат (MgSO<sub>4</sub>) и выпаривают досуха с получением коричневого масла, которое очищают на силикагеле с применением колонки SNAP ultra (10 г) и н-гептана/AcOEt 95/5 до 50/50 в качестве элюента. Хорошие фракции собирают и концентрируют досуха с получением трет-(3aR,6aS)-5-(4-феноксифенил)-3,3a,4,6a-тетрагидроциклопента[с]пиррол-2(1H)бутил карбоксилата 157 в виде бесцветного масла, которое кристаллизуют в виде белого твердого вещества при выстаивании (85 мг, чистота=99%, выход=85%). Rt 2,65 мин; ЖХМС: m/z: 322,2 [M+H]<sup>+</sup>.

Стадия 2. (3aS,6aR)-5-(4-Феноксифенил)-1,2,3,3a,4,6a-гексагидроциклопента[с]пиррол 2,2,2-трифторацетат (соединение 158). К раствору трет-бутил (3aR,6aS)-5-(4-феноксифенил)-3,3a,6,6a-тетрагидро-1H-циклопента[с]пиррол-2-карбоксилата 157 (85 мг, 0,23 ммоль) в ДХМ (1,0 мл) добавляют по каплям 2,2,2-трифторуксусную кислоту (25,67 мг, 0,23 ммоль). Реакционную смесь перемешивают при комнатной температуре до определения полного превращения исходного материала. После завершения реакции растворители удаляют вакуумом с получением указанного в заголовке соединения 158 (88 мг) в виде желтого масла.  $R^t$  1,29 мин (Способ 1b); m/z 278,6  $[M+H]^+(\ni P^+)$ .

**Стадия 3.** (R)-3-Гидрокси-3-метил-8-((E)-3-оксо-3-((3aS,6aR)-5-(4-феноксифенил)-3,3а,4,6а-тетрагидроциклопента[с]пиррол-2(1H)-ил)проп-1-ен-1-ил)-1,2,3,5-тетрагидро-4H-пиридо[2,3-b][1,4] диазепин-4-он (соединение **159**). В микроволновую пробирку, покрытую алюминиевой фольгой добавляют (3aR,6aS)-5-(4-феноксифенил)-1,2,3,3a,6,6aгексагидроциклопента[с]пирроле 2,2,2-трифторацетат **158** (44,6 мг, 0,11ммоль),  $\Gamma$ ОБт  $H_2$ О (26,18 мг, 0,17 ммоль, 1,5 экв.), EDC HCl (32,77 мг, 0,17 ммоль) и (E)-3-[(3R)-3-гидрокси-3метил-4-оксо-2,5-дигидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил]проп-2-еновую кислоту 142 (30 мг, 0,11 ммоль), и твердое вещество растворяют в ДМФ (0,2 мл). Через 2 мин перемешивания КТ, добавляют ДИПЭА (0,07 мл, 0,40 ммоль). Реакционную смесь перемешивают в темноте в течение ночи при той же температуре. После завершения реакции, к смеси добавляют воду и ацетонитрил, суспензию обрабатывают ультразвуком, осадок отфильтровывают и промывают МТБЭ. Неочищенный продукт (18 мг) далее очищают аутопреп. Выделяют указанное в заголовке соединение 159 (6,6 мг) в виде желтой пены. R<sup>t</sup> 1,91 мин (Способ 1b); m/z 523,5 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. <sup>1</sup>Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 9,95 (д, J=5,3 Гц, 1H), 7,92 (м, 1H), 9,50 (д, Ј=8,3 Гц, 2Н), 7,42-7,28 (м, 4Н), 7,14 (т, Ј=6,2 Гц, 1Н), 7,03-6,95 (м, 4Н), (дд, Ј=6,8 Гц, 15,5 Гц, 1Н), 6,28-6,21 (м, 1Н), 6,13 (шс, 1Н), 5,30 (д, Ј=4,4 Гц, 1Н), 4,05-3,75 (м, 2Н), 3,73-3,49 (M, 2H), 3,22-3,10 (M, 2H), 3,10-2,91 (M, 2H), 2,69-2,55 (M, 2H), 1,23 ( $\pi$ , J=4,1  $\Gamma \pi$ , 3H). Примечание: Алифатические сигналы частично затемнены пиками воды и растворителя.

**Пример 30.** Синтез (Е)-N-((7-((2,3-дигидробензофуран-6-ил)окси)-2-метилбензофуран-3-ил)метил)-3-(2,2-диметил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-

b]пиразин-7-ил)-N-метилакриламида (соединение**164**).

**Условия реакции**: a) CuI, N, N-диметилглицин,  $K_2PO_4$ , 1,4-диоксан,  $100^{\circ}C$ ; b) Pd/C, MeOH,  $H_2$ ,  $45^{\circ}C$ ; c) акрилоилхлорид, ТЭА, ДХМ,  $0^{\circ}C$  до КТ; d) Pd-116, ДИПЭА,  $Bu_4NCl$ , 1,4-диоксан,  $80^{\circ}C$ .

**Стадия 1.** 1-(7-((2,3-дигидробензофуран-6-ил)окси)-2-метилбензофуран-3-ил)-N-(4-(соединение 161). Смесь метоксибензил)-N-метилметанамин 3-(((4метоксибензил)(метил)амино)метил)-2-метилбензофуран-7-ола 76 (200 мг, 0,64 ммоль), 6бром-2,3-дигидробензофурана 160 (153 мг, 0,77 ммоль), N, N-диметилглицина (66 мг, 0,64 ммоль), CuI (122 мг, 0,64 ммоль) и  $K_3PO_4$  (273 мг, 1,3 ммоль) вакуумируют и обратно заполняют азотом три раза. Добавляют ДМСО (3 мл), и смесь нагревают до 110°C и перемешивают в течение 16 ч. Реакционную смесь охлаждают до КТ. Добавляют этилацетат (10 мл), и смесь фильтруют через Celite®. Полученный раствор промывают водой (10 мл) и насыщенным раствором соли (10 мл), сушат над MgSO<sub>4</sub>, фильтруют и концентрируют в Неочищенный продукт очищают колоночной хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 161 в виде бесцветного масла (80 мг, 27%). R<sup>t</sup> 1,77 мин (Способ 1a) m/z 430 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

**Стадия 2.** 1-(7-((2,3-дигидробензофуран-6-ил)окси)-2-метилбензофуран-3-ил)-N-метилметанамин (соединение **162**). Раствор 1-(7-((2,3-дигидробензофуран-6-ил)окси)-2-метилбензофуран-3-ил)-N-(4-метоксибензил)-N-метилметанамина **161** (80 мг, 0,19 ммоль) в метаноле (5 мл) пропускают через H-cube с 10% Pd/C каталитическим картриджем и с применением режима 'Full  $H_2$ ' при 45°C. Растворитель концентрируют в вакууме с получением указанного в заголовке соединения **162** в виде бесцветного масла (43 мг, 70%).  $R^t$  1,45 мин (Способ 1а) m/z 279 [M - MeNH] (ЭР).

Стадия 3. N-((7-((2,3-дигидробензофуран-6-ил)окси)-2-метилбензофуран-3-ил)метил)-N-метилакриламид (соединение 163). К ледяному раствору 1-(7-((2,3-дигидробензофуран-6-ил)окси)-2-метилбензофуран-3-ил)-N-метилметанамина 160 (160 мг, 0,52 ммоль) и ТЭА (300 мкл, 2,07 ммоль) в ДХМ (10 мл) добавляют по каплям раствор акрилоилхлорида (42 мкл, 0,52 ммоль) в ДХМ (1,0 мл). Реакционную смесь нагревают до КТ и перемешивают в течение 1 ч. Реакционную смесь гасят водой (5,0 мл) и две фазы отделяют. Органическую фазу сушат с MgSO<sub>4</sub>, фильтруют и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-100% EtOAc/изогексан) с получением указанного в заголовке соединения 163 в виде бесцветного масла (120 мг, 60%). R<sup>t</sup> 2,36 мин (Способ 1а); m/z 364 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

Стадия 4. (Е)-N-((7-((2,3-дигидробензофуран-6-ил)окси)-2-метилбензофуран-3-ил)метил)-3-(2,2-диметил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)-N-метилакриламид (соединение 164). В реакционную пробирку загружают N-((7-((2,3-дигидробензофуран-6-ил)окси)-2-метилбензофуран-3-ил)метил)-N-метилакриламид 163 (60 мг, 0,16 ммоль), 7-бром-2,2-диметил-1,2-дигидропиридо[2,3-b]пиразин-3(4H)-он 14 (42 мг, 0,16 ммоль), гидрат хлорида тетрабутиламмония (5,0 мг, 0,02 ммоль) и Pd[P(tBu)<sub>3</sub>]<sub>2</sub> (Pd-116) (9,0 мг, 0,02 ммоль) и пробирку вакуумируют и обратно заполняют N<sub>2</sub> три раза. Добавляют 1,4-диоксан (4,0 мл) и ДИПЭА (58 мкл, 0,33 ммоль), и реакционную смесь нагревают до 80°С и перемешивают в течение ночи. Реакционную смесь охлаждают до КТ, растворитель удаляют в вакууме. Неочищенный продукт затем очищают колоночной хроматографией (0-3% МеОН/ДХМ) с получением желаемого продукта 164 в виде бледножелтого твердого вещества (66 мг, 74%). R<sup>t</sup> 2,72 мин (Способ 1b); m/z 539 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>Н ЯМР (500 МГц, ДМСО-d<sub>6</sub>, VТ ЯМР): δ, ч./млн. 10,42 (с, 1H), 7,89 (д, Ј=1,9 Гц, 1H), 7,48 (д,

J=15,4  $\Gamma$ ц, 1H), 7,34 (д, J=7,8  $\Gamma$ ц, 1H), 7,25 (д, J=1,9  $\Gamma$ ц, 1H), 7,18-7,13 (м, 2H), 7,04 (д, J=15,4  $\Gamma$ ц, 1H), 6,83 (дд, J=7,9  $\Gamma$ ц, 1,0  $\Gamma$ ц, 1H), 6,47 (дд, J=8,1  $\Gamma$ ц, 2,3  $\Gamma$ ц, 1H), 6,42 (д, J=2,2  $\Gamma$ ц, 1H), 6,04 (с, 1H), 4,78 (с, 2H), 4,57 (т, J=8,6  $\Gamma$ ц, 2H), 3,15 (т, J=8,6  $\Gamma$ ц, 2H), 3,03 (с, 3H), 2,49 (с, 3H), 1,31 (с, 6H).

**Пример 31.** Синтез (R, E)-N-((7-амино-2-метилбензофуран-3-ил)метил)-3-(3-гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламида (соединение **167**).

Общая схема синтеза.

**Условия реакции**: a) Pd<sub>2</sub>(dba)<sub>3</sub>, Xantphos, бензофенонимин **72**, Cs<sub>2</sub>CO<sub>3</sub>, PhCh<sub>3</sub>, 110°C; b) i) ТФК, ДХМ; ii) акрилоилхлорид, ТЭА, ДХМ, 0°С до КТ; c) i) Pd-116, NBu<sub>4</sub>Cl, ДИПЭА, 1,4-диоксан, 80°C; ii) 1M HCl, ДХМ.

((7-((дифенилметилен)амино)-2-метилбензофуран-3-Стадия 1. трет-Бутил ил)метил)(метил)карбамат (соединение 165). трет-Бутил ((7-бром-2-метилбензофуран-3ил)метил)(метил)карбамат 97 (2,0 г, 5,65 ммоль), трис(дибензилиденацетон)дипалладий (0,52 г, 0,57 ммоль), Cs<sub>2</sub>CO<sub>3</sub> (3,68 г, 11,3 ммоль) и Xantphos (0,49 г, 0,85 ммоль) добавляют в колбу, и колбу вакуумируют и обратно заполняют  $N_2$  три раза. Добавляют толуол (40 мл) и N<sub>2</sub> барботируют через реакционную смесь в течение 10 мин. Затем добавляют бензофенонимин 72 (1,1 мл, 6,78 ммоль) и реакционную смесь нагревают до кипения с обратным холодильником в течение ~24 ч. Реакционную смесь охлаждают до КТ, перемешивают в течение выходных и затем концентрируют в вакууме. Неочищенный продукт очищают колоночной хроматографией (ДХМ) с получением желаемого продукта **165** в виде желтого масла, которое кристаллизуется при выстаивании (1,67 г, 65%). R<sup>t</sup> 3,09 мин (Способ 1b); m/z 455 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>Н ЯМР (500 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 7,76-7,65 (M, 2H), 7,63-7,55 (M, 1H), 7,55-7,46 (M, 2H), 7,33-7,21 (M, 3H), 7,16-7,04 (M, 3H), 7,01-6,88 (M,

1Н), 6,49 (д, Ј=7,6 Гц, 1Н), 4,40 (с, 2Н), 2,61 (с, 3Н), 2,37 (с, 3Н), 1,43 (с, 9Н).

Стадия 2. N-((7-((Дифенилметилен)амино)-2-метилбензофуран-3-ил)метил)-N-метилакриламид (соединение 166). ТФК (15 мл, 195 ммоль) добавляют по каплям к перемешиваемому раствору трет-бутил ((7-((дифенилметилен)амино)-2-метилбензофуран-3-ил)метил)(метил)карбамата 165 (0,8 г, 1,76 ммоль) в ДХМ (30 мл) и реакционную смесь перемешивают при КТ в течение 1 ч. Реакционную смесь концентрируют в вакууме, и полученный остаток помещают в ДХМ (30 мл), охлаждают до 0°С и добавляют ТЭА (5,0 мл, 35,9 ммоль), затем акрилоилхлорид (0,17 мл, 2,11 ммоль). Реакционную смесь возвращают к КТ и перемешивают в течение ∼16 ч. Реакционную смесь гасят водой (50 мл), затем органическую фазу отделяют и водную фазу снова экстрагируют ДХМ (2 х 50 мл). Объединенные органические слои сушат пропусканием через картридж фазоразделителя и концентрируют в вакууме. Неочищенный продукт очищают колоночной хроматографией (0-3% МеОН/ДХМ) с получением неочищенного продукта, который снова очищают хроматографией на колонке (0-30% ЕtOAc/изогексан) с получением желаемого продукта 166 в виде желтого масла (0,16 г, 21% за 2 стадии).

**Стадия 3.** (R, E)-N-((7-Амино-2-метилбензофуран-3-ил)метил)-3-(3-гидрокси-3метил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламид (соединение 167). В реакционную пробирку загружают N-((7-((дифенилметилен)амино)-2метилбензофуран-3-ил)метил)-N-метилакриламид **166** (0,12 г, 0,29 ммоль), (R)-8-бром-3гидрокси-3-метил-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он 47 (80 мг, 0,29 ммоль), NBu<sub>4</sub>Cl (9 мг, 0,03 ммоль) и Pd-116 (15 мг, 0,03 ммоль) и пробирку вакуумируют и обратно заполняют  $N_2$  три раза. Добавляют 1,4-диоксан (5 мл) и ДИПЭА (0,10 мл, 0,59 ммоль), и реакционную смесь нагревают до 80°C и перемешивают в течение 3 ч. Реакционную смесь охлаждают до КТ, затем разбавляют НСІ (10 мл, 1М водн.) и водную смесь экстрагируют ДХМ (3 х 20 мл). Объединенные органические экстракты промывают водн. 1 М НСІ (2 х 20 мл), затем объединенные водные слои нейтрализуют насыщ. водн. Полученный осадок собирают фильтрацией и очищают колоночной хроматографией (0-5% МеОН/ДХМ) с получением желаемого продукта 167 в виде бледножелтого твердого вещества (42 мг, 33% за 2 стадии).  $R^t$  1,32 мин (Способ 1a); m/z 436  $[M+H]^+$  (ЭР<sup>+</sup>).  $^1$ Н ЯМР (500 МГц, ДМСО-d<sub>6</sub>, 363 K):  $\delta$ , ч./млн. 9,36 (c, 1H), 7,94 (д, J=1,8 Гц, 1H), 7,44 ( $\mu$ , J=15,4  $\Gamma$  $\mu$ , 1H), 7,36 ( $\mu$ , J=2,0  $\Gamma$  $\mu$ , 1H), 7,08 ( $\mu$ , J=15,3  $\Gamma$  $\mu$ , 1H), 6,87 ( $\mu$ , J=7,7  $\Gamma$  $\mu$ ,

1H), 6,74 (д, J=7,7 Гц, 1H), 6,53 (д, J=7,6 Гц, 1H), 6,03 (т, J=4,6 Гц, 1H), 4,91 (с, 1H), 4,87 (с, 2H), 4,71 (с, 2H), 3,21 (дд, J=13,4, 3,7 Гц, 1H), 3,16 (дд, J=13,4, 5,6 Гц, 1H), 2,98 (с, 3H), 2,47 (с, 3H), 1,28 (с, 3H).

**Пример 32.** Синтез (Е)-N-((7-амино-2-метилбензофуран-3-ил)метил)-N-метил-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриламида (соединение **168**).

Общая схема синтеза.

Условия реакции: a) i) ТФК, ДХМ; ii) ГАТУ, ДИПЭА, ДМФ, iii) 1М HCl, ДХМ

**Стадия** 1. (E)-N-((7-Амино-2-метилбензофуран-3-ил)метил)-N-метил-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриламид (соединение **168**). ТФК (2,5 мл, 32,4 ммоль) добавляют по каплям к перемешиваемому раствору трет-бутил ((7-((дифенилметилен)амино)-2-метилбензофуран-3-ил)метил)(метил)карбамата 165 (0,15 г. 0,21 ммоль) в ДХМ (5,0 мл) и реакционную смесь перемешивают при КТ в течение 1 ч. Реакционную смесь концентрируют в вакууме и полученный остаток помещают в ДМФ (2,0 мл) и добавляют трифторацетат (Е)-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриловой кислоты 4 (75 мг, 0,21 ммоль), затем ДИПЭА (1,0 мл, 5,73 ммоль). Реакционную смесь перемешивают в течение 10 мин, затем добавляют ГАТУ (0,12 г, 0,32 ммоль), и реакционную смесь перемешивают в течение еще ~16 ч при КТ. Реакционную смесь разбавляют водн. 1 М НСІ (10 мл) и экстрагируют ДХМ (3 х 20 мл). Объединенные органические экстракты промывают HCl (2×20 мл, 1 M водн.) и объединенные водные слои нейтрализуют насыщ. водн. NaHCO<sub>3</sub>. Полученный осадок собирают фильтрацией и очищают колоночной хроматографией (0-5% МеОН/ДХМ) с получением желаемого продукта 168 в виде беловатого твердого вещества (40 мг, 43% за 3 стадии).  $R^t$  1,41 мин (Способ 1a); m/z 405 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>Н ЯМР (500 МГц, ДМСО-d<sub>6</sub>, 363 K): δ, ч./млн. 9,55 (с, 1H), 8,47 ( $\chi$ ,  $\chi$ =2,2  $\chi$ ,  $\chi$ 1H), 8,02 ( $\chi$ ,  $\chi$ =2,2  $\chi$ 4,  $\chi$ 1H), 7,54 ( $\chi$ 5,  $\chi$ =15,4  $\chi$ 4,  $\chi$ 1H), 7,34-7,20 ( $\chi$ 5,  $\chi$ 1H), 7,54 ( $\chi$ 7,  $\chi$ 5) 6,87 (т, Ј=7,6 Гц, 1Н), 6,75 (д, Ј=7,7 Гц, 1Н), 6,53 (дд, Ј=7,6 Гц, 1,1 Гц, 1Н), 4,86 (с, 2Н), 4,73 (c, 2H), 2,97 (c, 3H), 2,76 ( $\tau$ , J=7,2  $\Gamma$  $\mu$ , 2H), 2,47 (c, 3H), 2,31 ( $\tau$ , J=7,2  $\Gamma$  $\mu$ , 2H), 2,14 ( $\tau$ , J=7,2 Гц, 2Н).

**Пример 33.** Синтез (Е)-N-метил-N-((2-метилбензофуран-3-ил)метил)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриламида (соединение **169**).

Общая схема синтеза.

**Условия реакции**: a) Pd-162, NCy<sub>2</sub>NMe, NBu<sub>4</sub>Cl, 1,4-диоксан, 80°C

8-бром-1,2,3,5-тетрагидро-4H-пиридо[2,3-b][1,4]диазепин-4-он (соединение **169**) синтезируют согласно методикам, описанным в литературе, например, AFFINIUM PHARMECEUTICALS, INC: WO2007/67416, 2007, A2 и AURIGENE DISCOVERY TECHNOLOGIES LIMITED; WO2013/80222, 2013, A1.

Стадия 1. (E)-N-Метил-N-((2-метилбензофуран-3-ил)метил)-3-(4-оксо-2,3,4,5тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)акриламид (соединение **170**). пробирку N-метил-N-((2-метилбензофуран-3реакционную загружают ил)метил)акриламид 38 (150 мг, 0,65 ммоль), 8-бром-2,3-дигидро-1H-пиридо[2,3b][1,4]диазепин-4(5H)-он **169** (158 мг, 0,65 ммоль), гидрат хлорида тетрабутиламмония (19,36 мг, 0,07 ммоль), [P(tBu)<sub>3</sub>]Pd(кротил)Cl (Pd-162) (26,1 мг, 0,07 ммоль). Реакционную пробирку промывают азотом в течение 5 мин. Добавляют 1,4-диоксан (10 мл) и Nциклогексил-N-метилциклогексанамин (280 мкл, 1,31 ммоль), и реакционную смесь продувают азотом в течение еще 5 мин. Смесь нагревают до 80°C в течение 1 ч. Реакционную смесь охлаждают до КТ и твердое вещество собирают фильтрацией, промывают 1,4-диоксаном (10 мл), затем ацетонитрилом (10 мл), и твердое вещество сушат в вакууме с получением указанного в заголовке соединения 170 в виде бледно-желтого твердого вещества (192 мг, 74%). R<sup>t</sup> 1,83 мин (Способ 1b) m/z 391 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>, 363 К):  $\delta$ , ч./млн. 9,17 (с, 1H), 7,98 (д, J=2,0 Гц, 1H), 7,54 (д, J=7,5 Гц, 1Н), 7,50-7,43 (м, 2Н), 7,38 (д, Ј=2,0 Гц, 1Н), 7,26-7,16 (м, 2Н), 7,10 (д, Ј=15,5 Гц, 1Н), 5,81 (д, Ј=4,8 Гц, 1Н), 4,77 (с, 2Н), 3,47-3,41 (м, 2Н), 2,69-2,62 (м, 2Н). Примечание: Оба СН<sub>3</sub> сигнала затемнены пиками воды и растворителя.

**Пример 34.** Синтез фосфата 2-гидроксиэтан-1-аминия (Е)-(2,2-диметил-7-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-3-оксо-2,3-дигидропиридо[2,3-b]пиразин-4(1H)-ил)метила (соединение **172**).

Общая схема синтеза.

**Условия реакции**: a) 1. 18-краун-6, NMP/N-этилпирролидон, КТ 2. t-BuOK при  $10^{\circ}$ C, затем хлорметил бис[2-(триметилсилил)этил]фосфат **21**, 24 ч, КТ; b) ТФК/ДХМ, длительная обработка

**Стадия 1.** бис(2-(триметилсилил)этил)фосфат (E)-(3,3-диметил-6-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-2-оксо-3,4-

дигидрохиноксалин-1(2H)-ил)метила (соединение 171). В герметично закрытой 6 мл микроволновой пробирке под  $N_2$ , (E)-3-(2,2-диметил-3-оксо-1,4-дигидропиридо[2,3b]пиразин-7-ил)-N-метил-N-[(3-метилбензофуран-2-ил)метил]проп-2-енамид **19** (500 мг, 1,23 ммоль, 1,00 экв.) и 1,4,7,10,13,16-гексаохациклооктадекан (408,37 мг, 1,53 ммоль, 1,24 экв.) помещают в суспензию в N-этилпирролидоне (3,0 мл) при КТ. Затем полученную желтую суспензию перемешивают при КТ в течение 5 минут, и проводят циклы дегазирования (5 циклов; вакуум/азот). Затем реакционную смесь охлаждают до 10°C и 2метилпропан-2-ола калия (1,3 мл, 1,3 ммоль, 1,05 экв., 1 М в ТГФ) добавляют по каплям в течение 5 минут. Полученный желтый раствор снова подвергают циклам дегазирования (3 циклов; вакуум/азот) и затем перемешивают при КТ в течение 20 минут. Затем хлорметил бис(2-(триметилсилил)этил)фосфат 21 (1997,1 мг, 1,73 ммоль, 1,4 экв., 30% масс./масс. в гептане) добавляют по каплям к реакционной смеси при КТ в течение 5 минут. Реакционную смесь затем перемешивают при КТ в течение 22 ч (УЭЖХ/МС: Исходный материал: Rt=1,64 мин; 41% (ППК); ЭР+: 405,4. Продукт: Rt=2,68 мин; 44% (ППК); ЭР+: 715,6). Смесь насыщенного раствора ацетата аммония (7 мл; pH=9) и  $T\Gamma\Phi$  (5 мл) добавляют в реакционную смесь. После встряхивания фазы разделяют, и вторую промывку осуществляют смесью насыщенного раствора соли (7 мл) и ТГФ (5 мл). Третью промывку проводят насыщенным раствором соли (7 мл) и метилциклогексаном (7 мл), затем добавляют в органическую фазу. Полученную суспензию фильтруют через стеклянный фильтр, и твердое вещество затем промывают метилциклогексаном (7 мл). Фильтрат концентрируют досуха при 25°C под вакуумом с получением желтого масла, которое очищают флэш-хроматогрфией (SiO<sub>2</sub>), элюируя сначала МТБЭ 99,8% - ДИЭА 0,2%, затем МТБЭ 89,8%-Ацетонитрилом 10%-ДИЭА 0,2%. Фракции, представляющие интерес, объединяют и концентрируют досуха при КТ под вакуумом с получением указанного в заголовке соединения 171 в виде желтого масла (м=440,6 мг; УЭЖХ чистота: 98% (ППК); ЭР+: 715,6; 48,9% выход).

**Стадия 2.** Фосфат 2-гидроксиэтан-1-аминия (Е)-(3,3-диметил-6-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-2-оксо-3,4-дигидрохиноксалин-1(2H)-ил)метила (соединение **172**). В 50 мл колбе, содержащей бис(2-триметилсилилэтил)фосфат [2,2-диметил-7-[(Е)-3-[метил-[(3-метилбензофуран-2-

ил)метил]амино]-3-оксо-проп-1-enyl]-3-оксо-1H-пиридо[2,3-b]пиразин-4-ил]метила (440,6 мг, 0,60 ммоль, 1 экв.) под  $N_2$  добавляют безводный толуол (4 мл). Реакционную смесь перемешивают при 0°C до полного растворения, и раствор ТФК (0,93 мл, 12,08 ммоль, 20 экв.) в безводном ДХМ (2 мл) при 0°С добавляют по каплям в течение 1 минуты при перемешивании. Реакционную смесь затем перемешивают при 0°C в течение 1 минуты максимум, и затем сразу же концентрируют в глубоком вакууме в роторном испарителе (температура бани: 1°C) до тех пор, пока не останется 2 мл. Затем добавляют безводный толуол (4 мл), и реакционную смесь концентрируют до тех пор, пока не останется 2 мл. Такое со-выпаривание повторяют 4 раза. Затем дважды проводят цикл второго совыпаривания досуха с применением каждый раз безводного толуола (4 мл). Конечный остаток получают в виде густого желтого масла. Завершение гидролиза подтверждают УЭЖХ/МС (продукт: R<sup>t</sup> 1,40 мин; ЭР-: 513,5. Исходный материал: R<sup>t</sup> 2,68 мин; 0% (ППК)). Храня в сухом льду во время приготовления для следующей стадии. В 50 мл колбе под  $N_2$ готовят раствор этаноламина (186,31 мг, 3,02 ммоль, 5 экв.) в ацетоне (10 мл) при 0°С, затем добавляют одной порцией к раствору предыдущего промежуточного соединения в дихлорметане (5 мл) при 0°C. Наблюдается немедленное выпадение осадка, и полученную молочно-прозрачную желтую суспензию перемешивают при 0°C в течение 10 минут. После фильтрации через стеклянный фильтр, липкое твердое вещество промывают ацетоном (1 х 5 мл; 2 х 10 мл), затем диэтиловым эфиром (2 х 10 мл). Суспензию не обязательно фильтровать полностью, и каждый раз слой растворителя должен присутствовать перед переходом на следующую стадию промывания, за исключением последней. Затем полученное мелкое кремовое твердое вещество отсасывают досуха в течение только 2-3 секунд, и конечную сушку проводят под вакуумом при КТ с получением указанного в заголовке соединения 172 в виде желтого порошка (м=253,7 мг; УЭЖХ чистота: 99% (ППК); ЭР-: 513,5; 2 экв. этаноламина по ЯМР; 1,3% масс./масс. ТФК соли этаноламина; 65,3% выход).  ${}^{1}$ Н ЯМР (400 МГц, D<sub>2</sub>O):  $\delta$ , ч./млн. 7,72 (д, J=3,8 Гц, 1H), 7,27-6,92 (м, 7H), 6,65 (д, Ј=15,6 Гц, 1Н), 5,58 (дд, Ј=3,3 Гц, 11,2 Гц, 2Н), 4,55 (с, 1Н, ротамер), 4,49 (с, 1Н, ротамер), 3,74-3,70 (м, 4H), 3,06-3,02 (м, 4H), 2,90 (с, 2H, ротамер), 2,84 (с, 1H, ротамер), 1,98 (с, 2H, ротамер), 1,96 (с, 1H, ротамер), 1,26-1,20 (м, 6H).

**Пример 35.** Синтез фосфата 2-гидроксиэтан-1-аминия (E)-(8-(3-(((7-(3-метоксифенокси)-2-метилбензофуран-3-ил)метил)(метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-1,2,3,4-тетрагидро-5H-пиридо[2,3-b][1,4]диазепин-5-ил)метила (соединение **174**).

Общая схема синтеза.

**Условия реакции**: a) 1. 1М t-BuOK/ТГФ, ДМСО, КТ, 2. хлорметил бис[2-(триметилсилил)этил]фосфат **21**; b) ТФК/ДХМ, длительная обработка

**Стадия 1.** бис(2-(триметилсилил)этил)фосфат (E)-(8-(3-(((7-(3-метоксифенокси)-2метилбензофуран-3-ил)метил)(метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-1,2,3,4тетрагидро-5Н-пиридо[2,3-b][1,4]диазепин-5-ил)метила (соединение 173). В герметично закрытой 6 мл микроволновой пробирке под азотом, содержащей (Е)-N-((7-(3метоксифенокси)-2-метилбензофуран-3-ил)метил)-N-метил-3-(4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)акриламид 155 (400 мг, 0,76 ммоль, 1,00 экв.) в суспензии в безводном ДМСО (3,2 мл) при КТ добавляют по каплям 2-метилпропан-2-олат калия  $(0.83 \text{ мл}, 0.83 \text{ ммоль}, 1.10 \text{ экв.}; 1 \text{ M в ТГ}\Phi)$  в течение 2 минут. Затем полученный темно-желтый раствор подвергают циклам дегазирования (5 циклов; вакуум/азот) и затем перемешивают при КТ в течение 20 минут. Затем реакционную смесь добавляют по каплям в течение 13 минут к раствору хлорметил бис(2-(триметилсилил)этил)фосфата 21 (1,47 мл, 1,06 ммоль, 1,4экв.; 30% в гексане) при энергичном перемешивании, затем реакционную смесь (оранжевый двухфазный раствор) энергично перемешивают в течение 45 минут, чтобы показать хорошее превращение УЭЖХ/МС (исходный материал: R<sup>t</sup>1,82 мин; 14% (ППК при 254 нм); ЭР+: 513,6). Продукт: R<sup>t</sup>2,66 мин; 65% (ППК при 254 нм); ЭР+: 823,8). Реакционную смесь гасят насыщ. раствором AcONH4 (6 мл) и экстрагируют четыре раза МТБЭ (4 х 6 мл). Объединенные органические фазы промывают насыщенным раствором соли и сушат над Na<sub>2</sub>SO<sub>4</sub> с получением, после концентрации под вакуумом при 20°C, густого оранжевого масла (м=643 мг; УЭЖХ/МС: 72% (ППК при 254 нм)).

Очистку проводят флэш-хроматографией (SiO<sub>2</sub>; элюируя сначала МТБЭ 99,5%-ДИЭА 0,5%, затем МТБЭ 93%-Ацетонитрилом 6,5%-ДИЭА 0,5% и наконец МТБЭ 85%-Ацетонитрилом 14,5%-ДИЭА 0,5%). Фракции, представляющие интерес, объединяют и концентрируют досуха при КТ под вакуумом с получением указанного в заголовке соединения в виде желтой пены (м=219,5 мг; УЭЖХ чистота: 96% (ППК при 254 нм); 33,82% выход). Средний выход объясняют некоторым разложением во время флэш-хроматографии (подтвержденным ТСХ 2D экспериментами).

**Стадия 2.** Фосфат 2-гидроксиэтан-1-аминия (Е)-(8-(3-(((7-(3-метоксифенокси)-2-метилбензофуран-3-ил)метил)(метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-1,2,3,4-

тетрагидро-5Н-пиридо[2,3-b][1,4]диазепин-5-ил)метила (соединение 174). В 100 мл колбу, бис(2-триметилсилилэтил)фосфат содержащую [8-[(Е)-3-[[7-(3-метоксифенокси)-2метилбензофуран-3-ил]метилметиламино]-3-оксопроп-1-енил]-4-оксо-2,3-дигидро-1Нпиридо[2,3-b][1,4]диазепин-5-ил]метила 173 (219,5 мг, 0,26 ммоль, 1,0 экв.) под  $N_2$ добавляют безводный толуол (4 мл). Полученную смесь затем перемешивают при 0°C до полного растворения и раствор 2,2,2-трифторуксусной кислоты (0,93 мл, 12,08 ммоль, 20 экв.) в безводном ДХМ (2,0 мл) при 0°С добавляют по каплям в течение 30 секунд. Реакционную смесь перемешивают при 0°C в течение 3 минут, и реакционную массу затем сразу концентрируют в глубоком вакууме с роторным испарителем (температура бани: 1°C) до тех пор, пока не останется 2 мл. Затем добавляют безводный толуол (4 мл), и реакционную смесь концентрируют до тех пор, пока не останется 2 мл. Это со-выпаривание повторяют четыре раза для удаления всей остаточной ТФК (желтая пена). УЭЖХ/МС (ожидаемый продукт R<sup>t</sup> 1,58 мин; ЭР<sup>-</sup>: 621,6; 92% (ППК при 254 нм). АФИ: R<sup>t</sup> 1,81 мин; 2% (ППК при 254 нм)). Исходный материал не остается.

В 50 мл колбе под  $N_2$  готовят раствор этаноламина (186,31 мг, 3,02 ммоль, 5,0 экв.) в  $T\Gamma\Phi$  (10 мл) при 0°С, затем подавляют одной порцией к раствору предыдущего промежуточного соединения в ТГФ (5 мл) при 0°C. Выпадение осадка наблюдают через несколько минут при перемешивании при 0-5°C и суспензию затем фильтруют через стеклянный фильтр (твердое вещество является Явно гигроскопичным, и фильтрацию останавливают до того, как лепешка станет сухой). Густую суспензию промывают ТГФ (2 х 10 мл; фильтрацию останавливают каждый раз непосредственно перед завершением). УЭЖХ/МС фильтрата показала, АФИ в качестве меньшего продукта и только следы ожидаемого пролекарства). Наконец густую суспензию промывают диэтиловым эфиром (2 х 4 мл), и твердое вещество отсасывают досуха в течение всего нескольких секунд. Затем полученное желтое твердое вещество сушат под вакуумом при КТ в течение ночи с получением указанного в заголовке соединения (135,37 мг; 69,2% выход). УЭЖХ/МС; способ: 3 мин кислотный стандарт; 254 нм; чистота 97,50% (тах график ППК), ЭР-: 621,58. <sup>1</sup>Н ЯМР (400 МГц, D<sub>2</sub>O, 333K):  $\delta$ , ч./млн. 78,62 (с, 1H), 7,92 (шс, 1H), 7,85 (д, J=15,7 Гц, 1H), 7,55 (м, 1H), 7,31 (м, 3H), 6,94 (м, 1H), 6,84 (м, 1H), 6,75 (с, 1H), 6,66 (д,  $J=7,6\Gamma$ ц, 1H), 5,97(с, 1H, ротамер), 5,96 (с, 1H, ротамер), 5,10 (с, 1H, ротамер), 5,01 (с, 1H, ротамер), 4,22 (т, J=5,3 Гц, 4H), 4,03 (м, 2H), 3,91 (с, 1H, ротамер), 3,89 (с, 2H, ротамер), 3,54 (т, J=5,2 Гц, 4H), 3,31 (с, 3H), 2,88 (м, 1H), 2,78 (м, 1H), 2,64 (с, 3H). Содержание ТФК соль этаноламина: 7,6% масс./масс.

**Пример 36.** Синтез (R, E)-N-((7-(бензо[d][1,3]диоксол-5-илокси)-2-метилбензофуран-3-ил)метил)-3-(3-гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламида (соединение **176**).

Общая схема синтеза.

**Условия реакции**: а) акрилоилхлорид, ТЭА, 0°С до КТ; b) Pd-162, MeNCy<sub>2</sub>, NBu<sub>4</sub>Cl, 1,4-диоксан, 80°С

Стадия 1. N-((7-(Бензо[d][1,3]диоксол-5-илокси)-2-метилбензофуран-3-ил)метил)-N-метилакриламид (соединение 175). К ледяному раствору 1-(7-(бензо[d][1,3]диоксол-5-илокси)-2-метилбензофуран-3-ил)-N-метилметанамина 118 (196 мг, 0,63 ммоль) и ТЭА (350 мкл, 2,52 ммоль) в ДХМ (10 мл) добавляют по каплям раствор акрилоилхлорида (51 мкл, 0,63 ммоль) в ДХМ (1,0 мл). После завершения добавления смесь нагревают до КТ. Смесь промывают водой (5,0 мл), и органические вещества отделяют через картридж для разделения фаз и выпаривают досуха. Неочищенный продукт очищают колоночной хроматографией (0-50% EtOAc/изогексан) с получением указанного в заголовке соединения 175 в виде прозрачного бесцветного масла (120 мг, 51%). R<sup>t</sup> 2,29 мин (Способ 1а) m/z 366 [М+H]<sup>+</sup>(ЭР<sup>+</sup>). <sup>1</sup>Н ЯМР (500 МГц, ДМСО-d<sub>6</sub>, 363 K): δ, ч./млн. 7,27 (д, Ј=7,7 Гц, 1H), 7,13 (тд, Ј=7,9, 0,9 Гц, 1H), 6,90-6,76 (м, 3H), 6,70 (дд, Ј=2,6 Гц, 0,9 Гц, 1H), 6,51 (ддд, Ј=8,4 Гц, 2,4 Гц, 0,9 Гц, 1H), 6,18 (ддд, Ј=16,7 Гц, 2,4 Гц, 0,9 Гц, 1H), 6,02 (д, Ј=0,9 Гц, 2H), 5,71 (дд, Ј=10,5 Гц, 2,4 Гц, 1H), 4,71 (с, 2H), 2,94 (с, 3H), 2,47 (с, 3H).

Стадия 2. (R, E)-N-((7-(Бензо[d][1,3]диоксол-5-илокси)-2-метилбензофуран-3-ил)метил)-3-(3-гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламид (соединение 176). В реакционную пробирку загружают N-((7-(бензо[d][1,3]диоксол-5-илокси)-2-метилбензофуран-3-ил)метил)-N-метилакриламид 175 (50 мг, 0,14 ммоль), (R)-8-бром-3-гидрокси-3-метил-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он 47 (37 мг, 0,14 ммоль), NBu<sub>4</sub>Cl (4,0 мг, 0,01 ммоль) и [P(tBu)<sub>3</sub>]Pd(кротил)Cl (Pd-162) (6,0 мг, 0,01 ммоль) и пробирку промывают N<sub>2</sub> (5 мин). Добавляют 1,4-диоксан (2,0 мл) и N-циклогексил-N-метилциклогексанамин (59 мкл, 0,27

ммоль) и реакционную смесь снова продувают  $N_2$  (5 мин). Реакционную смесь нагревают до 80°С в течение 1 ч, затем охлаждают до КТ и выпаривают досуха. Остаток растирают с изогексаном (10 мл) и неочищенное твердое вещество очищают хроматографией (0-5% МеОН/ДХМ) с получением указанного в заголовке соединения **176** в виде бледно-желтого твердого вещества (41 мг, 53%). Rt 2,15 мин (Способ 1а); m/z 557 [М+Н]<sup>+</sup> (ЭР+). <sup>1</sup>Н ЯМР (500 МГц, ДМСО-d<sub>6</sub>, 363 K):  $\delta$ , ч./млн. 9,37 (c, 1H), 7,96 (д, J=1,9 Гц, 1H), 7,47 (д, J=15,4 Гц, 1H), 7,37 (д, J=2,0 Гц, 1H), 7,31 (д, J=7,8 Гц, 1H), 7,13 (т, J=7,9 Гц, 2H), 6,86 (д, J=8,4 Гц, 1H), 6,79 (дд, J=8,0 Гц, 0,9 Гц, 1H), 6,70 (д, J=2,4 Гц, 1H), 6,51 (дд, J=8,4 Гц, 2,5 Гц, 1H), 6,06-6,02 (м, 1H), 6,02 (с, 2H), 4,92 (д, J=1,1 Гц, 1H), 4,78 (с, 2H), 3,25-3,13 (м, 2H), 3,00 (д, J=1,1 Гц, 3H), 2,49 (с, 3H), 1,29 (с, 3H).

**Пример 37.** Синтез (Е)-N-((7-(индолин-5-илокси)-2-метилбензофуран-3-ил)метил)-N-метил-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриламид (соединение **180**)

Общая схема синтеза.

**Условия реакции**: a) CuI, N, N-диметилглицин, Cs<sub>2</sub>CO<sub>3</sub>, ДМФ, 100°C; b) Pd/C, MeOH, H<sub>2</sub>, 50°C; c) ГАТУ, ДИПЭА, ДМФ; d) ТФК, ДХМ.

Стадия 1. трет-Бутил 5-((3-(((4-метоксибензил)(метил)амино)метил)-2-метилбензофуран-7-ил)окси)индолин-1-карбоксилат (соединение 177). Смесь 3-(((4-метоксибензил)(метил)амино)метил)-2-метилбензофуран-7-ола 76 (150 мг, 0,48 ммоль), йодида меди(I) (92 мг, 0,48 ммоль), N, N-диметилглицина (50 мг, 0,48 ммоль), Сs<sub>2</sub>CO<sub>3</sub> (628 мг, 1,9 ммоль) и трет-бутил 5-броминдолин-1-карбоксилата 176 (144 мг, 0,48 ммоль) вакуумируют и обратно заполняют азотом (3 х). Добавляют ДМФ (3 мл) и смесь нагревают до 110°С в течение ночи. Смесь разбавляют водой (5 мл) и EtOAc (5 мл). Фазы разделяют, и водную фазу экстрагируют EtOAc (2 х 10 мл). Объединенные органические фазы промывают насыщенным раствором соли (15 мл), сушат над MgSO<sub>4</sub>, фильтруют и концентрируют под вакуумом. Неочищенный продукт очищают хроматографией (0-100% EtOAc/изогексан) с получением указанного в заголовке соединения 177 в виде темно-

желтого масла (129 мг, 49%).  $R^t$  3,21 мин (Способ 1b); m/z 529  $[M+H]^+$  (Э $P^+$ ).  $^1H$  ЯМР (500 МГц, CDCl<sub>3</sub>):  $\delta$ , ч./млн. 7,47-7,24 (м, 4H), 7,09 (т, J=7,8 Гц, 1H), 6,97-6,87 (м, 4H), 6,71 (д, J=7,9 Гц, 1H), 4,02 (шс, 2H), 3,83 (с, 3H), 3,56 (с, 2H), 3,52 (с, 2H), 3,08 (т, J=8,6 Гц, 2H), 2,46 (с, 3H), 2,21 (с, 3H), 1,59 (с, 9H).

2. 5-((2-метил-3-((метиламино)метил)бензофуран-7-Стадия трет-Бутил ил)окси)индолин-1-карбоксилат (соединение 178). Раствор трет-бутил 5-((3-(((4метоксибензил)(метил)амино)метил)-2-метилбензофуран-7-ил)окси)индолин-1карбоксилат 177 (129 мг, 0,24 ммоль) в MeOH (5 мл) гидрируют в H-Cube (10% Pd/C, 30×4 мм, Полный водород, 50°C, 1 мл/мин). Растворитель удаляют в вакууме, затем остаток повторно растворяют в МеОН и загружают в СКХ колонку (1 г). Колонку промывают МеОН (50 мл) и затем продукт элюируют 0,7 М метанольным аммиаком и концентрируют в Неочищенный продукт очищают хроматографией (0-10% NH<sub>3</sub>/MeOH)/ДХМ) с получением указанного в заголовке соединения 178 в виде бесцветного масла (54 мг, 52%).  $R^{t}$  2,41 мин (Способ 1b); m/z 322 (M - tBu-NHCH<sub>3</sub>)<sup>+</sup> (Э $P^{+}$ ).

**Стадия 3.** (E)-трет-Бутил 5-((2-метил-3-((N-метил-3-(8-оксо-6,7,8,9-тетрагидро-5Hпиридо[2,3-b]азепин-3-ил)акриламидо)метил)бензофуран-7-ил)окси)индолин-1карбоксилат (соединение 179). К суспензии трет-бутил 5-((2-метил-3-((метиламино)метил)бензофуран-7-ил)окси)индолин-1-карбоксилата 178 (100 мг, 0,24 (E)-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3ммоль), трифторацетата ил)акриловой кислоты 4 (109 мг, 0,24 ммоль) и ДИПЭА (0,21 мл, 1,22 ммоль) в ДМФ (2,0 мл) добавляют ГАТУ (102 мг, 0,27 ммоль), и реакционную смесь перемешивают в течение 2 ч. Затем добавляют воду (3,0 мл) и твердое вещество собирают фильтрацией. Неочищенное твердое вещество очищают хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 179 в виде желтого твердого вещества (100 мг, 62%).  $R^t$  2,63 мин (Способ 1a);m/z 623  $[M+H]^+$  ( $\Im P^+$ ).

**Стадия 4.** (Е)-N-((7-(Индолин-5-илокси)-2-метилбензофуран-3-ил)метил)-N-метил-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриламид (соединение **180**). ТФК (2 мл, 25 ммоль) добавляют по каплям к перемешиваемому раствору (Е)-трет-бутил 5-((2-метил-3-((N-метил-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-

ил)акриламидо)метил)бензофуран-7-ил)окси)индолине-1-карбоксилата **179** (100 мг, 0,16 ммоль) в ДХМ (4,0 мл). Реакционную смесь перемешивают в течение 30 мин, затем концентрируют в вакууме. Полученное желтое масло суспендируют в NaHCO<sub>3</sub> (10 мл) и перемешивают в течение 30 мин. Водную смесь экстрагируют ДХМ (3 х 10 мл), и объединенные органические слои сушат с MgSO<sub>4</sub>, фильтруют и концентрируют в вакууме с получением указанного в заголовке соединения **180** в виде бежевого твердого вещества (50 мг, 56%). R<sup>t</sup> 1,36 мин (Способ 1а); m/z 523 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (500 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 9,57 (с, 1H), 8,49 (д, J=2,2 Гц, 1H), 8,03 (д, J=2,2 Гц, 1H), 7,57 (д, J=15,4 Гц, 1H), 7,36-7,18 (м, 2H), 7,07 (т, J=7,9 Гц, 1H), 6,87-6,79 (м, 1H), 6,67 (дд, J=8,4 Гц, 2,5 Гц, 2H), 6,50 (д, J=8,3 Гц, 1H), 5,12 (с, 1H), 4,79 (с, 2H), 3,46 (т, J=8,5 Гц, 2H), 3,01 (с, 3H), 2,93 (т, J=8,5 Гц, 2H), 2,77 (т, J=7,2 Гц, 2H), 2,50 (с, 3H), 2,32 (т, J=7,2 Гц, 2H), 2,15 (п, J=7,2 Гц, 2H).

**Пример 38.** Синтез (R, E)-N-((7-((2,3-дигидробензофуран-6-ил)окси)-2-метилбензофуран-3-ил)метил)-3-(3-гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламида (соединение **182**).

Общая схема синтеза.

**Реагенты и условия**: а) акрилоилхлорид, ТЭА, 0°С до КТ; b) Pd-162, MeNCy<sub>2</sub>, NBu<sub>4</sub>Cl, 1,4-диоксан, 80°C

Стадия 1. N-((7-((2,3-дигидробензофуран-6-ил)окси)-2-метилбензофуран-3-ил)метил)-N-метилакриламид (соединение 181). К ледяному раствору 1-(7-((2,3-дигидробензофуран-6-ил)окси)-2-метилбензофуран-3-ил)-N-метилметанамин 162 (160 мг, 0,52 ммоль) и ТЭА (300 мкл, 2,07 ммоль) в ДХМ (10 мл) добавляют по каплям раствор акрилоилхлорида (42 мкл, 0,52 ммоль) в ДХМ (1,0 мл). Реакционную смесь нагревают до КТ и перемешивают в течение 1 ч. Реакционную смесь гасят водой (5,0 мл) и две фазы отделяют. Органическую фазу сушат с MgSO<sub>4</sub>, фильтруют и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-100% EtOAc/изогексан) с получением указанного в заголовке соединения 181 в виде бесцветного масла (120 мг, 60%). R<sup>t</sup> 2,36 мин (Способ 1а); m/z 364 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

**Стадия 2.** (R, E)-N-((7-((2,3-дигидробензофуран-6-ил)окси)-2-метилбензофуран-3ил)метил)-3-(3-гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3b][1,4]диазепин-8-ил)-N-метилакриламид (соединение **182**). В реакционную пробирку загружают N-((7-((2,3-дигидробензофуран-6-ил)окси)-2-метилбензофуран-3-ил)метил)-Nметилакриламид **181** (60 мг, 0,17 ммоль), (R)-8-бром-3-гидрокси-3-метил-2,3-дигидро-1Hпиридо[2,3-b][1,4]диазепин-4(5H)-он 47 (45 мг, 0,17 ммоль), NBu<sub>4</sub>Cl (5 мг, 0,02 ммоль),  $[P(tBu)_3]Pd(кротил)Cl$  (Pd-162) (7 мг, 0,02 ммоль) и пробирку промывают  $N_2$  в течение 5 мин. Добавляют 1,4-диоксан (3,0 мл) и N-циклогексил-N-метилциклогексанамин (75 мкл, 0.35 ммоль), и реакционную смесь продувают  $N_2$  в течение еще 5 мин. Смесь нагревают до 80°C в течение 1 ч и затем охлаждают до КТ. Добавляют этилацетат (5,0 мл), и полученный раствор промывают водой (5,0 мл) и насыщенным раствором соли (5,0 мл), сушат над MgSO<sub>4</sub>, фильтруют и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 182 в виде бледно-желтого твердого вещества (29 мг, 36%). R<sup>t</sup> 2,12 мин (Способ 1a);m/z 555  $[M+H]^+$  (ЭР<sup>+</sup>).  $^1$ Н ЯМР (500 МГц, ДМСО-d<sub>6</sub>, 363 K):  $\delta$ , ч./млн. 9,38 (c, 1H), 7,96 (д, J=1,9 Гц, 1Н), 7,47 (д, Ј=15,4 Гц, 1Н), 7,41-7,25 (м, 2Н), 7,25-7,03 (м, 3Н), 6,83 (дд, Ј=7,9 Гц, 1,1 Гц, 1Н), 6,47 (дд, Ј=8,0 Гц, 1,6 Гц, 1Н), 6,42 (д, Ј=2,2 Гц, 1Н), 6,05 (с, 1Н), 4,93 (с, 1Н), 4,78 (с, 2H), 4,57 (т, J=8,6 Гц, 2H), 3,25-3,11 (м, 4H), 3,03 (с, 3H), 2,48 (с, 3H), 1,29 (с, 3H).

**Пример 39.** Синтез (R, E)-3-(3-гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)-N-((7-(3-метоксифенокси)-2-метилбензофуран-3-ил)метил)-N-метилакриламид (соединение **183**).

Общая схема синтеза.

Реагенты и условия: a) ГОБт·H<sub>2</sub>O, EDC·HCl, ДИПЭА, ДМФ

Стадия 1. (R, E)-3-(3-Гидрокси-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-((7-(3-метоксифенокси)-2-метилбензофуран-3-ил)метил)-N-метилакриламид (соединение183). Микроволновую пробирку, покрытую алюминиевой фольгой, загружают ГОБт  $H_2O$  (8,04 мг, 0,05 ммоль) и (E)-3-[(3R)-3-гидрокси-3-метил-4-оксо-2,5-дигидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил]проп-2-еновую кислоту 142 (9,21 мг, 0,04 ммоль) и ДМФ (0,3 мл). Добавляют 1-[7-(3-метоксифенокси)-2-метил-бензофуран-3-ил]-N-метил-метанамин 153 (10,41 мг, 0,04 ммоль) и EDCl HCl (10,06 мг, 0,05 ммоль), и через 2 мин перемешивания при КТ добавляют ДИПЭА (0,02 мл, 0,12 ммоль). Реакционную

смесь перемешивают в темноте в течение ночи при КТ. Затем добавляют воду и ацетонитрил, смесь обрабатывают ультразвуком и осадок отфильтровывают. Неочищенный продукт (24 мг) очищают препаративной ВЭЖХ с применением градиента вода/АЦН 100% до 100% с получением указанного в заголовке соединения **183** в виде желтого масла (3,7 мг, 19,4% выход).  $R^t$  1,83 мин (Способ 1b); m/z 543,5  $[M+H]^+$  (Э $P^+$ ).  $^1H$  ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 9,93 (c, 1H), 7,98 (c, 1H), 7,52-7,17 (м, 5H), 7,06 (д, J=15,5 Гц, 1H), 6,88 (д, J=8,2 Гц, 1H), 6,71 (дд, J=1,7 Гц, 7,9 Гц, 1H), 6,61-6,56 (м, 1H), 6,51 (дд, J=1,8 Гц, 8,4 Гц, 1H), 6,28-6,19 (м, 1H), 5,28 (с, 1H),4,90, 4,75 (2 c, 2H), 3,73 (c, 3H), 3,21-3,08 (м, 2H), 3,06, 2,96 (2 c, 3H), 2,45 (c, 3H), 1,23 (c, 3H) (ротамеры).

**Пример 40.** Синтез (Е)-N-((7-(3-метоксифенокси)-2-метилбензофуран-3-ил)метил)-N-метил-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриламид (соединение **186**).

Общая схема синтеза.

**Реагенты и условия**: а) акрилоилхлорид, ТЭА, ДХМ, 0°С; b) Pd-116, ДИПЭА, NBu<sub>4</sub>Cl, диоксан, 80°С

Синтез 3-бром-6,7-дигидро-5H-пиридо[2,3-b]азепин-8(9H)-он (соединение **185**) ранее описан у AFFINIUM PHARMECEUTICALS, INC: WO2007/67416, 2007, A2.

Стадия 1. N-((7-(3-Метоксифенокси)-2-метилбензофуран-3-ил)метил)-N-метилакриламид (соединение **184**). К перемешиваемому раствору 1-(7-(3-метоксифенокси)-2-метилбензофуран-3-ил)-N-метилметанамина **153** (155 мг, 0,52 ммоль) в ДХМ (1,5 мл) добавляют ТЭА (0,22 мл, 1,58 ммоль) и акрилоилхлорид (0,051 мл, 0,63 ммоль) при 0°С. Реакционную смесь перемешивают при 0°С в течение 1 ч, затем нагревают при КТ. Реакционную смесь гасят водой (5,0 мл), затем экстрагируют в ДХМ (20 мл). Органические вещества отделяют и сушат пропусканием через гидрофобную фритту, и затем концентрируют в вакууме. Неочищенный продукт очищают хроматографией на двуокиси кремния (0-100% EtOAc/изогексан) с получением указанного в заголовке соединения **184** в виде желтого масла (122 мг, 67%). R<sup>t</sup> 2,32 мин (Способ 1b); m/z 352 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

**Стадия 2.** (Е)-N-((7-(3-Метоксифенокси)-2-метилбензофуран-3-ил)метил)-N-метил-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриламид (соединение **186**). В

N-((7-(3-метоксифенокси)-2-метилбензофуран-3пробирку загружают ил)метил)-N-метилакриламид **184** (55 мг, 0,16 ммоль), 3-бром-6,7-дигидро-5H-пиридо[2,3b]азепин-8(9H)-он **185** (38 мг, 0,16 ммоль), n-Bu<sub>4</sub>NCl·H<sub>2</sub>O (5,0 мг, 0,02 ммоль) и Pd[P(<sup>t</sup>Bu)<sub>3</sub>]<sub>2</sub> (Pd-116) (8,00 мг, 0,02 ммоль) и пробирку вакуумируют и обратно заполняют  $N_2$  (3 х). Добавляют 1,4-диоксан (4,0 мл) и ДИПЭА (55 мкл, 0,30 ммоль), и реакционную смесь нагревают до 80°C в течение 30 мин. Реакционную смесь выпаривают досуха, и неочищенный продукт очищают хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 186 в виде бледно-желтого твердого вещества (42 мг. 52%). R<sup>t</sup> 2,26 мин (Способ 1a); m/z 512 [M+H]<sup>+</sup> (ЭР+). <sup>1</sup>H ЯМР (500 МГц, ДМСО-d<sub>6</sub>, 363K):  $\delta$ , ч./млн. 9,57 (с, 1H), 8,49 (д, J=2,2 Гц, 1H), 8,04 (д, J=2,2 Гц, 1H), 7,57 (д, J=15,5 Гц, 1H), 7,37 (д, J=7,8  $\Gamma$ ц, 1H), 7,26 (т, J=8,2  $\Gamma$ ц, 2H), 7,17 (т, J=7,9  $\Gamma$ ц, 1H), 6,88 (д, J=7,9  $\Gamma$ ц, 1H), 6,72(дд, Ј=8,3 Гц, 2,3 Гц, 1Н), 6,60 (д, Ј=2,5 Гц, 1Н), 6,56 (дд, Ј=8,3 Гц, 2,2 Гц, 1Н), 4,80 (с, 2Н), 3,76 (с, 3H), 3,00 (с, 3H), 2,77 (т, Ј=7,2 Гц, 2H), 2,48 (с, 3H), 2,32 (т, Ј=7,2 Гц, 2H), 2,16 (т,  $J=7,2 \Gamma \mu, 2H$ ).

**Пример 41.** Синтез (Е)-N-((7-(3-метоксифенокси)-2-метилбензо[b]тиофен-3-ил)метил)-N-метил-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриламид (соединение **194**).

Общая схема синтеза.

**Условия реакции**: а) дихлор(метокси)метан, хлорид олова(IV), ДХМ, 0°С; b) 1-(4-метоксифенил)-N-металметанамин, Na(OAc)<sub>3</sub>BH, ДХЭ; c) Pd-175, tBuBrettPhosm KOH, 1,4-диоксан,  $H_2O$ , 80°С; d) 3-бромоанизол 191, CuI, N, N-диметилглицин,  $Cs_2CO_3$ , ДМФ, 110°С; e) ACE-Ci, MeOH, 0°С до КТ; f) ГАТУ, ДИПЭА, ДМФ.

Стадия 1. 7-Бром-2-метилбензо[b]тиофене-3-карбальдегид (соединение 188). К раствору 7-бром-2-метилбензо[b]тиофена 187 (950 мг, 4,18 ммоль) и дихлор(метокси)метана (0,42 мл, 4,64 ммоль) в ДХМ (20 мл) при 0°С добавляют по каплям раствор хлорида олова(IV) (1М в ДХМ, 5 мл, 5,00 ммоль) за 15 мин. После завершения добавления, смесь нагревают до КТ в течение 1 часа, затем выливают в ледяной насыщ. раствор NaHCO<sub>3</sub> (50 мл). Смесь экстрагируют в ДХМ (2 х 100 мл), органические экстракты

объединяют, сушат над  $Na_2SO_4$ , фильтруют и концентрируют под вакуумом. Неочищенный продукт очищают хроматографией (0-10% EtOAc/изогексан) с получением указанного в заголовке соединения **188** в виде белого твердого вещества (780 мг, 69%). <sup>1</sup>H ЯМР (500 МГц, CDCl<sub>3</sub>):  $\delta$ , ч./млн. 10,37 (c, 1H), 8,58 (дд, J=8,2 Гц, 1,1 Гц, 1H), 7,55 (дд, J=7,6 Гц, 1,1 Гц, 1H), 7,39-7,35 (м, 1H), 2,97 (c, 3H).

Стадия 2. 1-(7-Бром-2-метилбензо[b]тиофен-3-ил)-N-(4-метоксибензил)-N-метилметанамин (соединение 189). Триацетоксиборгидрид натрия (1,61 г, 7,74 ммоль) добавляют одной порцией к перемешиваемому раствору 7-бром-2-метилбензо[b]тиофен-3-карбальдегида 188 (790 мг, 3,10 ммоль) и 1-(4-метоксифенил)-N-метилметанамина 70 (0,46 мл, 3,07 ммоль) в ДХЭ (12 мл) при КТ. Реакционную смесь перемешивают в течение ∼16 ч, затем растворитель концентрируют в вакууме, и полученный остаток помещают в NаНСО₃ (25 мл, насыщ. водн.). Водный продукт экстрагируют ДХМ (3 х 30 мл), и объединенные органические слои промывают насыщенным раствором соли (30 мл), затем сушат пропусканием через картридж фазоразделителя. Неочищенный продукт очищают хроматографией (0-50% ЕtOAc/изогексан) с получением указанного в заголовке соединения 189 в виде коричневого масла (1,05 г, 86%). R¹ 3,18 мин (Способ 1b); m/z 390/392 [М+Н]¹ (ЭР²).

Стадия 3. 3-(((4-Метоксибензил)(метил)амино)метил)-2-метилбензо[b]тиофен-7-ол (соединение **190**). В колбу загружают 1-(7-бром-2-метилбензо[b]тиофен-3-ил)-N-(4метоксибензил)-N-метилметанамин **189** (1,05 г, 2,69 ммоль), Pd-175 (0,04 г, 0,05 ммоль), tBuBrettPhos (0,03 г, 0,05 ммоль) и KOH (0,45 г, 8,08 ммоль). Ее вакуумируют/обратно заполняют азотом (3 раза) и затем добавляют 1,4-диоксан (5,0 мл) и дегазируют водой (0,8 мл). Полученную смесь нагревают до 80°C и перемешивают в течение 3 часов. Смесь охлаждают до КТ и разбавляют EtOAc (20 мл), затем подкисляют 1М HCl (20 мл). Смесь перемешивают в течение 5 мин до растворения всего твердого вещества. Смесь обрабатывают насыщ. водн. NaHCO<sub>3</sub> (50 мл) и фазы разделяют. Водную фазу экстрагируют EtOAc (2 x 50 мл). Объединенные органические экстракты сушат над MgSO<sub>4</sub>, фильтруют и Неочищенный концентрируют. продукт очищают хроматографией 50%EtOAc/изогексан) с получением указанного в заголовке соединения 190 в виде коричневого масла (879 мг, 99%).  $R^t$  2,51 мин (Способ 1b); m/z 328  $[M+H]^+$  ( $\Theta P^+$ ).

Стадия 4. N-(4-Метоксибензил)-1-(7-(3-метоксифенокси)-2-метилбензо[b]тиофен-3-ил)-N-метилметанамин (соединение 192). Смесь 3-(((4-метоксибензил)(метил)амино)метил)-2-метилбензо[b]тиофен-7-ола 190 (250 мг, 0,76 ммоль), йодида меди(I) (150 мг, 0,76 ммоль),2-(диметиламино)уксусной кислоты (80 мг, 0,76 ммоль) и  $Cs_2CO_3$  (1,0 г, 3,05 ммоль) вакуумируют и обратно заполняют азотом (3 раза). Добавляют ДМФ (5,0 мл) и 1-бром-3-метоксибензол 191 (0,12 мл, 0,92 ммоль), и смесь нагревают до  $110^{\circ}$ С в течение ночи. Смесь фильтруют через слой Celite®, промывают EtOAc (40 мл). Фильтрат выпаривают досуха. Неочищенный продукт очищают хроматографией (0-30% EtOAc/изогексан) с получением указанного в заголовке соединения 192 в виде бесцветного масла (287 мг, 86%).  $R^t$  3,15 мин (Способ 1b); m/z 434  $[M+H]^+$  ( $P^+$ ).

Стадия 5. 1-(7-(3-Метоксифенокси)-2-метилбензо[b]тиофен-3-ил)-N-метилметанамин (соединение 193). 1-Хлорэтилхлорформиат (0,15 мл, 1,37 ммоль) добавляют по каплям к перемешиваемому раствору N-(4-метоксибензил)-1-(7-(3-метоксифенокси)-2-метилбензо[b]тиофен-3-ил)-N-метилметанамина 192 (290 мг, 0,66 ммоль) в ДХМ (9,0 мл) при 0°С под N<sub>2</sub>. Реакционную смесь нагревают до КТ и перемешивают в течение ночи. Растворитель затем концентрируют в вакууме и остаток повторно растворяют в МеОН (15 мл) и нагревают до кипения с обратным холодильником в течение 1 ч. Смесь охлаждают до КТ и наносят на СКХ колонку. Колонку промывают метанолом (50 мл), продукт элюируют 10% метанольным аммиаком и выпаривают с получением указанного в заголовке соединение 193 в виде темного масла (122 мг, 51%). R<sup>t</sup> 2,11 мин (Способ 1b); m/z 283 [M-NHCH<sub>3</sub>]<sup>+</sup> (ЭР<sup>+</sup>).

Стадия 6. (Е)-N-((7-(3-Метоксифенокси)-2-метилбензо[b]тиофен-3-ил)метил)-N-метил-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриламид (соединение 194). Суспензию 1-(7-(3-метоксифенокси)-2-метилбензо[b]тиофен-3-ил)-N-метилметанамина 193 (64 мг, 0,20 ммоль), (Е)-3-(8-оксо-6,7,8,9-тетрагидро-5H-пиридо[2,3-b]азепин-3-ил)акриловой кислоты 4 (91 мг, 0,20 ммоль), ДИПЭА (0,18 мл, 1,03 ммоль) в ДМФ (1,0 мл) перемешивают в течение 10 мин. ГАТУ (78 мг, 0,20 ммоль) добавляют одной порцией, и реакционную смесь перемешивают в течение 1 часа. Смесь разбавляют водой

(10 мл), экстрагируют ДХМ (3 х 20 мл), промывают насыщенным раствором соли, пропускают через фазовый сепаратор и выпаривают. Неочищенный продукт очищают хроматографией (0-3% MeOH/ДХМ). Фракции собирают, затем выпаривают, и твердое вещество растирают с MeCN с получением указанного в заголовке соединения **194** в виде белого твердого вещества (21 мг, 19%). R<sup>t</sup> 2,36 мин (Способ 1b); m/z 528 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (500 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 9,57 (с, 1H), 8,49 (д, J=2,1 Гц, 1H), 8,03 (д, J=2,2 Гц, 1H), 7,62 (д, J=8,0 Гц, 1H), 7,58 (д, J=15,4 Гц, 1H), 7,35 (т, J=7,9 Гц, 1H), 7,30-7,27 (м, 2H), 6,90 (д, J=7,8 Гц, 1H), 6,76 (дд, J=8,3 Гц, 2,3 Гц, 1H), 6,64-6,63 (м, 1H), 6,60 (дд, J=8,2 Гц, 2,3 Гц, 1H), 4,94 (с, 2H), 3,76 (с, 3H), 2,96 (с, 3H), 2,77 (т, J=7,2 Гц, 2H), 2,59 (с, 3H), 2,32 (т, J=7,2 Гц, 2H), 2,18-2,12 (м, 2H).

Пример 42. Синтез 4-(4-((3aR,6aS)-2-((E)-3-(4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акрилоил)-1,2,3,3а,4,6а-гексагидроциклопента[с]пиррол-5-ил)фенокси)бензонитрила (соединение 198).

Общая схема синтеза.

**Условия реакции**: a) K<sub>2</sub>CO<sub>3</sub>, H<sub>2</sub>O, PdCl<sub>2</sub>(dppf), 1,4-диоксан, 80°C; b) ТФК, ДХМ; c) ГАТУ, ДИПЭА, ДМФ.

Синтез 4-(4-(4,4,5-триметил-1,3,2-диоксаборолан-2-ил)фенокси)бензонитрила (соединение **195**) ранее описан у Abbott Laboratories; US2002/156081, 2002, A1 и X-RX DISCOVERY, INC.; WO2015/48662, 2015, A2. Пинаколовый эфир **195** готовят с 90% выходом с чистотой 93% ( $R^t$ =2,40 мин (стандарт); m/z 321,1 [M+H] $^+$  ( $\Theta$ P $^+$ )).

**Стадии 1 и 2.** 2,2,2-Трифторацетат 4-(4-((3aS,6aR)-1,2,3,3a,4,6a-

гексагидроциклопента[с]пиррол-5-ил)фенокси)бензонитрила (соединение **197**) синтезируют из соединений **57** и **195** через промежуточное соединение **196** за 2 стадии согласно методике, описанной в Примере 20 и US2017/0174683 A1. Неочищенный продукт (ТФК соль) **197** используют на следующей стадии без очистки ( $R^t$ =1,26 мин (стандарт); m/z 303,6 [M+H]<sup>+</sup> (Э $P^+$ )).

Стадия 3. 4-(4-((3aR,6aS)-2-((Е)-3-(4-Оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акрилоил)-1,2,3,3а,4,6а-гексагидроциклопента[с]пиррол-5-ил)фенокси)бензонитрил (соединение 198) получают из кислоты 6 и амина 197 в виде желтого твердого вещества с чистотой 99% (19% выход) стандартной реакцией сочетания амина с амидом, описанной в Примере 20. R<sup>t</sup>=1,78 мин (стандарт); m/z 518,3 [M+H]<sup>+</sup> (ЭР<sup>+</sup>)). <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 9,73 (д, Ј=4,9 Гц, 1H), 7,98 (д, Ј=6,2 Гц, 1H), 7,84 (д, Ј=8,8 Гц, 2H), 7,58 (д, Ј=8,3 Гц, 2H), 7,39-7,28 (м, 2H), 7,16-7,05 (4H, м), 6,86 (дд, Ј=6,7 Гц, 15,5 Гц, 1H), 6,20 (с, 1H), 6,05-6,00 (м, 1H), 4,05-3,75 (м, 2H), 3,73-3,49 (м, 2H), 3,47-3,36 (м, 3H), 3,22-3,10 (м, 1H), 3,10-2,91 (м, 1H), 2,69-2,55 (м, 3H).

**Пример 43.** Синтез (Е)-3-(3-гидрокси-2,3-диметил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **207**).

Общая схема синтеза.

**Условия реакции**: а) нитроэтан, Amberlyst A-21, 0°C до КТ; b) Zn, уксусная кислота; c) 5-бром-3-фтор-2-нитропиридин **11**, ТЭА, EtOH, кипение c обратным холодильником; d) Fe, NH4Cl, EtOH,  $H_2O$ , кипение c обратным холодильником, разделение диастереомеров; e)

LiOH, H<sub>2</sub>O, ТГФ, MeOH; f) ГАТУ, ДИПЭА, ДМФ; g) Pd-116, ДИПЭА, NBu<sub>4</sub>Cl, 1,4-диоксан, 80°C.

Стадия 1. Этил 2-гидрокси-2-метил-3-нитробутаноат (соединение 200). Этил 2-оксопропаноат 199 (15,6 мл, 140 ммоль) добавляют по каплям к перемешиваемой суспензии Amberlyst A-21 (14 г, 140 ммоль) в нитроэтане (10,0 мл, 140 ммоль) при 0°С. Реакционную смесь нагревают до КТ и перемешивают в течение ∼16 ч. Смолу удаляют фильтрацией и промывают ДХМ (3 х 100 мл). Фильтрат концентрируют в вакууме с получением желаемого продукта 200 в виде желтого масла (20,6 г, 73%) в приблизительно 2:1 отношении диастереомеров.

Основной диастереомер:  $^{1}$ Н ЯМР (500 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 5,94 (c, 1H), 5,04 (кв, J=6,8 Гц, 1H), 4,17 (кв, J=7,1 Гц, 2H), 1,46 (д, J=6,8 Гц, 3H), 1,31 (c, 3H), 1,22 (т, J=7,1 Гц, 3H).

Незначительный диастереомер:  $^{1}$ Н ЯМР (500 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 6,08 (c, 1H), 4,88 (кв, J=6,8 Гц, 1H), 4,17 (кв, J=7,1 Гц, 2H), 1,47 (д, J=6,8 Гц, 3H), 1,36 (c, 3H), 1,22 (т, J=7,1 Гц, 3H).

Стадия 2. Этил 3-амино-2-гидрокси-2-метилбутаноат (соединение 201). К раствору этил 2-гидрокси-2-метил-3-нитробутаноата 200 (5 г, 26,2 ммоль) в уксусной кислоте (300 мл), добавляют порошок цинка порцией (68,4 г, 1046 ммоль). Смесь перемешивают при КТ в течение 4 ч, затем фильтруют над слоем Celite®. Фильтрат нейтрализуют добавлением насыщ. водн. Na<sub>2</sub>CO<sub>3</sub> (~700 мл) и экстрагируют EtOAc (2 х 700 мл). Объединенные органические слои сушат над Na<sub>2</sub>SO<sub>4</sub>, фильтруют и выпаривают при пониженном давлении с получением указанного в заголовке соединения 201 в виде желтого масла. Водный слой затем выпаривают и остаток делят на две порции, и каждую из них солюбилизируют снова в воде (300 мл). Водный продукт фильтруют для удаления образовавшихся солей, экстрагируют EtOAc (2 х 400 мл) и ДХМ (2 х 400 мл), и объединенные органические слои сушат над MgSO<sub>4</sub>, фильтруют и выпаривают досуха. <sup>1</sup>H ЯМР анализ трех фракций соответствует структуре продукта со 100% чистотой, и их объединяют с получением указанного в заголовке соединения 201 в виде желтого масла (1,12 г, 27%). <sup>1</sup>H ЯМР (ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн.  $\delta$  4,12-4,07 (м, 2H), 2,94-2,84 (м, 1H), 1,24-1,15 (м, 6H), 0,94-0,91 (м, 3H). NH<sub>2</sub> и ОН не наблюдаются (смесь изомеров).

Стадия 3. Этил 3-((5-бром-2-нитропиридин-3-ил)амино)-2-гидрокси-2-метилбутаноат (соединение 202). Триэтиламин (1,8 мл, 12,8 ммоль) добавляют к перемешиваемому раствору 5-бром-3-фтор-2-нитропиридина 11 (1,3 г, 5,88 ммоль) и этил 3-амино-2-гидрокси-2-метилбутаноата 201 (1,06 г, 4,27 ммоль) в ЕtOH (20 мл), и реакционную смесь нагревают до кипения с обратным холодильником в течение ∼16 ч. Реакционную смесь охлаждают до КТ, затем концентрируют в вакууме, и неочищенный продукт очищают колоночной хроматографией (0-10% MeOH/ДХМ) с получением желаемого продукта 202 в виде желтого масла (1,24 г, 79%) в отношении приблизительно 3:2 диастереомеров.

Диастереомер 1:  $R^t$  1,90 мин (Способ 1a) m/z 362/364 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 8,11-8,02 (м, 2H), 7,91-7,84 (м, 1H), 5,96 (с, 1H), 4,31-4,23 (м, 1H), 4,00 (кв, J=7,1 Гц, 2H), 1,34 (с, 3H), 1,17 (д, J=6,4 Гц, 3H), 1,01 (т, J=7,1 Гц, 3H).

Диастереомер 2:  $R^t$  1,96 мин (Способ 1a) m/z 362/364 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>)  $\delta$  8,13-8,00 (м, 2H), 7,89-7,85 (м, 1H), 5,98 (с, 1H), 4,18 (кв, J=7,1 Гц, 2H), 4,15-4,08 (м, 1H), 1,34 (с, 3H), 1,25 (т, J=7,1 Гц, 3H), 1,09 (д, J=6,4 Гц, 3H).

$$Br$$
 —  $HO$  —  $EtOH, H_2O, \Delta$  —  $HO$  —  $EtOH, H_2O, \Delta$  —  $HO$  —

Стадия 4. Этил 3-((2-амино-5-бромпиридин-3-ил)амино)-2-гидрокси-2-метилбутаноат (соединения 203 и 204). Смесь этил 3-((5-бром-2-нитропиридин-3-ил)амино)-2-гидрокси-2-метилбутаноата 202 (1,2 г, 3,31 ммоль), железа (1,48 г, 26,5 ммоль) и NH<sub>4</sub>Cl (0,71 г, 13,3 ммоль) в смеси EtOH (20 мл) и H<sub>2</sub>O (5 мл) нагревают и перемешивают при кипении с обратным холодильником в течение  $\sim$ 16 ч. Реакционную смесь охлаждают до КТ, затем загружают сухой на Celite® и очищают колоночной хроматографией (0-50% EtOAc/изогексан) с получением желаемого продукта в виде коричневого твердого вещества: Диастереомер 1 203 (154 мг, 14%) и Диастереомер 2 204 (280 мг, 25%).

Диастереомер 1 **203**:  $R^t$  1,14 мин (Способ 1a) m/z 332/334 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 7,28 (д, J=2,1 Гц, 1H), 6,80 (д, J=2,1 Гц, 1H), 5,63 (с, 2H), 5,11 (с, 1H), 4,39 (д, J=10,1 Гц, 1H), 3,96 (кв, J=7,0 Гц, 2H), 3,86-3,78 (м, 1H), 1,28 (с, 3H), 1,07 (д, J=6,5 Гц, 3H), 1,03 (т, J=7,1 Гц, 3H).

Диастереомер 2 **204**:  $R^t$  1,13 мин (Способ 1a) m/z 332/334 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 7,27 (д, J=2,0 Гц, 1H), 6,71 (д, J=2,0 Гц, 1H), 5,77 (с, 2H), 5,44 (с, 1H), 4,48 (д, J=9,7 Гц, 1H), 4,05 (кв, J=7,1 Гц, 2H), 3,76-3,67 (м, 1H), 1,29 (с, 3H), 1,16 (т, J=7,1 Гц, 3H), 1,06 (д, J=6,6 Гц, 3H).

Стадия 5. Гидрохлорид 3-((2-Амино-5-бромпиридин-3-ил)амино)-2-гидрокси-2-метилбутановой кислоты (соединение 205). Гидроксид лития (1 М водн., 0,6 мл, 0,6 ммоль) добавляют по каплям к перемешиваемому раствору этил 3-((2-амино-5-бромпиридин-3-ил)амино)-2-гидрокси-2-метилбутаноата 203 (65 мг, 0,20 ммоль) в ТГФ (5 мл) и МеОН (1 мл) при КТ, и реакционную смесь перемешивают в течение 4 ч. Смесь подкисляют до  $\sim$ pH 5 добавлением 1 М НС1 (водн.) и реакционную смесь концентрируют в вакууме. Остаток азеотропируют с МеСN (5 мл) с получением желаемого продукта 205 в виде коричневого твердого вещества (68 мг, колич.).  $R^t$  0,84 мин (Способ 1а) m/z 304/306 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

6. Стадия 8-Бром-3-гидрокси-2,3-диметил-2,3-дигидро-1Н-пиридо[2,3b][1,4]диазепин-4(5H)-он (соединение **206**). ДИПЭА (0,13 мл, 0,76 ммоль) добавляют к перемешиваемому раствору гидрохлорида 3-((2-амино-5-бромпиридин-3-ил)амино)-2гидрокси-2-метилбутановой кислоты 205 (65 мг, 0,19 ммоль) в ДМФ (2 мл) при КТ. Через 10 мин, ГАТУ (75 мг, 0,20 ммоль) добавляют, и реакционную смесь перемешивают в течение ~16 ч. Реакционную смесь гасят МеОН (5 мл) и Н₂О (30 мл). Водную смесь экстрагируют EtOAc (3 x 50 мл), и объединенные органические слои промывают насыщенным раствором соли (2 х 50 мл), сушат с MgSO<sub>4</sub>, и концентрируют в вакууме. Неочищенный продукт очищают колоночной хроматографией (0-50% EtOAc/изогексан) с получением желаемого продукта **206** в виде белого твердого вещества (21 мг, 38%). R<sup>t</sup> 1,21 мин (Способ 2a) m/z 286/288 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>Н ЯМР (ДМСО-d<sub>6</sub>): δ, ч./млн. 10,25 (c, 1H), 7,66  $(\pi, J=2, 1 \Gamma \mu, 1H), 7,26 (\pi, J=2, 1 \Gamma \mu, 1H), 6,79 (\pi, J=6,4 \Gamma \mu, 1H), 5,12 (c, 1H), 3,31-3,24 (m, 1H),$ 1,16 (с, 3H), 1,03 (д, Ј=6,7 Гц, 3H). Цис стереохимию полученного диастереомера определяют по ЯМР исследованиям, включающим NOE и ROESY эксперименты.

рацемический цис региоизомер

**Стадия 7.** (Е)-3-(3-Гидрокси-2,3-диметил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид

(соединение 207). В колбу загружают 8-бром-3-гидрокси-2,3-диметил-2,3-дигидро-1Нпиридо[2,3-b][1,4]диазепин-4(5H)-он **206** (40 MΓ, 0,14 ммоль), N-метил-N-((3метилбензофуран-2-ил)метил)акриламид 9 (32 мг, 0,140 ммоль), NBu<sub>4</sub>Cl (4 мг, 0,01 ммоль) и Pd-116 (7 мг, 0.01 ммоль) и колбу вакуумируют и обратно заполняют  $N_2$  три раза. Добавляют 1,4-диоксан (2,5 мл) и ДИПЭА (0,05 мл, 0,28 ммоль), и реакционную смесь нагревают до 80°C и перемешивают в течение 3 ч. Растворитель удаляют в вакууме, и неочищенный продукт очищают колоночной хроматографией (0-5% МеОН/ДХМ) с получением желаемого продукта **207** в виде желтого твердого вещества (36 мг, 59%). R<sup>t</sup> 1,93 мин (Способ 1a) m/z 435 [M+H] $^+$  (ЭР $^+$ ). <sup>1</sup>H ЯМР (ДМСО-d<sub>6</sub>, 363 K):  $\delta$ , ч./млн. 9,72 (c, 1H), 7,95 (д, J=1,9 Гц, 1H), 7,59-7,53 (м, 1H), 7,49-7,35 (м, 3H), 7,32-7,21 (м, 2H), 7,12 (д, J=15,4 Гц, 1Н), 6,32 (д, Ј=6,4 Гц, 1Н), 4,84 (с, 2Н), 4,79 (д, Ј=1,1 Гц, 1Н), 3,39-3,30 (м, 1Н), 3,09 (с, 3H), 2,27 (с, 3H), 1,24 (с, 3H), 1,08 (д, Ј=6,7 Гц, 3H).

**Пример 44.** Синтез(S, E)-3-(2-(гидроксиметил)-2-метил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **208**) и (R, E)-3-(2-(гидроксиметил)-2-метил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **209**).

Хиральное разделение соединения 84

**Хиральный способ разделения:** Аппарат: Isolera (Biotage). Колонка: Chiralpak IA (20 мкм; стеклянная колонка; 250 мм х 25 мм). Элюент: Ацетонитрил/Этанол (8/2 об./об.). Поток: 40 мл/мин. Температура: 25°C. Время прогона: 25 мин.

Впрыскиваемое количество: 30 мг соединения **84** в 20 мл элюента (растворение при кипении с обратным холодильником, затем охлаждение и быстрый впрыск). Некоторое разложение продукта наблюдается во время горячего растворения, но побочные продукты не присутствуют во фракциях, представляющих интерес.

(S, E)-3-(2-(Гидроксиметил)-2-метил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение **208**). Чистые фракции первого энантиомера собирают и концентрируют до наблюдения выпадения осадка. Затем проводят выпаривание досуха под струей азота при КТ. Первый энантиомер получают в виде кремового порошка (м=8,6 мг; хиральная чистота: 99,84%).

Стереохимию полученного энантиомера определяют произвольно.

(R, E)-3-(2-(Гидроксиметил)-2-метил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение 209). Чистые фракции второго энантиомера собирают и концентрируют до наблюдения выпадения осадка. Затем выпаривание досуха проводят под струей азота при КТ. Первый энантиомер получают в виде кремового порошка (м=6,9 мг; хиральная чистота: 99,59%). Стереохимию полученного энантиомера определяют произвольно.

**Пример 45.** Синтез (R, E)-N-метил-3-(2-метил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **214**).

Общая схема синтеза.

**Условия реакции**: а) 5-бром-3-фтор-2-нитропиридин **11**, ТЭА, EtOH, 80°C; b) Fe, NH<sub>4</sub>Cl, EtOH, вода, 90°C; c) NaH, ТГФ, 0°C до КТ; d) Pd-116, NBu<sub>4</sub>Cl, ДИПЭА, 1,4-диоксан, 80°C.

Стадия 1. (R)-Метил 3-((5-бром-2-нитропиридин-3-ил)амино)бутаноат (соединение 211). К перемешиваемому раствору 5-бром-3-фтор-2-нитропиридина 11 (430 мг, 1,95 ммоль) в МеСN (10 мл) добавляют гидрохлорид (R)-метил 3-аминобутаноата 210 (300 мг, 1,95 ммоль), затем ТЭА (700 мкл, 4,88 ммоль). Реакционную смесь перемешивают при кипении с обратным холодильником в течение 2 ч и затем охлаждают до КТ. Реакционную смесь концентрируют в вакууме, затем неочищенный продукт растворяют в этилацетате (10 мл) и промывают водой (10 мл). Органический слой сушат с MgSO<sub>4</sub>, фильтруют и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-100% ЕtOAc/изогексан) с получением указанного в заголовке соединения 211 в виде желтого твердого вещества (590 мг, 90%). R¹ 1,89 мин (Способ 1а) m/z 318/320 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

**Стадия 2**. (R)-Метил 3-((2-амино-5-бромпиридин-3-ил)амино)бутаноат (соединение **212**). К смеси метил 3-((5-бром-2-нитропиридин-3-ил)амино)бутаноата **211** (570 мг, 1,85 ммоль) в EtOH (35 мл) и воде (8,75 мл) добавляют железо (415 мг, 7,42 ммоль) и гидрохлоридом аммиака (400 мг, 7,42 ммоль). Полученную реакционную смесь нагревают и перемешивают при  $90^{\circ}$ C в течение 1 ч, затем фильтруют через слой Celite®, оставаясь горячей. Фильтрат выпаривают досуха, и неочищенный продукт очищают хроматографией (0-10% MeOH/ДХМ) с получением указанного в заголовке соединения **212** в виде бесцветного твердого вещества (430 мг, 76%).  $\mathbb{R}^t$  1,00 мин (Способ 1а) m/z 288/290 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

Стадия 3. (R)-8-Бром-2-метил-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он (соединение 213). Гидрид натрия (60% в минеральном масле, 83 мг, 2,08 ммоль) добавляют небольшими порциями к перемешиваемому раствору метил 3-((2-амино-5-бромпиридин-3-ил)амино)бутаноата 212 (400 мг, 1,39 ммоль) в ТГФ (20 мл) при 0°С. Реакционную смесь нагревают до КТ и перемешивают в течение 2 ч. Реакционную смесь гасят осторожным добавлением насыщ. водн. NH<sub>4</sub>Cl (20 мл) и водную смесь экстрагируют EtOAc (3 х 25 мл). Объединенные органические слои сушат с MgSO<sub>4</sub> и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-10% MeOH/ДХМ) с получением указанного в заголовке соединения 213 в виде бесцветного твердого вещества (170 мг, 45%). R<sup>1</sup> 1,30 мин (Способ 1а) m/z 256/258 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

Стадия 4. (R, E)-N-Метил-3-(2-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение **214**). В колбу загружают (R)-8-бром-2-метил-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он **213** (80 мг, 0,31 ммоль), N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (**9**) (70 мг, 0,31 ммоль), гидрат хлорида тетрабутиламмония (9,2 мг, 0,03 ммоль) и Pd-116 (16 мг, 0,03 ммоль), и колбу вакуумируют и обратно заполняют с  $N_2$  три раза. Добавляют 1,4-диоксан (2,5 мл) и ДИПЭА (0,11 мл), и реакционную смесь нагревают до 90°С в течение 2 ч. Затем добавляют воду (10 мл), и водную смесь экстрагируют ДХМ (3 х 10 мл). Объединенные

органические слои сушат пропусканием через картридж фазоразделителя и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-10% MeOH/ДХМ) с получением указанного в заголовке соединения **214** в виде желтого твердого вещества (68 мг, 52%).  $R^t$  1,89 мин (Способ 1а) m/z 405 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).  $^1$ H ЯМР (ДМСО-d<sub>6</sub>, 363K):  $\delta$ , ч./млн, 9,42-9,22 (м, 1H), 8,02 (д, J=1,9  $\Gamma$ ц, 1H), 7,56 (дд, J=7,4  $\Gamma$ ц, 1,5  $\Gamma$ ц, 1H), 7,53-7,38 (м, 3H), 7,27 (дтд, J=20,7  $\Gamma$ ц, 7,3  $\Gamma$ ц, 1,3  $\Gamma$ ц, 2H), 7,12 (д, J=15,4  $\Gamma$ ц, 1H), 5,57-5,38 (м, 1H), 4,85 (с, 2H), 3,81 (ддт, J=7,7  $\Gamma$ ц, 6,3  $\Gamma$ ц, 3,2  $\Gamma$ ц, 1H), 3,10 (с, 3H), 2,61 (дд, J=14,3  $\Gamma$ ц, 3,1  $\Gamma$ ц, 1H), 2,45 (дд, J=14,4  $\Gamma$ ц, 7,7  $\Gamma$ ц, 1H), 2,28 (с, 3H), 1,25 (д, J=6,4  $\Gamma$ ц, 3H).

**Пример 46.** Синтез (R, E)-3-(3-гидрокси-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **229**) и (S, E)-3-(3-гидрокси-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **230**).

Общая схема синтеза.

$$H_2N$$
 СО2H  $\frac{\text{Стадия 1}}{\text{а}}$  СІН. $H_2N$  ОН  $\frac{\text{СО2Me}}{\text{OH}}$   $\frac{\text{Стадия 2}}{\text{b}}$  Сbz  $\frac{\text{Со2Me}}{\text{OH}}$   $\frac{\text{Стадия 3}}{\text{c}}$  Cbz  $\frac{\text{Со2Me}}{\text{c}}$   $\frac{\text{Стадия 4}}{\text{d}}$   $\frac{\text{CO2Me}}{\text{d}}$   $\frac{\text{Стадия 4}}{\text{d}}$ 

$$H_2N$$
 ССО $_2$ Ме  $G$  Стадия  $G$  Вг ССО $_2$ Ме  $G$  Стадия  $G$   $G$  Стадия  $G$  Ст

**Условия реакции**: a) MeOH, SOCl<sub>2</sub>, 0°C до KT; b) CBZ-Cl **217**, ТЭА, ТГФ, 0°C; SEM-Cl **219**, ДИПЭА, ДХЭ, 60°C; d) Pd/C, H<sub>2</sub>, 5 бар; e) 5-бром-3-фтор-2-нитропиридин **11**, ТЭА, ЕtOH, кипение с обратным холодильником; f) Fe, NH<sub>4</sub>Cl, EtOH, H<sub>2</sub>O, кипение с обратным холодильником; h) ГАТУ, ДИПЭА, ДМФ; i) a) ТФК, b) Na<sub>2</sub>CO<sub>3</sub>; j) Chiralpak IA колонка (25% ацетонитрил:75% воды); k) **9**, Pd-116, ДИПЭА, NBu<sub>4</sub>Cl, 1,4-диоксан, 80°C.

**Стадия 1.** Метил 3-амино-2-гидроксипропаноат гидрохлорид (соединение **216**). К суспензии 3-амино-2-гидроксипропановой кислоты **215** (4,0 г, 38 ммоль) в метаноле (154

мл), перемешиваемой в ледяной воде, добавляют по каплям тионилхлорид (8,3 мл, 114 ммоль). После завершения добавления, смесь перемешивают при КТ в течение ночи. Реакционную смесь выпаривают досуха с получением указанного в заголовке соединения **216** в виде бесцветной камеди, (6,1 г, колич.).  $^{1}$ H ЯМР (ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн,8,25 (шс, 3H), 6,07 (шс, 1H), 4,41 (дд, J=8,7 Гц, 3,8 Гц, 1H), 3,68 (с, 3H), 3,12-3,06 (м, 1H), 2,96-2,86 (м, 1H).

Стадия 2. Метил 3-(((бензилокси)карбонил)амино)-2-гидроксипропаноат (соединение 218). К ледяной смеси гидрохлорида метил 3-амино-2-гидроксипропаноата 216 (5,92 г, 38 ммоль) и триэтиламина (22 мл, 152 ммоль) в ТГФ (100 мл) добавляют по каплям бензил хлорформиат 217 (5,4 мл, 38 ммоль). Смесь нагревают до КТ и перемешивают в течение еще 2 ч. Смесь выпаривают досуха, и остаток повторно растворяют в этилацетате (100 мл), промывают водой (2 х 100 мл) и органическую фазу сушат над сульфатом натрия. Неочищенный продукт очищают хроматографией на двуокиси кремния (0-50% ЕtOAc/изогексан) с получением указанного в заголовке соединения 218 в виде прозрачного бесцветного масла (5,50 г, 56%).  $^{1}$ Н ЯМР (CDCl<sub>3</sub>):  $\delta$ , ч./млн, 7,40-7,28 (м, 5H), 5,15-5,10 (м, 3H), 4,28 (д, J=4,8  $\Gamma$ ц, 1H), 3,78 (с, 3H), 3,66-3,49 (м, 2H), 3,19 (с, 1H).

Стадия 3. Метил 3-(((бензилокси)карбонил)амино)-2-((2триметилсилил)этокси)метокси)пропаноат 220). (соединение Смесь (триметилсилил)этоксиметилхлорида **219** (2,3 мл, 13,2 ммоль), ДИПЭА (3,4 мл, 19,7 ммоль) и метил 3-(((бензилокси)карбонил)амино)-2-гидроксипропаноата 218 (3,30 г, 13,2 ммоль) в ДХЭ (100 мл) перемешивают при 60°C в течение 24 ч. Смесь охлаждают до КТ, растворитель удаляют в вакууме, и неочищенный продукт очищают хроматографией на двуокиси кремния (0-50% ЕtOAc/изогексан) с получением указанного в заголовке соединения **220** в виде прозрачного бесцветного масла (4,40 г, 83%). <sup>1</sup>Н ЯМР (CDCl<sub>3</sub>): δ, ч./млн,7,41-7,32 (м, 5H), 5,19 (шс, 1H), 5,18-5,09 (м, 2H), 4,78 (с, 2H), 4,29 (дд, Ј=6,3 Гц, 4,3 Гц, 1H), 3,76 (c, 3H), 3,66 (м, 3H), 3,54 (м, 1H), 0,92 (м, 2H), 0,03 (c, 9H).

Cbz 
$$CO_2Me$$
  $Pd/C$ ,  $H_2$ ,  $CO_2Me$   $EtOAc$  OSEM

Стадия 4. Метил 3-амино-2-((2-(триметилсилил)этокси)метокси)пропаноат (соединение 221). Смесь метил 3-(((бензилокси)карбонил)амино)-2-((2-(триметилсилил)этокси)метокси)пропаноата 220 (4,40 г, 11,5 ммоль) и 10% Pd/C (1,2 г, Туре 87L) в растворителе этилацетате (100 мл) перемешивают под  $H_2$  под давлением 5 бар в течение 1 ч. Катализатор удаляют фильтрацией, и фильтрат выпаривают досуха с получением указанного в заголовке соединения 221 в виде желтого масла (2,6 г, 89%).  $^1H$ 

ЯМР (ДМСО- $d_6$ ):  $\delta$ , ч./млн, 4,66 (дд, J=13,2  $\Gamma$ ц, 4,7  $\Gamma$ ц, 2H), 4,01 (дд, J=6,5  $\Gamma$ ц, 4,7  $\Gamma$ ц, 1H), 3,64 (c, 3H), 3,63-3,50 (м, 2H), 2,82 (м, 1H), 2,75 (м, 1H), 1,45 (c, 2H), 0,91-0,77 (м, 2H), 0,01 (c, 9H).

**Стадия 5.** Метил 3-((5-бром-2-нитропиридин-3-ил)амино)-2-((2-(триметилсилил)этокси)метокси)пропаноат (соединение **222**). Смесь метил 3-амино-2-((2-(триметилсилил)этокси)метокси)пропаноата **221** (2,60 г, 10,4 ммоль), ТЭА (7,3 мл, 52,1 ммоль) и 5-бром-3-фтор-2-нитропиридина **11** (2,30 г, 10,4 ммоль) в растворителе ЕtOH (80 мл) нагревают при кипении с обратным холодильником в течение 2 ч. Реакционную смесь выпаривают досуха, и остаток очищают хроматографией на двуокиси кремния (0-50% ЕtOAc/изогексан) с получением указанного в заголовке соединения **222** в виде желтого масла (4,30 г, 90%). R<sup>t</sup> 2,67 мин (Способ 1а); m/z 448/450 [М+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (ДМСО-d<sub>6</sub>): δ, ч./млн, 8,08 (т, J=6,1 Гц, 1H), 8,00 (д, J=1,9 Гц, 1H), 7,91 (д, J=1,8 Гц, 1H), 4,76-4,62 (м, 2H), 4,44 (дд, J=7,2 Гц, 4,6 Гц, 1H), 3,77 (кв, J=7,3 Гц, 6,2 Гц, 2H), 3,69 (с, 3H), 3,55-3,43 (м, 2H), 0,81-0,70 (м, 2H), -0,06 (с, 9H).

$$Br$$
 OSEM Fe, NH<sub>4</sub>Cl,  $EtOH$ , H<sub>2</sub>O,  $EtOH$ , H<sub>2</sub>O,  $EtOH$ , Som  $NH_2$   $NH_2$   $NH_2$   $NH_2$   $NH_2$   $NH_2$   $NH_2$ 

Стадия 6. Метил 3-((2-амино-5-бромпиридин-3-ил)амино)-2-((2-(триметилсилил)этокси)метокси)пропаноат (соединение 223). Смесь метил 3-((5-бром-2-нитропиридин-3-ил)амино)-2-((2-(триметилсилил)этокси)метокси)пропаноата 222 (4,30 г, 9,5 ммоль), порошка железа (2,67 г, 47,7 ммоль) и хлорида аммония (5,1 г, 95,0 ммоль) в растворителе этаноле (100 мл) и воде (30 мл) нагревают и перемешивают при кипении с обратным холодильником в течение 1 ч. Смесь охлаждают до КТ и фильтруют через слой Сеlite®. Фильтрат выпаривают досуха, и остаток помещают в ДХМ (130 мл). Органические вещества промывают водой (200 мл) и сушат над сульфатом натрия. Фильтрация и выпаривание дает указанное в заголовке соединение 223 в виде желтого масла (3,01 г, 74%). R<sup>t</sup> 1,76 мин (Способ 1а); m/z 420/422 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

Br 
$$OSEM$$
  $OSEM$   $OSEM$ 

Стадия 7. 3-((2-Амино-5-бромпиридин-3-ил)амино)-2-((2-триметилсилил)этокси)метокси)пропановая кислота (соединение **224**). К перемешиваемому раствору метил 3-((2-амино-5-бромпиридин-3-ил)амино)-2-((2-(триметилсилил)этокси)метокси)пропаноата **223** (3,30 г, 7,85 ммоль) в  $T\Gamma\Phi$  (200 мл) и МеОН (50 мл) добавляют раствор моногидрата LiOH (0,23 г, 9,42 ммоль) в воде (30 мл), и

реакционную смесь перемешивают при КТ в течение 1 ч. Смесь выпаривают досуха и остаток помещают в воду (30 мл) и рН доводят до  $\sim$ рН 5 добавлением уксусной кислоты ( $\sim$ 1 мл). Твердое вещество собирают фильтрацией, промывают водой (4 мл) и сушат с получением указанного в заголовке соединения **224** в виде бежевого твердого вещества (2,75 г, 84%). R<sup>t</sup> 1,58 мин (Способ 1а); m/z 406/408 [M+H]<sup>+</sup> ( $^{3}$ P<sup>+</sup>).  $^{1}$ H ЯМР (ДМСО- $^{4}$ 6):  $^{6}$ 6, ч./млн, 7,31 (д,  $^{2}$ 2,1  $^{2}$ 1 Гц,  $^{2}$ 1 Гц,  $^{2}$ 1 Гц,  $^{2}$ 1 Гц,  $^{2}$ 1 Г,  $^{2}$ 3,31 (м,  $^{2}$ 4 (м,  $^{2}$ 1), 4,22 (м,  $^{2}$ 1 Н), 3,55-3,31 (м,  $^{2}$ 4 н), 0,78-0,74 (м,  $^{2}$ 2 н), -0,06 (с,  $^{2}$ 1 Кислый протон не наблюдается.

$$Br$$
  $N$   $NH_2$   $NH_2$ 

**Стадия 8.** 8-Бром-3-((2-(триметилсилил)этокси)метокси)-2,3-дигидро-1Н-пиридо[2,3-b][1,4]диазепин-4(5H)-он (соединение **225**). К раствору 3-((2-амино-5-бромпиридин-3-ил)амино)-2-((2-(триметилсилил)этокси)метокси)пропановой кислоты **224** (2,75 г, 6,77 ммоль) и ДИПЭА (6,0 мл, 33,8 ммоль) в ДМФ (3 мл) добавляют ГАТУ (3,0 г, 8,12 ммоль), и смесь перемешивают при КТ в течение 30 мин. Смесь выливают в ледяную воду (30 мл), и твердое вещество собирают и сушат с получением указанного в заголовке соединения **225** в виде бежевого твердого вещества (2,50 г, 93%). R<sup>t</sup> 2,27 мин (Способ 1b); m/z 388/390 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>Н ЯМР (ДМСО-d<sub>6</sub>): δ, ч./млн, 10,05 (с, 1H), 7,71 (с, 1H), 7,28 (с, 1H), 6,21 (д, Ј=4,5 Гц, 1H), 4,65 (кв, Ј=6,9 Гц, 2H), 4,23 (д, Ј=5,4 Гц, 1H), 3,56-3,45 (м, 4H), 0,88-0,82 (м, 2H), -0,02 (с, 9H).

Стадия 9. 8-Бром-3-гидрокси-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он (соединение 226). ТФК (10 мл) добавляют одной порцией к 8-бром-3-((2-(триметилсилил)этокси)метокси)-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-ону 225 (800 мг, 2,1 ммоль) и раствор выстаивают КТ в течение 5 мин, затем осторожно выливают в измельченный лед (100 г). Полученную смесь осторожно нейтрализуют добавлением твердого карбоната натрия и экстрагируют этилацетатом (2×100 мл). Органические вещества объединяют и сушат над сульфатом натрия. Фильтрация и выпаривание дает камедь, которую растирают с ацетонитрилом (10 мл) с получением указанного в заголовке соединения 226 в виде беловатого твердого вещества (310 мг, 57%).  $R^t$  1,04 мин (Способ 1а); m/z 258/260 [M+H]+ (ЭP+).  $^1$ H ЯМР (ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн, 10,12 (с, 1H), 7,70 (д, J=2,0  $\Gamma$ ц, 1H), 7,28 (д, J=2,1  $\Gamma$ ц, 1H), 6,37 (дд, J=6,2  $\Gamma$ ц, 2,8  $\Gamma$ ц, 1H), 5,24 (д, J=4,7  $\Gamma$ ц, 1H), 4,16 (ддд, J=8,4  $\Gamma$ ц, 4,8  $\Gamma$ ц, 3,1  $\Gamma$ ц, 1H), 3,45 (ддд, J=12,3  $\Gamma$ ц, 6,1  $\Gamma$ ц, 3,1  $\Gamma$ ц, 1H), 3,29 (тд, J=9,1  $\Gamma$ ц, 4,5  $\Gamma$ ц, 1H).

Стадия 10. Хиральное разделение рацемата 226.

Энантиомеры разделяют хиральной преп. ВЭЖХ с применением колонки Chiralpak® IA (Daicel Ltd.) ( $2\times25$  см), скорость потока 13,5 мл мин<sup>-1</sup>, элюируя смесью 25% ацетонитрил:75% вода, УФ определение при 254 нм. Образцы загружают в колонку через встроенный в колонку разрежающий насос, прокачивая ацетонитрил (1,5 мл мин<sup>-1</sup>) в течение всего прогона, с получением объединенной скорости потока 15 мл мин<sup>-1</sup>. Хиральность определяют произвольно.

(R)-8-Бром-3-гидрокси-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он (соединение **227**). Первый элюированный изомер:  $R^t$  7,98 мин (аналитический способ: колонка Chiralpak® IA (4,6 мм х 25 мм), скорость потока 1 мл мин<sup>-1</sup>, элюент: 30% ацетонитрил: 70% 10 ммоль водный раствор бикарбоната аммония).

(S)-8-Бром-3-гидрокси-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он (соединение 228). Второй элюированный изомер:  $R^t$  13,09 мин (аналитический способ: колонка Chiralpak® IA (4,6 мм х 25 мм), скорость потока 1 мл мин-1, элюент: 30% ацетонитрил: 70% 10 ммоль водный раствор бикарбоната аммония).

Стадия 11а. (R, E)-3-(3-Гидрокси-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение 229). В реакционную пробирку загружают (R)-8-бром-3-гидрокси-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он 227 (50 мг, 0,19 ммоль), ДИПЭА (70 мкл, 0,39 ммоль), гидрат хлорида тетрабутиламмония (6 мг, 0,02 ммоль), и Pd[P(¹Bu)₃]₂ (Pd-116) (10 мг, 0,02 ммоль), и пробирку затем промывают азотом (5 мин). Добавляют 1,4-диоксан (5 мл) и N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид 9 (49 мг, 0,21 ммоль), реакционную смесь снова продувают азотом (5 мин) и затем реакционную смесь нагревают и перемешивают при 80°С в течение 30 мин. Реакционную смесь охлаждают до КТ, затем выпаривают досуха и неочищенный продукт очищают колоночной хроматографией (0-10%

МеОН/ДХМ) с получением указанного в заголовке соединения **229** в виде бледно-желтого твердого вещества (61 мг, 77%).  $R^t$  1,77 мин (Способ 1b); m/z 407 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).  $^1$ H ЯМР (ДМСО-d<sub>6</sub>, 363K):  $\delta$ , ч./млн. 9,65 (c, 1H), 7,99 (д, J=1,8 Гц, 1H), 7,56 (д, J=7,5 Гц, 1H), 7,49-7,37 (м, 3H), 7,33-7,21 (м, 2H), 7,13 (д, J=14,6 Гц, 1H), 5,89 (д, J=5,5 Гц, 1H), 4,91-4,77 (м, 3H), 4,22-4,16 (м, 1H), 3,52 (ддд, J=12,4 Гц, 6,0 Гц, 3,3 Гц, 1H), 3,27 (ддд, J=12,1 Гц, 8,8 Гц, 2,8 Гц, 1H), 3,10 (с, 3H), 2,28 (с, 3H).

(S, Е)-3-(3-Гидрокси-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-Стадия 11b. b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение 230). В реакционную пробирку загружают (S)-8-бром-3-гидрокси-2,3-дигидро-1Н-пиридо[2,3-b][1,4]диазепин-4(5Н)-он 228 (50 мг, 0,19 ммоль), ДИПЭА (70 мкл, 0,39 ммоль), гидрат хлорида тетрабутиламмония (6 мг, 0.02 ммоль) и  $Pd[P({}^{t}Bu)_{3}]_{2}$  (Pd-116) (10 мг, 0,02 ммоль), и пробирку затем промывают азотом (5 мин). Добавляют 1,4-диоксан (5 мл) и N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид 9 (50 мг, 0,21 ммоль), реакционную смесь снова продувают азотом (5 мин) и затем реакционную смесь нагревают и перемешивают при 80°C в течение 30 мин. Реакционную смесь охлаждают до КТ, затем выпаривают досуха, и неочищенный продукт очищают хроматографией на двуокиси кремния (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 230 в виде бледно-желтого твердого вещества (58 мг, 73%). Rt 1,76 мин (Способ 1b); m/z 407 [M+H]+  $(ЭР^+)$ . <sup>1</sup>Н ЯМР (ДМСО-d<sub>6</sub>, 363K):  $\delta$ , ч./млн. 9,65 (с, 1H), 7,99 (д, J=1,8 Гц, 1H), 7,56 (д, J=7,5) Гц, 1Н), 7,49-7,36 (м, 3Н), 7,27 (дт, Ј=21,1 Гц, 7,4 Гц, 2Н), 7,13 (д, Ј=15,7 Гц, 1Н), 5,93-5,84 (м, 1Н), 4,90-4,80 (м, 3Н), 4,18 (дт, Ј=8,5 Гц, 3,8 Гц, 1Н), 3,52 (ддд, Ј=12,3 Гц, 6,1 Гц, 3,4 Гц, 1Н), 3,27 (ддд, Ј=12,2 Гц, 8,9 Гц, 2,8 Гц, 1Н), 3,10 (с, 3Н), 2,28 (с, 3Н).

**Пример 47.** Синтез дигидрофосфата (R, E)-3-метил-8-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-3-ила (соединение **232**).

Общая схема синтеза.

**Условия реакции**: а) і) бис(2-цианоэтил)диизопропилфосфорамидит, 1H-тетразол, 1 день, KT; іі) 0,1M раствор йода (вода/2,6-лутидин/ТГ $\Phi$ , 1/19/80) при 0°C, 20% об./об. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>; b) BSTFA, АЦН, основание Бартона, 35 мин при 0°C, затем HCOOH.

**Стадия 1.** 2-Цианоэтил ((R)-3-метил-8-((E)-3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-

b][1,4]диазепин-3-ил)гидрофосфат (соединение **231**). К раствору субстрата **49** (250 мг, 0,59 экв.) CVXOM ДХМ (5.95)мл) добавляют ммоль, цианоэтил)диизопропилфосфорамидит (645 мг, 2,38 ммоль, 4 экв.) и 1Н-тетразол (5,29 мл, 2,38 ммоль, 4 экв., 0,45 М в MeCN) под  $N_2$  при КТ. Смесь перемешивают при КТ в течение 1 дня, затем частично выпаривают. Полученный фосфит окисляют обработкой 0,1 М раствором йода (вода/2,6-лутидин/ $T\Gamma\Phi$ , 1/19/80) при 0°C до стойкого окрашивания йодом. Смеси позволяют вернуться к КТ, затем через 1 ч смесь гасят с применением тиосульфата натрия 20% масс./масс. при перемешивании до исчезновения окрашивания йодом. Водную фазу удаляют, и органическую фазу сушат над Na<sub>2</sub>SO<sub>4</sub>, разбавляют MeOH и ДХМ и фильтруют. После выпаривания неочищенный продукт очищают элюированием с 5-100% МеСN (0,1% ТФК) в воде (0,1% ТФК) с получением, после лиофилизации, желаемого продукта 231 (165 мг, 0,30 ммоль, 50%) в виде желтого твердого вещества. Продукт применяют сразу же на следующей стадии.

Стадия 2. Дигидрофосфат (R, E)-3-метил-8-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-3-ила (соединение 232). К раствору 231 (2,65 г, 4,79 ммоль, 1 экв.) в МеСN (28,5 мл) добавляют N, О-бис(триметилсилил)трифторацетамид (BSTFA) (6,36 мл, 23,9 ммоль, 5 экв.), затем 2-трет-бутил-1,1,3,3-тетраметилгуанидин (основание Бартона) (4,14 мл, 19,9 ммоль, 4,1 экв.). Перемешивают при 0°С в течение 35 мин, затем добавляют муравьиную кислоту для гашения реакционной смеси. После выпаривания, неочищенный продукт очищают элюированием с 5-100% МеСN (0,1% НСО<sub>2</sub>Н) в воде (0,1% НСО<sub>2</sub>Н) и лиофилизируют с получением желаемого соединения 232 (1,26 г, 250 ммоль, 52%). <sup>1</sup>Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 9,89 (с, 1H), 8,05-7,96 (м, 1H), 7,61-7,53 (м, 1H), 7,52-7,02 (м, 6H), 6,20 (м, 1H), 4,95 (с, 0,8H), 4,79 (с, 1,2H), 3,62-3,41 (м, 2H), 3,17 (с, 2H), 2,95 (с, 1H), 2,31-2,21 (с, 3H). <sup>31</sup>Р ЯМР (162 МГц, ДМСО-d<sub>6</sub>) δ -4,8. МС (Способ 1с): m/z=501,1 [М+Н]<sup>+</sup>.

**Пример 48.** Синтез [(2R,3S)-2-метил-8-[(E)-3-[метил-[(3-метилбензофуран-2-ил)метил]амино]-3-оксопроп-1-енил]-4-оксо-1,2,3,5-тетрагидропиридо[2,3-b][1,4]диазепин-3-ил]дигидрофосфата - соли (2R,3R,4R,5S)-6-(метиламино)гексан-1,2,3,4,5-пентола (соединение **235**).

Общая схема синтеза.

**Условия реакции**: а) і) бис(2-цианоэтил)диизопропилфосфорамидит, 1H-тетразол, 1 день, КТ; іі) 0,1M раствор йода (вода/2,6-лутидин/ТГФ, 1/19/80) при 0°С, 20% об./об.

 $Na_2S_2O_3$ ; b) BSTFA, АЦН, 2-трет-бутил-1,1,3,3-тетраметилгуанидин, 35 мин при 0°C, затем HCOOH; c) H2O и MeCN (60 мл, 1/1), меглумин 2 экв.

Стадия 1. 2-Цианоэтил ((2R,3S)-2-метил-8-((E)-3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-3-ил)гидрофосфат (соединение 233). К смеси 150 (129 мг, 0,31 ммоль, 1 экв.) в сухом СН<sub>2</sub>Сl<sub>2</sub> (2,80 мл) добавляют бис(2-цианоэтил)диизопропилфосфорамидит (0,24 мл, 0,92 ммоль, 3 экв.) и 1Н-тетразол (1,36 мл, 0,61 ммоль, 2 экв., 0,45 М в МеСN). Смесь перемешивают при КТ в течение 16 ч. После завершения реакции, 0,2 М раствор йода (I<sub>2</sub> в воде/пиридине/ТГФ, 1/19/80) добавляют при 0°С до стойкого окрашивания йодом. Смеси позволяют вернуться к КТ, затем через 2 ч смесь гасят с применением тиосульфата натрия (20% масс./масс.) при перемешивании до исчезновения окрашивания йодом. Водную фазу удаляют, и органическую фазу сушат над Na<sub>2</sub>SO<sub>4</sub>, разбавляют МеОН и CH<sub>2</sub>Cl<sub>2</sub> и фильтруют. После выпаривания неочищенный продукт очищают элюированием с 5-100% МеСN (0,1% ТФК) в воде (0,1% ТФК) с получением, после лиофилизации, желаемого соединения 233 (159 мг) в виде желтого твердого вещества. Продукт применяют сразу же на следующей стадии.

Стадия 2. дигидрофосфата (2R,3S)-2-Метил-8-((E)-3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-3-ила (соединение 234). К смеси 233 (159 мг, 0,29 ммоль, 1 экв.) в сухом МеСN (14,4 мл) добавляют N, О-бис(триметилсилил)трифторацетамид (0,31 мл, 1,15 ммоль, 4 экв.), затем 2-трет-бутил-1,1,3,3-тетраметилгуанидин (0,20 мл, 0,96 ммоль, 3,3 экв.). Смесь перемешивают при 0°С в течение 10 мин, затем муравьиную кислоту (0,11 мл, 2,87 ммоль, 10 экв.) добавляют для гашения реакционной смеси. После выпаривания, неочищенный продукт очищают элюированием с 5-100% МеСN (0,1% НСО<sub>2</sub>Н) в воде (0,1% ТФК) с получением, после лиофилизации, желаемого соединения 234 (33 мг, 0,06 ммоль, 22%) в виде желтого твердого вещества. Желаемое соединение применяют для получения соли меглумина.

Стадия 3. [(2R,3S)-2-Метил-8-[(E)-3-[метил-[(3-метилбензофуран-2-ил)метил]амино]-3-оксопроп-1-енил]-4-оксо-1,2,3,5-тетрагидропиридо[2,3-b][1,4]диазепин-3-ил]дигидрофосфат - (2R,3R,4R,5S)-6-(метиламино)гексан-1,2,3,4,5-пентоловая соль (соединение 235). К раствору субстрата 234 (1 экв.) в воде и МеСN (60 мл, 1/1) при КТ добавляют соответствующее основание (меглумин, 2 экв.). Смесь перемешивают, обрабатывают ультразвуком и лиофилизируют с получением желаемого продукта 235. <sup>1</sup>H ЯМР (400 МГц, D<sub>2</sub>O): δ, ч./млн. 7,80-7,65 (м, 1H), 7,25-7,46 (м, 7H), 4,52-4,25 (м, 2H), 4,18-4,02 (м, 3H), 3,83-3,69 (м, 6H), 3,67-3,56 (м, 4H), 3,26-3,04 (м, 4H), 2,89-2,75 (м, 6H), 2,72 (с, 6H), 1,84 (с, 3H), 1,25-1,16 (м, 6H). <sup>31</sup>P ЯМР (162 МГц, D<sub>2</sub>O) δ 3,1. МС (Способ 1с): m/z=501,1 [M+H]<sup>+</sup>.

**Пример 49.** Синтез 2-аминоэтанола; дигидрофосфата (R, E)-8-(3-(((7-амино-2-метилбензофуран-3-ил)метил)(метил)амино)-3-оксопроп-1-ен-1-ил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-3-ил (соединение **237**).

Общая схема синтеза.

**Условия реакции**: а) і) бис(2-цианоэтил)диизопропилфосфорамидит, 1H-тетразол, 1 день, KT; іі) 0,1M раствор йода (вода/2,6-лутидин/ТГ $\Phi$ , 1/19/80) при 0°C, 20% об./об. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>; b) і) BSTFA, АЦН, основание Бартона, 35 мин при 0°C, затем HCOOH; іі) вода, HOCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub> (5,0 экв.)

Стадия 1. 2-Цианоэтилгидро (3-(((E)-3-((3R)-3-(((2цианоэтокси)(гидрокси)фосфорил)окси)-3-метил-4-оксо-2,3,4,5-тетрагидро-1Нпиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламидо)метил)-2-метилбензофуран-7ил)фосфорамидат (соединение **236**). К смеси **167** (200 мг, 0,46 ммоль, 1 экв.) в сухом CH<sub>2</sub>Cl<sub>2</sub> (4,59 мл) добавляют бис(2-цианоэтил)диихопропилфосфорамидит (0,48 мл, 1,84 ммоль, 4 экв.) и 1*H*-тетразол (4,08 мл, 1,84 ммоль, 4 экв., 0,45 М в MeCN). Смесь перемешивают при КТ в течение 16 ч, затем частично выпаривают, и 0,2 М раствор йода (вода/пиридин/ТГФ, 1/19/80) добавляют при 0°C до стойкого окрашивания йодом. Смеси позволяют вернуться к КТ. Через 2 ч смесь гасят с применением тиосульфата натрия 20% масс./масс. при перемешивании до исчезновения окрашивания йодом. Водную фазу удаляют, и органическую фазу сушат над Na<sub>2</sub>SO<sub>4</sub>, разбавляют MeOH и CH<sub>2</sub>Cl<sub>2</sub> и фильтруют. После выпаривания неочищенный продукт очищают элюированием с 5-100% MeCN (0,1% ТФК) в воде (0,1% ТФК) с получением, после лиофилизации, желаемого соединения 236 (245 мг) в виде желтого твердого вещества.

Стадия 2. 2-Аминоэтанол; дигидрофосфат (R, Е)-8-(3-(((7-амино-2метилбензофуран-3-ил)метил)(метил)амино)-3-оксопроп-1-ен-1-ил)-3-метил-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-3-ил (соединение 237). К смеси 236 (240 мг, 0,34 ммоль, 1 экв.) в сухом MeCN (18,9 мл) добавляют BSTFA (0,91 мл, 3,42 ммоль, 10 экв.), затем 2-трет-бутил-1,1,3,3-тетраметилгканидин (основание Бартона) (0,59 мл, 2,85 ммоль, 8,3 экв.). Смесь перемешивают при 0°C в течение 5/10 мин, затем добавляют НСООН для гашения реакционной смеси и воду (1 мл). После выпаривания, неочищенный продукт очищают элюированием с 5-100% МеСN (0,1% ТФК) в воде (0,1% ТФК) с получением порошка, содержащего желаемый дигидрофосфат. Остаток растворяют в воде+этаноламине в избытке (>5 экв.). Смесь очищают элюированием с 5-100% МеСN в воде с получением, после лиофилизации, желаемого соединения 237 (89 мг, 0,15 ммоль, 45%) в виде желтого твердого вещества. <sup>1</sup>Н ЯМР (400 МГц, D<sub>2</sub>O): δ, ч./млн. 7,88-7,78 (м, 1H), 7,44-7,26 (м, 2H), 7,21-6,61 (м, 4H), 4,76-4,59 (м, 2H), 3,59 (т, J=5,5 Гц, 1H), 3,55-3,46

(м, 2H), 3,00-2,81 (м, 3H), 2,77 (т, J=5,5  $\Gamma$ ц, 1H), 2,46-2,28 (м, 3H), 1,59-1,46 (м, 3H). <sup>31</sup>P ЯМР (162 М $\Gamma$ ц, D<sub>2</sub>O)  $\delta$  0,0. МС (Способ 1с): m/z=516,1 [M+H]<sup>+</sup>.

**Пример 50.** Синтез дигидрофосфата (R)-3-метил-4-оксо-8-((E)-3-оксо-3-((3aS,6aR)-5-(4-феноксифенил)-3,3a,4,6a-тетрагидроциклопента[с]пиррол-2(1H)-ил)проп-1-ен-1-ил)-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-3-ил (соединение **239**).

Общая схема синтеза.

**Условия реакции**: а) і) бис(2-цианоэтил)диизопропилфосфорамидит, 1H-тетразол, 1 день, КТ; іі) 0,1M раствор йода (вода/2,6-лутидин/ТГ $\Phi$ , 1/19/80) при 0°C, 20% об./об. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>; b) BSTFA, АЦН, основание Бартона, 35 мин при 0°C, затем HCOOH.

2-Цианоэтил ((R)-3-метил-4-оксо-8-((E)-3-оксо-3-((3aS,6aR)-5-(4-Стадия феноксифенил)-3,3а,4,6а-тетрагидроциклопента[с]пиррол-2(1H)-ил)проп-1-ен-1-ил)-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-3-ил)гидрофосфат (соединение **238**). К смеси **159** (400 мг, 0,77 ммоль, 1 экв.) в сухом CH<sub>2</sub>Cl<sub>2</sub> (7,65 мл) добавляют бис(2цианоэтил) диихопропилфосфорамидит (831 мг, 3,06 ммоль, 4 экв.) и 1Н-тетразол (6,80 мл, 3,07 ммоль, 4 экв., 0,45 М в МеСN). Смесь перемешивают при КТ в течение 16 ч, затем выпаривают и 0,2 M раствор йода (вода/пиридин/ТГФ, 1/19/80) добавляют при 0°C до стойкого окрашивания йодом. Смеси позволяют вернуться к КТ, затем через 2 ч смесь гасят с применением водного тиосульфата натрия 20% масс./масс. при перемешивании до исчезновения окрашивания йодом. Водную фазу удаляют, и органическую фазу сушат над Na<sub>2</sub>SO<sub>4</sub>, разбавляют MeOH и CH<sub>2</sub>Cl<sub>2</sub> и фильтруют. После выпаривания неочищенный продукт очищают элюированием с 5-100% МеСN (0,1% ТФК) в воде (0,1% ТФК) с получением желаемого соединения 238 (421 мг) в виде желтого твердого вещества. Продукт применяют непосредственно на следующей стадии.

Стадия 2. Дигидрофосфат (R)-3-метил-4-оксо-8-((E)-3-оксо-3-((3aS,6aR)-5-(4-феноксифенил)-3,3a,4,6a-тетрагидроциклопента[с]пиррол-2(1H)-ил)проп-1-ен-1-ил)-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-3-ила (соединение 239). К смеси 238 (421 мг, 0,64 ммоль, 1 экв.) в сухом МеСN (35,54 мл) добавляют BSTFA (1,71 мл, 6,42 ммоль, 10 экв.), затем основание Бартона (1,11 мл, 5,35 ммоль, 8,3 экв.). Смесь перемешивают при КТ в течение 5/10 мин, затем добавляют муравьиную кислоту для гашения реакционной смеси. После выпаривания, остаток очищают, элюируя 5-100% МеСN (0,1% ТФК) в воде (0,1% ТФК). Осадок восстанавливают и лиофилизируют с

получением желаемого соединения **239** (123 мг, 0,20 ммоль, 32%) в виде желтого твердого вещества.  $^{1}$ Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 9,89 (д, J=5,6 Гц, 1H), 8,11-7,90 (м, 1H), 7,59-7,27 (м, 7H), 7,15 (т, J=7,4 Гц, 1H), 7,09-6,93 (м, 5H), 6,86 (дд, J=15,5, 6,4 Гц, 1H), 6,13 (с, 1H), 4,15-2,78 (м, 9H), 2,62 (д, J=15,9 Гц, 1H), 1,61-1,49 (м, 3H).  $^{19}$ F ЯМР (376 МГц, ДМСО-d<sub>6</sub>)  $\delta$  -73,6 (остаточные следы ТФК).  $^{31}$ Р ЯМР (162 МГц, ДМСО-d<sub>6</sub>)  $\delta$  -4,8. МС (Способ 1c): m/z=603,2 [М+H] $^{+}$ .

**Пример 51.** Синтез 2,2,2-трифторацетата дигидрофосфата (S, E)-8-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-3-ила (соединение **241**).

Общая схема синтеза.

**Условия реакции**: а) і) бис(2-цианоэтил)диизопропилфосфорамидит, 1H-тетразол, 1 день, KT; іі) 0,1M раствор йода (вода/2,6-лутидин/ТГ $\Phi$ , 1/19/80) при 0°C, 20% об./об. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>; b) BSTFA, АЦН, основание Бартона, 35 мин при 0°C, затем HCOOH.

Стадия 1. Гидрофосфат 2-цианоэтил ((S)-8-((E)-3-(метил)((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-3-ила) (соединение 240). К смеси 230 (200 мг, 0,49 ммоль, 1 экв.) в сухом ДМФ (4,92 мл) добавляют бис(2-цианоэтил)диихопропилфосфорамидит (0,51 мл, 1,97 ммоль, 4 экв.) и 1Н-тетразол (4,37 мл, 1,97 ммоль, 4 экв., 0,45 М в МеСN). Смесь перемешивают при 60°С в течение 4 ч, затем МеСN выпаривают и 0,2 М раствор йода (вода/пиридин/ТГФ, 1/19/80) добавляют при 0°С до стойкого окрашивания йодом. Смеси позволяют вернуться к КТ, затем через 2 ч смесь гасят с применением тиосульфата натрия 20% масс./масс. при перемешивании до исчезновения окрашивания йодом. Водную фазу удаляют, и органическую фазу сушат над Na<sub>2</sub>SO<sub>4</sub>, разбавляют МеОН и CH<sub>2</sub>Cl<sub>2</sub> и фильтруют. После выпаривания неочищенный продукт очищают элюированием с 5-100% МеСN (0,1% ТФК) в воде (0,1% ТФК) с получением желаемого соединения 240 (199 мг) после лиофилизации. Продукт применяют непосредственно на следующей стадии.

Стадия 2. 2,2,2-Трифторацетат дигидрофосфата (S, E)-8-(3-(Метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-3-ила (соединение 241). К смеси 240 (120 мг, 0,22 ммоль, 1 экв.) в сухом MeCN (12,3 мл) добавляют BSTFA (1,71 мл, 6,42 ммоль, 10 экв.). Смесь перемешивают при КТ в течение 10 мин, затем добавляют муравьиную кислоту (0,08 мл, 2,22 ммоль, 10 экв.) для гашения реакционной смеси и MeOH (1 мл). После выпаривания,

неочищенный продукт очищают, элюируя 5-100% MeCN (0,1% ТФК) в воде (0,1% ТФК) с получением, после лиофилизации, желаемого соединения (42 мг, 0,07 ммоль, 31%) в виде желтого твердого вещества.  $^{1}$ H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 10,23 (c, 1H), 8,18-8,04 (м, 1H), 7,57 (д, J=7,4 Гц, 1H), 7,54-7,35 (м, 4H), 7,31-7,07 (м, 3H), 6,10 (с, 1H), 4,96 (с, 0,8H), 4,80 (с, 1,2H), 4,74-4,57 (м, 1H), 3,69 (дд, J=12,3, 3,3 Гц, 1H), 3,51 (дд, J=12,3, 8,5 Гц, 1H), 3,18 (с, 1,7H), 2,95 (с, 1,3H), 2,28 (д, J=4,4 Гц, 3H).  $^{31}$ P ЯМР (162 МГц, ДМСО-d<sub>6</sub>)  $\delta$  -1,9.  $^{19}$ F ЯМР (376 МГц, ДМСО-d<sub>6</sub>)  $\delta$  -74,1 (следы ТФК). МС (Способ 1с): m/z=487,0 [М+H] $^{+}$ .

**Пример 52.** Синтез (R, E)-3-(6-гидрокси-6-метил-7-оксо-5,6,7,8-тетрагидро-1,8-нафтиридин-3-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **247**).

Общая схема синтеза.

**Условия реакции**: a) N1,N1,N'1,N'1,N2,N2,N'2,N'2-октаметилэтен-1,1,2,2-тетраамин, ДМФ -20°C до КТ; b) Fe, NH<sub>4</sub>Cl, EtOH, вода, 90°C; c) NBS,  $K_2CO_3$ , MeCN, затем хиральное разделение; d) Pd-116, ДИПЭА, NBu<sub>4</sub>Cl, 1,4-диоксан, 80°C.

Стадия 1. Этил 2-гидрокси-2-метил-3-(2-нитропиридин-3-ил)пропаноат (соединение 244). К перемешиваемому раствору 3-(бромметил)-2-нитропиридина 242 (850 мг, 3,92 ммоль) в безводном ДМФ (15 мл), добавляют этилпируват **243** (1,3 мл, 11,8 ммоль) при -20°C. Полученный раствор перемешивают и выдерживают при этой температуре в течение 30 мин. Затем добавляют N1,N1,N'1,N'1,N2,N2,N'2,N'2-октаметилэтен-1,1,2,2тетраамин (1,0 мл, 4,31 ммоль). Сразу же появляется красный цвет при образовании мелкого белого осадка. Раствор энергично перемешивают при -20°C в течение 1 ч и затем нагревают до КТ в течение 2 ч. Оранжево-красный мутный раствор фильтруют и добавляют воду (80 мл). Водный слой экстрагируют этилацетатом (3×40 мл) и объединенные органические экстракты промывают водой (3×40 мл), сушат над MgSO<sub>4</sub>, фильтруют и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения 244 в виде бесцветного твердого вещества (630 мг, 57%).  $R^t$  1,48 мин (Способ 1a) m/z 255  $[M+H]^+$  (Э $P^+$ ).

**Стадия 2.** 3-Гидрокси-3-метил-3,4-дигидро-1,8-нафтиридин-2(1H)-он (соединение **245**). К раствору этил 2-гидрокси-2-метил-3-(2-нитропиридин-3-ил)пропаноата **244** (630 мг,

2,48 ммоль) в этаноле (35 мл) и воде (8,8 мл) добавляют железо (554 мг, 9,9 ммоль) и хлорид аммония (530 мг, 9,91 ммоль). Полученную смесь нагревают при кипении с обратным холодильником в течение 1 ч. Реакционную смесь фильтруют через слой Celite®, пока она горячая. Затем фильтрат выпаривают досуха. Неочищенный продукт очищают хроматографией (0-10% MeOH/ДХМ) с получением указанного в заголовке соединения 245 в виде бесцветного твердого вещества (350 мг, 75%). R<sup>t</sup> 0,56 мин (Способ 1а) m/z 179 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

Стадия 3. (R)-6-Бром-3-гидрокси-3-метил-3,4-дигидро-1,8-нафтиридин-2(1H)-он (соединение 246). N-Бромсукцинимид (619 мг, 3,48 ммоль) и K<sub>2</sub>CO<sub>3</sub> (962 мг, 6,96 ммоль) добавляют одной порцией к перемешиваемому раствору 3-гидрокси-3-метил-3,4-дигидро-1,8-нафтиридин-2(1H)-она 245 (310 мг, 1,74 ммоль) в ацетонитриле (20 мл) при 0°С. Реакционную смесь нагревают до КТ и затем перемешивают в течение ночи. После этого добавляют еще N-бромсукцинимид (619 мг, 3,48 ммоль) и К<sub>2</sub>CO<sub>3</sub> (962 мг, 6,96 ммоль), и полученную смесь перемешивают в течение 3 ч. Реакционную смесь гасят добавлением H<sub>2</sub>O (10 мл), затем экстрагируют ДХМ (3×10 мл). Объединенные органические слои сушат пропусканием через картридж фазоразделителя и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-100% EtOAc/изогексан) с получением рацемата в виде белого твердого вещества (200 мг, 42%). Рацемат подвергают хиральному разделению с получением первого пика (R)-6-бром-3-гидрокси-3-метил-3,4-дигидро-1,8-нафтиридин-2(1H)-она 246 (60 мг). R<sup>t</sup> 1,19 мин (Способ 1а) m/z 257/259 [М+H]<sup>+</sup> (ЭР<sup>+</sup>). Абсолютную конфигурацию определяют произвольно.

**Стадия 4.** (R, E)-3-(6-Гидрокси-6-метил-7-оксо-5,6,7,8-тетрагидро-1,8-нафтиридин-3-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение 247). В колбу загружают (R)-6-бром-3-гидрокси-3-метил-3,4-дигидро-1,8-нафтиридин-2(1H)-он **246** (60 мг, 0,23 ммоль), N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид 9 (54 мг, 0,23 ммоль), NBu<sub>4</sub>Cl (7 мг, 0,03 ммоль) и Pd-116 (12 мг, 0,03 ммоль), и колбу вакуумируют и обратно заполняют  $N_2$  три раза. Добавляют 1,4-диоксан (2 мл) и ДИПЭА (85 мкл, 0,46 ммоль), и реакционную смесь нагревают до 80°C в течение 2 ч. Затем добавляют воду (2 мл), и водную смесь экстрагируют ДХМ (3×5 мл). Объединенные органические экстракты сушат пропусканием через картридж фазоразделителя и концентрируют в вакууме. Неочищенный продукт очищают колоночной хроматографией (0-5% МеОН/ДХМ). Полученный продукт растирают с MeCN (2 мл). Осадок собирают фильтрацией и сушат с получением указанного в заголовке соединения 247 в виде бледно-желтого твердого вещества (30 мг, 32%). R<sup>t</sup> 1,83 мин (Способ 1a) m/z 406 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (ДМСО-d<sub>6</sub>): \delta, ч./млн, 10,29 (c, 1H), 8,36 (д, J=2,2 Гц, 1H), 7,97 (д, J=2,1 Гц, 1H), 7,61-7,43 (м, 3H), 7,34- $7,14 \text{ (M, 3H)}, 5,19 \text{ (Д, J=1,5 }\Gamma\text{ (L, 1H)}, 4,86 \text{ (c, 2H)}, 3,11 \text{ (c, 3H)}, 2,94 \text{ (c, 2H)}, 2,28 \text{ (c, 3H)}, 1,29 \text{ (c, 2H)}$ 3H).

**Пример 53.** Синтез (Е)-3-(6-этил-6-гидрокси-7-оксо-5,6,7,8-тетрагидро-1,8-нафтиридин-3-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **252**).

Общая схема синтеза.

**Условия реакции**: a) N1,N1,N'1,N'1,N2,N2,N'2,N'2-октаметилэтен-1,1,2,2-тетраамин, ДМ $\Phi$  -20°C до KT; b) Fe, NH<sub>4</sub>Cl, EtOH, вода, 90°C; c) NBS, K<sub>2</sub>CO<sub>3</sub>, АЦН, 0°C до KT; d) Pd-116, ДИПЭА, NBu<sub>4</sub>Cl, 1,4-диоксан, 80°C.

Стадия 1. Этил 2-гидрокси-2-этил-3-(2-нитропиридин-3-ил)пропаноат (соединение 249). К перемешиваемому раствору 3-(бромметил)-2-нитропиридина 242 (425 мг, 1,96 ммоль) в безводном ДМФ (7,5 мл), этил 2-оксобутаноат **248** (765 мг, 5,88 ммоль) при -20°C. перемешивают течение 30 Полученный раствор В мин. Затем добавляют N1,N1,N'1,N'1,N2,N2,N'2,N'2-октаметилэтен-1,1,2,2-тетраамин (0,5 мл, 2,15 ммоль). Раствор энергично перемешивают при -20°C в течение 1 ч и затем нагревают до КТ в течение 2 ч. Оранжево-красный мутный раствор фильтруют и гидролизуют водой (40 мл). Водный слой экстрагируют этилацетатом (3×20 мл), объединенные органические слои промывают водой (3×20 мл), сушат над MgSO<sub>4</sub>, фильтруют и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения **249** в виде бесцветного твердого вещества (380 мг, 66%). R<sup>t</sup> 1,75 мин (Способ 1a) m/z 269  $[M+H]^+$  (ЭР<sup>+</sup>).

**Стадия 2.** 3-Гидрокси-3-этил-3,4-дигидро-1,8-нафтиридин-2(1H)-он (соединение **250**). К перемешиваемому раствору этил 2-гидрокси-2-((2-нитропиридин-3-ил)метил)бутаноата **249** (370 мг, 1,38 ммоль) в этаноле (18 мл) и воде (5 мл) добавляют железо (308 мг, 5,52 ммоль) и гидрохлорид аммиака (295 мг, 5,52 ммоль). Реакционную смесь нагревают при  $90^{\circ}$ С в течение 1 ч. Реакционную смесь охлаждают до комнатной температуры и фильтруют через слой Celite®. Фильтрат выпаривают досуха и неочищенный продукт очищают хроматографией (0-10% MeOH/ДХМ) с получением указанного в заголовке соединения **250** в виде бесцветного твердого вещества (200 мг, 72%).  $\mathbb{R}^t$  0,89 мин (Способ 1а) m/z 193  $[M+H]^+$  ( $\mathbb{P}^+$ ).

Стадия 3. 6-Бром-3-гидрокси-3-этил-3,4-дигидро-1,8-нафтиридин-2(1H)-он (соединение 251). N-Бромсукцинимид (361 мг, 2,03 ммоль) и K<sub>2</sub>CO<sub>3</sub> (561 мг, 4,06 ммоль) добавляют одной порцией к перемешиваемому раствору 3-этил-3-гидрокси-3,4-дигидро-1,8-нафтиридин-2(1H)-она 250 (195 мг, 1,01 ммоль) в ацетонитриле (15 мл) при 0°С. Реакционную смесь возвращают к КТ и перемешивают в течение ночи. Реакционную смесь фильтруют над слоем целита, и твердые вещества промывают ацетонитрилом (20 мл).

Фильтрат выпаривают в вакууме, и неочищенный продукт очищают хроматографией (0-100% EtOAc/изогексан) с получением указанного в заголовке соединения **251** в виде белого твердого вещества (142 мг, 51%).  $R^t$  1,20 мин (Способ 2а) m/z 271/273 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).  $^1$ H ЯМР (400 МГц, CDCl<sub>3</sub>):  $\delta$ , ч./млн. 9,21 (c, 1H), 8,32 (дд, J=2,3 Гц, 1,1 Гц, 1H), 7,69 (т, J=1,7 Гц, 1H), 3,72 (c, 1H), 3,14 (д, J=16,1 Гц, 1H), 3,07 (д, J=16,1 Гц, 1H), 1,68-1,50 (м, 2H), 0,96 (т, J=7,4 Гц, 3H).

**Стадия 4.** (E)-3-(6-Этил-6-гидрокси-7-оксо-5,6,7,8-тетрагидро-1,8-нафтиридин-3ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение реакционную пробирку загружают N-метил-N-((3-метилбензофуран-2ил)метил)акриламид 9 (118 мг, 0,52 ммоль), 6-бром-3-этил-3-гидрокси-3,4-дигидро-1,8нафтиридин-2(1H)-он 251 (140 мг, 0,52 ммоль), гидрат хлорида тетрабутиламмония (15 мг, 0,05 ммоль) и Pd-116 (26 мг, 0,05 ммоль) и пробирку затем промывают азотом (5 мин). В пробирку добавляют 1,4-диоксан (8 мл) и ДИПЭА (180 мкл, 1,03 ммоль), и реакционную смесь нагревают до 80°C в течение 50 минут. Неочищенный продукт выпаривают в вакууме и очищают хроматографией (0-10% МеОН/ДХМ). Продукт перекристаллизовывают в ДХМ/гексане (5 мл), затем растирают с ацетонитрилом (2 мл) с получением указанного в заголовке соединения 252 в виде белого твердого вещества (144 мг, 66%).  $R^t$  1,59 мин (Способ 2a) m/z 420 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>, 363K): δ, ч./млн, 10,33 (с, 1H), 8,35 (д, J=2,1 Гц, 1H), 8,01-7,97 (м, 1H), 7,61-7,53 (м, 1H), 7,53-7,44 (м, 2H), 7,32-7,20 (M, 3H), 4,95 (c, 1H), 4,86 (c, 2H), 3,11 (c, 3H), 2,97 (c, 2H), 2,28 (c, 3H), 1,66-1,48 (M, 2H), 0,89  $(\tau, J=7,4 \Gamma ц, 3H).$ 

**Пример 54.** Синтез(R, E)-3-(7-гидрокси-7-метил-8-оксо-8,9-дигидро-7Н-пиридо[2,3-b]азепин-3-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение **260**).

Общая схема синтеза.

**Условия реакции**: а) бромид этинилмагния, -78°C до KT; b) хлорид бис(трифенилфосфин)палладия(II),5-бром-3-йодпиридил-2-амин **255**, CuI, ТЭА, ТГФ, 80°C; c)  $H_2O$ , Pd/C, EtOAc; d) NaH,  $T\Gamma\Phi$ , 0°C до KT; e) Pd-116, ДИПЭА,  $NBu_4Cl$ , 1,4-диоксан, 80°C; f) хиральное разделение.

**Стадия 1.** Этил 2-гидрокси-2-метилбут-3-иноат (соединение **254**). Раствор бромида этинилмагния (0,5 М в ТГ $\Phi$ , 99 мл, 49,6 ммоль) добавляют по каплям, в течение  $\sim$ 1 ч, к раствору этил 2-оксопропаноата **253** (4,6 мл, 41,3 ммоль) в ТГ $\Phi$  (60 мл) при -78°C. Смесь

перемешивают при этой температуре в течение еще 15 мин, затем нагревают до КТ. Реакционную смесь затем выливают в насыщенный раствор хлорида аммония (50 мл) и смесь экстрагируют ТБМЭ (2 х 30 мл). Объединенные органические экстракты сушат над сульфатом натрия, концентрируют в вакууме и неочищенный продукт очищают хроматографией на двуокиси кремния (0-40% МТБЭ/изогексан) с получением указанного в заголовке соединения **254** в виде бледно-желтого масла (0,85 г, 14%).  $^{1}$ H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 6,28 (c, 1H), 4,15 (квд, J=7,1 Гц, 1,5 Гц, 2H), 3,46 (c, 1H), 1,51 (c, 3H), 1,21 (т, J=7,1 Гц, 3H).

Стадия 2. Этил 4-(2-амино-5-бромпиридин-3-ил)-2-гидрокси-2-метилбут-3-иноат (соединение 256). В пробирку загружают йодид меди (31 мг, 0,16 ммоль), хлорид бис(трифенилфосфин)палладия (94 мг, 0,13 ммоль) и 5-бром-3-йодпиридин-2-амин 255 (0,80 г, 2,7 ммоль), и пробирку вакуумируют и обратно заполняют  $N_2$  три раза. Добавляют этил 2-гидрокси-2-метилбут-3-иноат 254 (0,42 г, 2,95 ммоль), ТЭА (1,1 мл, 8,1 ммоль) и ТГФ (10 мл), и смесь дегазируют  $N_2$  в течение 10 мин, затем нагревают до кипения с обратным холодильником в течение 2 ч. Реакционную смесь охлаждают до КТ, фильтруют через слой Celite® и промывают EtOAc (20 мл). Фильтрат концентрируют в вакууме, и неочищенный продукт очищают хроматографией на двуокиси кремния (0-100% EtOAc/изогексан) с получением указанного в заголовке соединения 256 в виде прозрачного желтого масла (810 мг, 91%).  $R^1$  1,66 мин (Способ 1а); m/z 313/315  $[M+H]^+$  (Э $P^+$ ).  $^1$ H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 8,03 (д, J=2,4 Гц, 1H), 7,66 (д, J=2,4 Гц, 1H), 6,57 (с, 1H), 6,45 (с, 2H), 4,19 (кв, J=7,1 Гц, 2H), 1,61 (с, 3H), 1,23 (т, J=7,1 Гц, 3H).

Стадия 3. (*Z*)-Этил 4-(2-амино-5-бромпиридин-3-ил)-2-гидрокси-2-метилбут-3-еноат (соединение **257**). Смесь этил 4-(2-амино-5-бромпиридин-3-ил)-2-гидрокси-2-метилбут-3-иноата **256** (0,45 г, 1,44 ммоль) и 5% Pd/C (0,15 г, 1,44 ммоль) в EtOAc (50 мл) перемешивают под  $H_2$  при 1 бар в течение 30 мин. Катализатор удаляют фильтрацией, затем фильтрат концентрируют в вакууме и очищают колоночной хроматографией (0-100% EtOAc/изогексан) с получением желаемого продукта **257** в виде бесцветного масла (0,17 г, 27%).  $R^t$  0,98 мин (Способ 1а); m/z 315/317  $[M+H]^+$  ( $\Theta$ P+).  $\Phi$ H ЯМР (400 МГц, ДМСО-d6):  $\Phi$  ч./млн. 7,87 (д,  $\Phi$ 1=2,5 Гц, 1H), 7,66 (д,  $\Phi$ 2=2,5 Гц, 1H), 6,21 (д,  $\Phi$ 3=12,1 Гц, 1H), 5,97 (с, 2H), 5,81 (д,  $\Phi$ 3=12,1 Гц, 1H), 5,74 (с, 1H), 3,83-3,68 (м, 2H), 1,41 (с, 3H), 1,03 (т,  $\Phi$ 3=7,1 Гц, 3H).

Стадия 4. 3-Бром-7-гидрокси-7-метил-7H-пиридо[2,3-b]азепин-8(9H)-он (соединение 258). Гидрид натрия (60% в минеральном масле, 0,03 г, 0,79 ммоль) добавляют небольшими порциями к перемешиваемому раствору (Z)-этил 4-(2-амино-5-бромпиридин-3-ил)-2-гидрокси-2-метилбут-3-еноата 257 (0,17 г, 0,52 ммоль) в ТГФ (15 мл) при 0°С. Реакционную смесь нагревают до КТ и перемешивают в течение 2 ч. Реакционную смесь гасят осторожным добавлением насыщ. водн. NH<sub>4</sub>Cl (50 мл) и водную смесь экстрагируют EtOAc (3 х 100 мл). Объединенные органические слои промывают насыщенным раствором соли (1 х 100 мл), сушат с MgSO<sub>4</sub> и концентрируют в вакууме с получением желаемого продукта 258 в виде беловатого твердого вещества (0,17 г, колич.) которое применяют на следующей стадии без дальнейшей очистки. R<sup>t</sup> 1,38 мин (Способ 1а); m/z 269/271 [M+H]<sup>+</sup>

 $(ЭР^+)$ . <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 10,93 (c, 1H), 8,42 (д, J=2,4 Гц, 1H), 8,10 (д, J=2,4 Гц, 1H), 6,73 (д, J=10,9 Гц, 1H), 6,04 (д, J=10,9 Гц, 1H), 5,39 (c, 1H), 1,23 (c, 3H).

Стадия 5. (Е)-3-(7-Гидрокси-7-метил-8-оксо-8,9-дигидро-7H-пиридо[2,3-b]азепин-3-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение **259**). В колбу загружают 3-бром-7-гидрокси-7-метил-7H-пиридо[2,3-b]азепин-8(9H)-он **258** (0,08 г, 0,30 ммоль), N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид **9** (0,07 г, 0,31 ммоль), Ви<sub>4</sub>NCl (9 мг, 0,03 ммоль) и Pd-116 (15 мг, 0,03 ммоль), и колбу вакуумируют и обратно заполняют N<sub>2</sub> три раза. Добавляют 1,4-диоксан (2,5 мл) и ДИПЭА (0,2 мл, 1,15 ммоль), и реакционную смесь нагревают до 80°С и перемешивают в течение 2 ч. Реакционную смесь охлаждают до КТ, концентрируют в вакууме и очищают колоночной хроматографией (0-3% MeOH/ДХМ) с получением желаемого продукта **259** в виде белого твердого вещества (71 мг, 56%). R<sup>t</sup> 1,96 мин (Способ 1а); m/z 418 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>, 363 K): δ, ч./млн. 10,52 (с, 1H), 8,60 (д, Ј=1,9 Гц, 1H), 8,14 (д, Ј=2,2 Гц, 1H), 7,58-7,50 (м, 2H), 7,46 (д, Ј=8,0 Гц, 1H), 7,39-7,17 (м, 3H), 6,72 (д, Ј=10,9 Гц, 1H), 6,04 (д, Ј=11,1 Гц, 1H), 5,08 (с, 1H), 4,87 (с, 2H), 3,11 (с, 3H), 2,27 (с, 3H), 1,22 (с, 3H).

Стадия 6. Хиральное разделение соединения **259.** Хиральный способ разделения: Аппарат: Isolera (Biotage). Колонка: Chiralpak IA (20 мкм; стеклянная колонка; 250 мм х 25 мм). Элюент: CH<sub>3</sub>CN 90 - Этилацетат 10. Поток: 50 мл/мин. Температура: 25°C. Впрыскиваемое количество: 38,4 мг **259** в 10 мл CH<sub>3</sub>CN 90 - Этилацетате 10 и 2 мл МеОН (растворение при 50°C в ультразвуковой бане), затем охлаждение и быстрый впрыск).

(R, E)-3-(7-Гидрокси-7-метил-8-оксо-8,9-дигидро-7H-пиридо[2,3-b]азепин-3-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение **260**). Чистые фракции первого энантиомера собирают и концентрируют досуха. Затем твердое вещество суспендируют в диэтиловом эфире, переносят в регистрационную пробирку и концентрируют сначала в потоке азота, затем под вакуумом при КТ. Первый энантиомер получают в виде белого твердого вещества (m=13,04 мг; хиральная чистота: 100%). Абсолютную конфигурацию определяют произвольно.

**Пример 55.** Синтез (Е)-3-(3-(гидроксиметил)-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламида (соединение **270**).

Общая схема синтеза.

**Условия реакции**: а) TBDPSCI, имидазол, 0°C до KT; b) бензиламин, MeOH, 0°C до KT; c)  $H_2$ , Pd/C, MeOH, 50°C; d) 5-бром-3-фтор-2-нитропиридин **11**, ТЭА, EtOH, кипение с обратным холодильником; e) Fe, NH<sub>4</sub>Cl, EtOH,  $H_2$ O, кипение с обратным холодильником; f) LiOH,  $H_2$ O,  $T\Gamma\Phi$ , MeOH; g)  $\Gamma$ ATУ,  $\Pi$ ATУ,  $\Pi$ ATY,  $\Pi$ ATY,

Стадия 1. Метил 2-(((трет-бутилдифенилсилил)окси)метил)акрилат (соединение **262**). Имидазол (1,29 г, 19,0 ммоль) и трет-бутилхлордифенилсилан (4,95 мл, 19,0 ммоль) добавляют к перемешиваемому раствору метил 2-(гидроксиметил)акрилата 261 (1,77 мл. 17,2 ммоль) в ДМФ (20 мл) при 0°С. Реакционную смесь нагревают до КТ и перемешивают в течение ~16 ч. Реакционную смесь разбавляют EtOAc (30 мл) и NaHCO<sub>3</sub> (30 мл, насыщ. водн.) добавляют. Органическую фазу отделяют, и водную фазу снова экстрагируют EtOAc (3 х 30 мл). Объединенные органические фракции промывают водой (3 х 50 мл) и насыщенным раствором соли (2 x 50 мл), сушат с применением MgSO<sub>4</sub> и концентрируют в вакууме. Неочищенный продукт очищают колоночной хроматографией (0-50% EtOAc/изогексан) с получением желаемого продукта 262 в виде бесцветного масла (5,34 г, 87%). R<sup>t</sup> 3,16 мин (Способ 1a) m/z 377 [M+Na]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (500 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 7,66-7,59 (м, 4H), 7,52-7,41 (м, 6H), 6,25 (кв, Ј=1,8 Гц, 1H), 6,03 (кв, Ј=2,0 Гц, 1H), 4,36 (c, 2H), 3,64 (c, 3H), 1,01 (c, 9H).

Стадия 2. Метил 3-(бензиламино)-2-(((трет-бутилдифенилсилил)окси)метил)пропаноат (соединение 263). Бензиламин (10% раствор в МеОН, 7,4 мл, 6,77 ммоль) добавляют по каплям к перемешиваемому раствору метил 2-(((трет-бутилдифенилсилил)окси)метил)акрилата 262 (2,4 г, 6,77 ммоль) в МеОН (30 мл) при 0°С, и реакционную смесь возвращают к КТ. Реакционную смесь перемешивают в течение  $\sim$ 16 ч, затем концентрируют в вакууме, и неочищенный продукт очищают колоночной хроматографией (0-20% EtOAc/изогексан) с получением желаемого соединения 263 в виде бесцветного масла (0,99 г, 31%).  $\mathbb{R}^t$  2,11 мин (Способ 1а) m/z 462 [М+H]+ (ЭР+).  $\mathbb{R}^t$  1 мин (500 МГц, ДМСО-d6):  $\mathbb{R}^t$  3, ч./млн. 7,62-7,56 (м, 4H), 7,50-7,38 (м, 6H),

7,31-7,17 (м, 5H), 3,88-3,79 (м, 2H), 3,63 (с, 2H), 3,62 (с, 3H), 2,83 (п, J=6,6  $\Gamma$ ц, 1H), 2,72 (дд, J=11,7  $\Gamma$ ц, 7,0  $\Gamma$ ц, 1H), 2,64 (дд, J=11,7  $\Gamma$ ц, 6,8  $\Gamma$ ц, 1H), 2,17 (с, 1H), 0,94 (с, 9H).

Стадия 3. Метил 3-амино-2-(((трет-бутилдифенилсилил)окси)метил)пропаноат (соединение 264). Раствор метил 3-(бензиламино)-2-(((трет-бутилдифенилсилил)окси)метил)пропаноата 263 (1,5 г, 3,25 ммоль) и палладия на угле (0,35 г, 3,25 ммоль) в МеОН (65 мл) гидрируют при 5 бар и 50°С в течение 24 ч. Палладий удаляют фильтрацией через Celite®, и фильтрат концентрируют в вакууме с получением желаемого продукта 264 в виде смеси бледно-желтого масла (1,05 г, 87%), которое применяют на следующей стадии без дальнейшей очистки.

Стадия 4. Метил-3-((5-бром-2-нитропиридин-3-ил)амино)-2-(((третбутилдифенилсилил)окси)метил)пропаноат (соединение **265**). К перемешиваемому раствору 5-бром-3-фтор-2-нитропиридина **11** (630 мг, 2,83 ммоль) в EtOH (15 мл) добавляют метил 3-амино-2-(((трет-бутилдифенилсилил)окси)метил)пропаноат 264 (1,0 г, 2,83 ммоль), затем ТЭА (1,0 мл, 7,07 ммоль). Реакционную смесь перемешивают при кипении с обратным холодильником в течение 2 ч, затем концентрируют в вакууме. (0-100% Неочищенный продукт очищают колоночной хроматографией этилацетат/изогексан) с получением указанного в заголовке соединения 265 в виде коричневого масла (490 мг, 29%).  $R^t$  3,15 мин (Способ 1a) m/z 572/574  $[M+H]^+$  (Э $P^+$ ).

Стадия 5. Метил-3-((2-амино-5-бромпиридин-3-ил)амино)-2-(((трет-бутилдифенилсилил)окси)метил)пропаноат (соединение 266). К смеси метил 3-((5-бром-2-нитропиридин-3-ил)амино)-2-(((трет-бутилдифенилсилил)окси)метил)пропаноата 265 (500 мг, 0,85 ммоль) добавляют железо (190 мг, 3,42 ммоль) и хлорид аммония (185 мг, 3,42 ммоль) в этаноле (35 мл) и воде (8,8 мл). Полученную реакционную смесь нагревают при 90°С в течение 1 часа, затем фильтруют через слой Celite®, пока она остается горячей. Затем фильтрат выпаривают досуха. Неочищенный продукт очищают (0-10% MeOH/ДХМ) с получением указанного в заголовке соединения 266 в виде бесцветного твердого вещества (300 мг, 64%). R¹ 2,59 мин (Способ 1а) m/z 542/544 [М+Н] (ЭР+).

Стадия 6. 3-((2-Амино-5-бромпиридин-3-ил)амино)-2-(((трет-бутилдифенилсилил)окси)метил)пропановая кислота (соединение **267**). Гидроксид лития (1 М водн., 618 мкл, 0,618 ммоль) добавляют по каплям к перемешиваемому раствору метил-3-((2-амино-5-бромпиридин-3-ил)амино)-2-(((трет-бутилдифенилсилил)окси)метил)пропаноата **266** (305 мг, 0,56 ммоль) в ТГФ (8,0 мл) и

меОН (1,5 мл). Реакционную смесь перемешивают при той же температуре в течение 80 минут, затем хранят при -20°С в течение ночи. Смесь гасят АсОН (0,5 мл), и растворители выпаривают в вакууме. Полученный неочищенный продукт очищают хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения **267** в виде белого твердого вещества (76 мг, 25%). Rt 1,77 мин (Способ 2а) m/z 528/530 [М+Н]<sup>+</sup> (ЭР<sup>+</sup>).

**Стадия** 7. 8-Бром-3-(((трет-бутилдифенилсилил)окси)метил)-2,3-дигидро-1Н-пиридо[2,3-b][1,4]диазепин-4(5H)-он (соединение **268**). ДИПЭА (0,13 мл, 0,72 ммоль) добавляют к перемешиваемому раствору 3-((2-амино-5-бромпиридин-3-ил)амино)-2-

(((трет-бутилдифенилсилил)окси)метил)пропановой кислоты **267** (76 мг, 0,14 ммоль) в ДМФ (2,0 мл). ГАТУ (66 мг, 0,17 ммоль) добавляют к смеси, и реакционную смесь перемешивают в течение 1 часа. Смесь гасят МеОН (4,0 мл) и разделяют между водой (65 мл) и ЕtOAc (50 мл). Водный слой экстрагируют EtOAc (2 х 50 мл), и объединенные органические экстракты промывают насыщенным раствором соли (100 мл), сушат с MgSO4 и выпаривают в вакууме с получением указанного в заголовке соединения **268** в виде янтарного масла (101 мг, 85%), которое применяют на следующей стадии без дальнейшей очистки. Rt 2,33 мин (Способ 2а) m/z 510/512 [M+H]+ (ЭР+).

Стадия 8. 8-Бром-3-(гидроксиметил)-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-он (соединение **269**). Раствор 8-бром-3-(((трет-бутилдифенилсилил)окси)метил)-2,3-дигидро-1H-пиридо[2,3-b][1,4]диазепин-4(5H)-она **268** (101 мг, 0,12 ммоль) в ТГФ (4,0 мл) обрабатывают ФТБА (1 М в ТГФ, 0,2 мл, 0,2 ммоль). Через 20 минут растворитель выпаривают в вакууме, и неочищенный продукт очищают хроматографией на силикагеле (0-100% EtOAc/изогексан) с получением указанного в заголовке соединения **269** в виде белого твердого вещества (26 мг, 78%).  $\mathbb{R}^t$  0,93 мин (Способ 2a) m/z 272/274 [M+H]<sup>+</sup> (ЭР<sup>+</sup>).

9. (Е)-3-(3-(Гидроксиметил)-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3b][1,4]диазепин-8-ил)-N-метил-N-((3-метилбензофуран-2-ил)метил)акриламид **270**). В пробирку загружают N-метил-N-((3-метилбензофуран-2ил)метил)акриламид 9 (22 мг, 0,096 ммоль), 8-бром-3-(гидроксиметил)-2,3-дигидро-1Нпиридо[2,3-b][1,4]диазепин-4(5H)-он **269** (26 мг, 0,096 ммоль), гидрат хлорида тетрабутиламмония (2,8 мг, 9,56 мкмоль), Pd-116 (4,9 мг, 9,56 мкмоль). Пробирку затем промывают азотом в течение 5 мин. Добавляют 1,4-диоксан (2,0 мл) и ДИПЭА (33 мкл, 0,19 ммоль), и реакционную смесь нагревают до 80°C в течение 1 часа, затем охлаждают до КТ. Растворитель выпаривают в вакууме, и неочищенный продукт очищают хроматографией (0-10% МеОН/ДХМ). Полученный продукт затем растирают из МеСN (2,0 мл) с получением указанного в заголовке соединения 270 в виде бледно-желтого твердого вещества (20 мг, 49%). Rt 1,45 мин (Способ 2a) m/z 421 [M+H]<sup>+</sup> (ЭР<sup>+</sup>). <sup>1</sup>H ЯМР (ДМСО-d<sub>6</sub>, 363К):  $\delta$ , ч./млн. 9,18 (с, 1H), 7,98 (д, J=1,9 Гц, 1H), 7,56 (дд, J=7,4 Гц, 1,6 Гц, 1H), 7,50-7,39  $(M, 2H), 7,38 (Д, J=1,9 \Gamma Ц, 1H), 7,32-7,20 (M, 2H), 7,12 (Д, J=15,4 \Gamma Ц, 1H), 5,84 (С, 1H), 4,84 (С, 1H), 7,32-7,20 (М, 2H), 7,12 (Д, J=15,4 Г Ц, 1H), 5,84 (С, 1H), 4,84 (C, 1H), 4$ 2H), 4,35 (c, 1H), 3,82-3,74 (м, 1H), 3,60-3,52 (м, 2H), 3,35-3,26 (м, 1H), 3,10 (c, 3H), 2,78-2,69 (M, 1H), 2,28 (c, 3H).

**Пример 56.** Синтез 2-гидроксиэтан-1-аминия (R, E)-(2-метил-8-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-1,2,3,4-тетрагидро-5Н-пиридо[2,3-b][1,4]диазепин-5-ил)метилфосфата (соединение **272**).

Общая схема синтеза.

**Условия реакции**: а) 1. 18-краун-6, NMP/N-этилпирролидон, КТ 2. t-BuOK при -  $20^{\circ}$ C до - $35^{\circ}$ C, затем хлорметил бис[2-(триметилсилил)этил]фосфат **21**; b) ТФК/ДХМ, длительная обработка

**Стадия** 1. Бис(2-триметилсилилэтил)фосфат [(2R)-2-метил-8-[(E)-3-[метил-[(3метилбензофуран-2-ил)метил]амино]-3-оксо-проп-1-енил]-4-оксо-2,3-дигидро-1Нпиридо[2,3-b][1,4]диазепин-5-ил]метил (соединение 271). В 25 мл колбу под азотом, (E)-N-метил-N-[(3-метилбензофуран-2-ил)метил]-3-[(2R)-2-метил-4-оксосодержащую 1,2,3,5-тетрагидропиридо[2,3-b][1,4]диазепин-8-ил]проп-2-енамид **214** (1,0 г, 2,47 ммоль, 1 экв.) в суспензии в безводном ДМСО (10 мл) при 25°C, добавляют раствор 2-метилпропан-2-олата калия (2,6 мл, 2,6 ммоль, 1,05 экв., 1 M в  $T \Gamma \Phi$ ) в течение 5 минут при перемешивании. Затем полученный оранжевый раствор перемешивают при 25°C в течение 15 минут и добавляют по каплям при 25°C в течение 30 минут к раствору хлорметилбис(2-(триметилсилил) этил) фосфата (4,8 мл, 3,46 ммоль, 1,4 экв., 30% в гексане) при энергичном перемешивании. Реакционную смесь затем перемешивают при 25°C в течение 10 минут до практически завершения, УЭЖХ/МС (способ: полного на что указывает 3мин кислота стандарт; 254 нм;  $R_t = 1,56$  мин (исходный материал; 7%);  $R_{t=1,62}$  мин (не определено; 4%);  $R_t$ =1,79 мин (не определено; 4%);  $R_t$ =2,27 мин (другой региоизомер; 15%);  $R_t$ =2,57 мин (ожидаемый продукт; 70%). Реакционную смесь промывают н-гептаном (2 x 40 мл), затем ДМСО фазу гасят насыщенным раствором ацетата аммония (50 мл), и затем водную фазу экстрагируют МТБЭ (4 х 50 мл). Объединенные органические фазы затем промывают насыщенным раствором соли (100 мл), сушат над Na<sub>2</sub>SO<sub>4</sub>, фильтруют и концентрируют на вакуумном роторном испарителе (температура бани: 20°C) с получением неочищенного указанного в заголовке соединения 271 в виде желтой пены (1,686 г, 1,768 ммоль, 71,5% выход). УЭЖХ-МС (Способ 1с): 3мин кислота стандарт; 254 нм; 75%.

Стадия 2. 2-Гидроксиэтан-1-аминий (R, Е)-(2-метил-8-(3-(метил((3метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-1,2,3,4-тетрагидро-5Нпиридо[2,3-b][1,4]диазепин-5-ил)метилфосфата (соединение 272). В 100 мл трехгорлую колбу под азотом, содержащую раствор бис(2-триметилсилилэтил)фосфата [(2R)-2-метил-8-[(Е)-3-[метил-[(3-метилбензофуран-2-ил)метил]амино]-3-оксопроп-1-енил]-4-оксо-2,3дигидро-1Н-пиридо[2,3-b][1,4]диазепин-5-ил]метила 271 (1686 мг, 1,77 ммоль, 1 экв.) в безводном дихлорметане (27,0 мл), при -20°C при перемешивании добавляют по каплям раствор 2,2,2-трифторуксусной кислоты (2,6 мл, 33,6 ммоль, 19 экв.) в безводном ДХМ (27 мл), сохраняя температуру ниже -15°C. Затем реакционную смесь перемешивают при -12°C в течение 1 ч 30 мин до завершения, на что указывает УЭЖХ/МС (образец готовят в ацетонитриле с одной каплей этаноламина; 3 3мин кислота стандарт; 254 нм; R<sub>t</sub>= 1,35 мин (ожидаемый продукт; ЭР: 513,2; 74%);  $R_t$ =1,56 мин (АФИ; 12%);  $R_t$ =1,81 мин (полугидролизованный фосфат)). Температуру доводят до -20°C, и раствор этаноламина (2,7 мл, 44,22 ммоль, 25 экв.) в безводном ДХМ (27 мл) добавляют в течение 5 минут. Затем реакционную смесь перемешивают при -15°C в течение 1 ч и затем концентрируют (роторный испаритель) под глубоким вакуумом, сохраняя темп. бани 5°C. Затем остаток суспендируют в 100 мл циклопентилметилового эфира, и полученную суспензию фильтруют с получением ТФК соли этаноламина виде желтоватого твердого вещества. Фильтрат концентрируют (роторный испаритель) под глубоким вакуумом, сохраняя темп. бани 5°C с получением неочищенного указанного в заголовке продукта в виде желтого масла м=3,76 г (УЭЖХ/МС; 3мин кислота стандарт; 254 нм; чистота: 87%). Хранят при -20°C в течение ночи. Продукт очищают флэш-хроматографией на оборудовании Isolera (Biotage). Картридж: C18 (25 мкм); 120 г. Впрыск: неочищенный продукт (3,76 г) солюбилизируют в 25 мл (воды 0,2% этаноламина - СН<sub>3</sub>CN 0,2% этаноламина (95-5)) перед впрыском. Фракции, представляющие интерес, объединяют и лиофилизируют с получением указанного в заголовке продукта 272 в виде желтого твердого вещества (м=738 мг), который показал избыток этаноламина по ЯМР. Продукт суспендируют в метаноле (5 мл), обрабатывают ультразвуком и суспензию фильтруют. Полученный бледно-желтый порошок промывают метанолом (2×5 мл) и сушат под вакуумом с получением указанного в заголовке соединения 272 в виде бледно-желтого порошка (м=300,3 мг; 26,7% выход). УЭЖХ-МС (Способ 1с): 3мин кислота стандарт; 254 нм; чистота 100% (ППК), ЭР-: 513,2.  $^{1}$ Н ЯМР (400 МГц, D<sub>2</sub>O):  $\delta$ , ч./млн, 8,26 (1H, дд, J=1,8, 15,0 Гц), 7,63 (1H, дд, J=2,0, 16,2 Гц), 7,54-7,32 (3H, м), 7,29-7,16 (2,5H, м), 7,04 (0,5H, д, J=15,6  $\Gamma$ ц), 5,48-5,37 (2H, м), 4,81 (0,8H, с), 4,73 (1,2H, с), 3,99 (1H, квд, Ј=6,1, 18,2 Гц), 3,72 (4H, т, Ј=5,4 Гц), 3,15 (1,6H, с), 3,04 (4H, т, J=5,0 Гц), 3,00 (1,4H, c), 2,64-2,55 (1H, м), 2,31-2,22 (1H, м), 2,19 (1,6H, c), 2,18 (1,4H, c), 1,20 (3Н, дд, Ј=2,8, 6,1 Гц). Содержание ТФК соли этаноламина: 0,07% масс./масс.

**Пример 57.** Синтез (E)-N-[(4-амино-3-метил-бензофуран-2-ил)метил]-3-[(3S)-3-гидрокси-4-оксо-1,2,3,5-тетрагидропиридо[2,3-b][1,4]диазепин-8-ил]-N-метилпроп-2-енамид (соединение **274**).

**Условия реакции**: а) Pd-162, ДИПЭА, n-Bu<sub>4</sub>NCl, 1,4-диоксан, 90°C, 5 ч; ТФК/ДХМ; с) ДИПЭА, ГАТУ, ДМФ, кт.

**Стадия 1.** трет-Бутил (S, E)-3-(3-гидрокси-4-оксо-2,3,4,5-тетрагидро-1Н-пиридо[2,3-b][1,4]диазепин-8-ил)акрилат (соединение **273**). Смесь (3S)-8-бром-3-гидрокси-1,2,3,5-тетрагидропиридо[2,3-b][1,4]диазепин-4-она **228** (182,76 мг, 0,70 ммоль, 1 экв.), хлорида тетрабутиламмония (23,39 мг, 0,08 ммоль, 0,12 экв.), хлор(кротил)(три-трет-бутилфосфин)палладия(II) (14,72 мг, 0,04 ммоль, 0,05 экв.) добавляют в колбу под

атмосферой азота. Колбу продувают и обратно заполняют азотом. Добавляют 1,4-диоксан (4,95 мл), трет-бутил акрилат **15** (0,24 мл, 1,68 ммоль, 2,4 экв.) и ДИПЭА (0,24 мл, 1,4 ммоль, 2,0 экв.), и азот барботируют через смесь в течение 5 мин. Реакционную смесь нагревают при 90°С в течение 5 ч. После охлаждения, смесь фильтруют с применением 0,22 мкМ ПТФЭ фильтров. Фильтры затем промывают ДХМ/МеОН 50/50. Объединенный фильтрат концентрируют при пониженном давлении досуха. АЦН добавляют, и полученную желтую суспензию помещают в ультразвуковую баню на минут и затем фильтруют через фритту с пористостью 3. Полученное желтое твердое вещество промывают холодным эфиром с получением **273** (110 мг, 0,35 ммоль, 51,07% выход) в виде желтого твердого вещества. УЭЖХ-МС (Способ 1с): m/z 306,1 [М+Н]<sup>+</sup> (ЭР<sup>+</sup>).

Стадия 2. (S, E)-3-(3-Гидрокси-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловая кислота (соединение 274). трет-Бутил (S, E)-3-(3-гидрокси-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акрилат 273 (110 мг, 0,36 ммоль, 1,0 экв.) разбавляют ДХМ (0,23 мл) и охлаждают до 0°С. Трифторуксусную кислоту (0,23 мл) добавляют по каплям. Полученный желтый раствор перемешивают в течение 3 часов. УЭЖХ анализ показал полное превращение. Летучие вещества удаляют при пониженном давлении, и полученный остаток обрабатывают холодным эфиром. Полученную суспензию помещают в ультразвуковую баню и фильтруют. Полученное желтое твердое вещество сушат в течение ночи в высоком вакууме с получением указанного в заголовке соединения 274 (90 мг, 0,35 ммоль, 98,23% выход) в виде желтого твердого вещества. УЭЖХ-МС (Способ 1с): m/z 250,1 [M+H]<sup>+</sup>(ЭР<sup>+</sup>).

**Стадия 3.** (E)-N-[(4-Амино-3-метил-бензофуран-2-ил)метил]-3-[(3S)-3-гидрокси-4оксо-1,2,3,5-тетрагидропиридо[2,3-b][1,4]диазепин-8-ил]-N-метил-проп-2-енамид (соединение 275), 3-метил-2-(метиламинометил)бензофуран-4-амин 3 (32,1 мг, 0,169 экв.) и ((S, E)-3-(3-гидрокси-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3ммоль, b][1,4]диазепин-8-ил)акриловую кислоту **274** (35,1 мг, 0,141 ммоль, 1,0 экв.) растворяют в  $ДМ\Phi$  (0,7 мл). Затем ГАТУ (83,76 мг, 0,21 ммоль, 1,5 экв.) добавляют одной порцией. Туда ДИПЭА (0,098 мл, 0,564 ммоль, 4,0 экв.) добавляют по каплям при КТ, и полученную смесь перемешивают при КТ в течение 1 ч. Полученную коричневую реакционную массу концентрируют в высоком вакууме (без обработки), неочищенный коричневый продукт растворяют в смеси MeCN/H<sub>2</sub>O (5 мл, 4:1 об./об., 2 инъекции) и очищают полупрепаративной ВЭЖХ (98-100-30 мин; 90% растворитель А, 10% растворитель В, 30 мин) и лиофилизируют в течение ночи с получением указанного в заголовке соединения 275 в виде желтого порошка с чистотой 89,19% (49 мг, 82% выход). Полученное твердое вещество сушат и солюбилизируют в ДМСО (0,5-1 мл) и медленно добавляют в воду (6 мл). 93,14% Быстро выпавший В осадок продукт c чистотой восстанавливают ценрифугированием и лиофилизируют в течение ночи. Получают бежевый порошок (10,5 мг). УЭЖХ-МС (Способ 1c): m/z 422,1 [M+H]<sup>+</sup> (ЭР<sup>+</sup>); t<sub>ret</sub>=1,02 мин. <sup>1</sup>Н ЯМР (400 МГц, ДМСО- $d_6$ ):  $\delta$ , ч./млн. 10,07 (c, 1H), 7,97-7,94 (м, 1H), 7,37-7,28 (м, 2,4H), 7,06 (д, J=15,4  $\Gamma$ ц, 0,6H), 6,84 (T, J=8,0  $\Gamma$ U, 1H), 6,58-6,56 (J=7,8 I=7,8 I=7,8

(м, 3H), 4,77, 4,62 (ротамеры, 2c, 2H), 4,08-4,06 (м, 1H), 3,41-3,38 (м, 1H), 3,21-3,16 (м, 1H), 3,01, 2,84 (ротамеры, 2a, 3H), 2,34 (с, 3H).

**Пример 58.** Синтез (S, E)-N-((7-амино-2-метилбензофуран-3-ил)метил)-3-(3-гидрокси-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламида (соединение **276**).

Условия реакции: а) ДИПЭА, ГАТУ, ДМФ, кт.

Е)-N-((7-Амино-2-метилбензофуран-3-ил)метил)-3-(3-гидрокси-4оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламид (соединение 276). 2-Метил-3-((метиламино)метил)бензофуран-7-амин 74 (31 мг, 0,164 экв.) и (S, E)-3-(3-Гидрокси-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3b][1,4]диазепин-8-ил)акриловую кислоту **274** (34,14 мг, 0,137 ммоль, 1,0 экв.) растворяют в ДМФ (0,7 мл). Затем ГАТУ (81,37 мг, 1,5 ммоль, 1,5 экв.) добавляют одной порцией. Туда ДИПЭА (0,096 мл, 0,54 ммоль, 4,0 экв.) добавляют по каплям при КТ, и полученную смесь перемешивают при КТ в течение 2 ч. Полученную коричневую реакционную массу обрабатывают водой (5 мл). Быстро выпавший в осадок продукт собирают центрифугированием. Выделяют желтое твердое вещество с чистотой 66,53% (48 мг). Полученный продукт с примесями повторно очищают препаративной ВЭЖХ. Желтый продукт суспендируют в смеси 4 мл МеОН/ДХМ (обработка ультразвуком 1-2 мин) и переносят в 4 мл пробирку со штрих-кодом. После выпаривания растворителя и сушки в высоком вакууме в течение ночи при КТ, получают желтое твердое вещество с чистотой 100% (9,6 мг, 16,6% выход).  $^{1}$ Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн. 10,14 (c, 1H), 8,05-8,01 (M, 1H), 7,49-7,38 (M, 2,3H), 7,06 (Д, <math>J=15,4  $\Gamma$ II, 0,7H), 6,84 (Т, <math>J=7,7  $\Gamma$ II, 1H), 6,74, 6,57 (2 д, 1H), 7,49-7,38 (М, 2,3H), 7,06 (Д, <math>J=15,4  $\Gamma$ II, 0,7H), 6,84 (Т, <math>J=7,7  $\Gamma$ II, 1H), 6,74, 6,57 (2 д, 1H), 7,49-7,38 (М, 2,3H), 7,06 (Д, <math>J=15,4  $\Gamma$ II, 0,7H), 6,84 (Т, <math>J=7,7  $\Gamma$ II, 1H), 6,74, 6,57 (2 д, 1H), 7,49-7,38 (М, 2,3H), 7,06 (Д, <math>J=15,4  $\Gamma$ II, 0,7H), 6,84 (T, <math>J=7,7  $\Gamma$ II, 1H), 6,74, 6,57 (2 д, 1H), 7,49-7,38 (M, 2,3H), 7,06 (M, 2,3H), 7,061Н), 6,48 (д, Ј=7,5 Гц, 1Н), 6,08 (шм, 1Н), 5,20 (д, Ј=4,6 Гц, 2Н), 5,16 (с, 1Н), 4,82, 4,67 (ротамеры, 2с, 2H), 4,15-4-12 (м, 1H), 3,47 (ддд, Ј=3,3, 6,1 и 12,2 Гц, 1H), 3,28-3,22 (м, 1H), 3,01, 2,82 (ротамеры, 2с, 3H), 2,50, 2,45 (ротамеры, 2с, 3H). УЭЖХ-МС (Способ 1с): m/z 422,1  $[M+H]^+$  (ЭР<sup>+</sup>); t<sub>ret</sub>=1,00 мин.

**Пример 59.** Синтез деканоата (R, E)-(3-гидрокси-3-метил-8-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-1,2,3,4-тетрагидро-5Н-пиридо[2,3-b][1,4]диазепин-5-ил)метила (соединение **282**).

**Условия реакции**: a) n-Bu<sub>4</sub>N·HSO<sub>4</sub>, NaHCO<sub>3</sub>, ДХМ/H<sub>2</sub>O (1:1 об./об.), 0°C до КТ, в течение ночи; b) 1-метил-1H-имидазол, ДМСО, КТ; c) tBuOK, ДМСО, КТ, 30 мин; d) 1М водн. HCl.

Стадия 1. Хлорметилдеканоат (соединение 279). Декановую кислоту 277 (1,0 г, 5,69 ммоль, 1,0 экв.), гидросульфат тетрабутиламмония (99,57 мг, 0,28 ммоль, 0,05 экв.) и бикарбонат натрия (1,92 г, 22,76 ммоль, 4,0 экв.) смешивают в колбе. Добавляют ДХМ (20 мл) и воду (20 мл). Полученный двухфазный раствор охлаждают до 0°С и затем обрабатывают раствором хлорметил серохлоридат 278 (1,03 г, 6,26 ммоль, 1,1 экв.) в ДХМ (0,5 мл). Смесь перемешивают при 0°С в течение 40 мин и затем при КТ в течение ночи. Реакционную смесь разбавляют водой и дважды экстрагируют ДХМ. Объединенные органические слои сушат над MgSO<sub>4</sub> с получением хлорметилдеканоата 279 (0,89 г, 4,06 ммоль, 71,35% выход) в виде бесцветного масла.

Стадия 2. (R, E)-N-Метил-3-(3-метил-4-оксо-3-((триметилсилил)окси)-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-((3-метилбензофуран-2-ил)метил)акриламид (соединение 280). К 1-метил-1H-имидазолу (1,33 мл, 16,65 ммоль, 7,0 экв.) в растворе в безводном ДМСО (10 мл) добавляют (E)-3-[(3R)-3-гидрокси-3-метил-4-оксо-2,5-дигидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил]-N-метил-N-[(3-метилбензофуран-2-ил)метил]проп-2-енамид 49 (1,0 г, 2,38 ммоль, 1,0 экв.) одной порцией при КТ. Желтый раствор перемешивают при КТ в течение 5 мин, затем добавляют TMSCl (1,54 мл, 11,89 ммоль, 5,0 экв.) одной порцией. Реакционную смесь перемешивают при КТ в течение 1 ч, разбавляют водой и насыщенным раствором соли (1:1 об./об.) и экстрагируют АсОЕt (3x). Объединенные органические фазы промывают насыщенным раствором соли, сушат над MgSO4, фильтруют и концентрируют досуха с получением указанного в заголовке соединения 280 (1,12 г, 2,27 ммоль, 95,59% выход) в виде желтого твердого вещества. УЭЖХ-МС (Способ 1с): Rt=2,04 мин. ЭР+=493,3.

**Стадия 3.** (R, E)-(3-Метил-8-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-3-((триметилсилил)окси)-1,2,3,4-тетрагидро-5H-пиридо[2,3-

b][1,4]диазепин-5-ил)метилдеканоат (соединение **281**). (R, E)-N-Метил-3-(3-метил-4-оксо-3-((триметилсилил)окси)-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-((3-метилбензофуран-2-ил)метил)акриламид **280** (0,569 г, 1,16 ммоль, 1,0 экв.) разбавляют ДМСО (5 мл). В полученный желтый раствор добавляют 2-метилпропан-2-олат калия (150,07 мг, 1,27 ммоль, 1,1 экв.). Эту реакционную смесь добавляют по каплям в течение 7 мин в пробирку, содержащую хлорметилдеканоат **279** (1,02 г, 4,62 ммоль, 4,0 экв.). Реакционную смесь перемешивают при КТ в течение 30 мин, разбавляют водой и дважды экстрагируют ЕtOAc. Объединенные органические слои промывают насыщенным раствором соли, сушат над MgSO<sub>4</sub> и концентрируют досуха. Остаток очищают на силикагеле с применением колонки SNAP Ultra (50 г) и ДХМ/ЕtOAc 90/10-0/100 в качестве элюента. Хорошие фракции собирают и концентрируют досуха с получением продукта **281** в виде бежевой пены (67 мг, 24% выход). УЭЖХ-МС (Способ 1с): Rt=2,91 мин. ЭР+=677,5.

Стадия Е)-(3-Гидрокси-3-метил-8-(3-(метил((3-метилбензофуран-2ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-1,2,3,4-тетрагидро-5H-пиридо[2,3b][1,4]диазепин-5-ил)метилдеканоат (соединение **282**). (R, E)-(3-метил-8-(3-(метил((3метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-3-((триметилсилил)окси)-1,2,3,4-тетрагидро-5H-пиридо[2,3-b][1,4]диазепин-5ил)метилдеканоат **281** растворяют в MeOH (2 мл). 1M HCl в воде (0,58 мл, 0,57 ммоль, 2,0 экв.) добавляют при КТ. Через 10 мин перемешивания при комнатной температуре, УЭЖХ анализ показал полное превращение. Реакционную смесь концентрируют досуха с получением желтого масла, которое разбавляют EtOAc и промывают дважды насыщ. водн. раствором NaHCO<sub>3</sub>. Объединенные органические слои сушат над MgSO<sub>4</sub> и концентрируют досуха. Этот неочищенный продукт очищают флэш-хроматографией с применением колонки SNAP Ultra (25 г) и ДХМ/AcOEt 50/50-0/100 в качестве элюента. Хорошие фракции собирают и концентрируют досуха с получением липофильного пролекарства 282 в виде бежевого твердого вещества (103 мг, 0,16 ммоль, 56,17% выход). УЭЖХ-МС (Способ 1с): Rt=2,46 мин ЭР+=605,4. <sup>1</sup>H ЯМР (400 МГц, ДМСО-d<sub>6</sub>):  $\delta$ , ч./млн,7,88-7,85 (м, 1H), 7,65-7,63 (M, 1H), 7,60 (Д, J=15,6 ГЦ, 1H), 7,50 (Д, J=7,3 ГЦ, 1H), 7,40 (Д, J=7,9 ГЦ, 1H), 7,28-7,20 (М, 1H), 7,60 (Д, J=15,6 ГЦ, 1H), 7,50 (Д, J=7,3 ГЦ, 1H), 7,40 (Д, J=7,9 ГЦ, 1H), 7,28-7,20 (М, 1H), 7,60 (Д, J=15,6 ГЦ, 1H), 7,50 (Д, J=7,3 ГЦ, 1H), 7,40 (Д, J=7,9 ГЦ, 1H), 7,28-7,20 (М, 1H), 7,60 (Д, J=7,9 ГЦ, 1H), 7,60 (Д, J=7,9 ΓЦ, 1H), 7,60 (Z, J=7,9 ΓЦ, 1H), 7,60 (2Н), 7,20-7,06 (м, 1Н), 6,79 (д, Ј=15,4 Гц, 1Н), 5,26-5,17 (м, 2Н), 4,86, 4,69 (2с, 2Н, ротамеры), 4,08 (шс, 1Н), 3,72 (д, Ј=11,9 Гц, 1Н), 3,25 (д, Ј=12,4 Гц, 1Н), 3,21, 3,07 (2с, 3Н, ротамеры), 2,30 (c, 3H), 2,23-2,19 (M, 2H), 1,61 (c, 3H), 1,55-1,51 (M, 2H), 1,15-1,35 (M, 12 H), 0,86 (T, J=6,6 Γц, 3Н).

**Пример 60.** Синтез(R, E)-(3-гидрокси-3-метил-8-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-1,2,3,4-тетрагидро-5H-пиридо[2,3-b][1,4]диазепин-5-ил)метил 2-этилбутаноата (соединение **286**).

Общая схема синтеза.

**Условия реакции**: a) n-Bu<sub>4</sub>N·HSO<sub>4</sub>, NaHCO<sub>3</sub>, ДХМ/H<sub>2</sub>O (1:1 об./об.), 0°C до КТ, в течение ночи; b) tBuOK, ДМСО, КТ, 30 мин; c) 1М водн. HCl.

**Стадия 1.** Хлорметил 2-этилбутаноат (соединение **284**) синтезируют из 2-этилбутановой кислоты **(283)** и хлорметил серохлоридата **278** как описано для соединения **279** (77,5% выход).

**Стадия 2.**(R, E)-(3-Метил-8-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-3-((триметилсилил)окси)-1,2,3,4-тетрагидро-5H-пиридо[2,3-b][1,4]диазепин-5-ил)метил 2-этилбутаноат (соединение **285**) получают согласно методике, описанной для соединения **281** (49% выход). УЭЖХ-МС (Способ 1c): Rt=2,54 мин  $\mathrm{ЭP}$ +=621,4.

Стадия 3. (R, E)-(3-Гидрокси-3-метил-8-(3-(метил((3-метилбензофуран-2-ил)метил)амино)-3-оксопроп-1-ен-1-ил)-4-оксо-1,2,3,4-тетрагидро-5H-пиридо[2,3-b][1,4]диазепин-5-ил)метил 2-этилбутаноат (соединение **286**) получают как описано для соединения **282** (79% выход). УЭЖХ-МС (Способ 1с): Rt=1,96 мин. ЭР+=549,3. <sup>1</sup>Н ЯМР (400 МГц, ДМСО-d<sub>6</sub>): δ, ч./млн. 7,87-7,84 (м, 1H), 7,67 (т, J=6,9 Гц, 1H), 7,59 (д, J=15,4 Гц, 1H), 7,48 (д, J=7,2 Гц, 1H), 7,39 (д, J=7,9 Гц, 1H), 7,28-7,20 (м, 2H), 7,06-7,04 (м, 1,3H), 6,79 (д, J=15,4 Гц, 0,7H), 5,27-5,19 (м, 2H), 4,82, 4,69 (2c, 2H, ротамеры), 4,08 (шс, 1H), 3,76 (д, J=11,9 Гц, 1H), 3,21-3,18 (м, 1H), 3,20, 3,08 (2c, 3H, ротамеры), 2,30 (c, 3H), 2,15-2,09 (м, 1H), 1,59 (c, 3H), 1,56-1,37 (м, 4H), 0,81-0,72 (м, 6H).

**Пример 61.** Синтез(E)-N-((7-амино-2-метилбензофуран-3-ил)метил)-3-(2,2-диметил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)-N-метилакриламида (соединение **287**).

Общая схема синтеза.

**Условия реакции**: a) i) Pd-116, ДИПЭА, 1,4-диоксан, 80°C; ii) HCl, MeOH.

**Стадия 1.** (E)-N-((7-Амино-2-метилбензофуран-3-ил)метил)-3-(2,2-диметил-3-оксо-1,2,3,4-тетрагидропиридо[2,3-b]пиразин-7-ил)-N-метилакриламид (соединение **287**). К смеси N-((7-((дифенилметилен)амино)-2-метилбензофуран-3-ил)метил)-N-метилакриламида **166** (72 мг, 0,18 ммоль), 7-бром-2,2-диметил-1,2-дигидропиридо[2,3-

b]пиразин-3(4H)-она **14** (45 мг, 0,18 ммоль) и Pd-116 (9 мг, 0,02 ммоль) добавляют 1,4-диоксан (2 мл) и ДИПЭА (0,06 мл, 0,35 ммоль). Реакционную смесь продувают №, нагревают до 80°С и перемешивают в течение 1 ч. Реакционную смесь охлаждают до КТ, затем разбавляют МеОН (2 мл) и НСІ добавляют (5 мл, 1М водн.). Полученную смесь перемешивают в течение 10 мин, затем разбавляют НСІ (5 мл, 1М водн.). Водный слой экстрагируют ДХМ (3×10 мл), нейтрализуют твердым №НСО3 до ~рН 8 и экстрагируют ДХМ (3×10 мл). Объединенные органические слои промывают насыщенным раствором соли (20 мл), пропускают через фазовый сепаратор и концентрируют в вакууме. Неочищенный продукт очищают хроматографией (0-10% МеОН/ДХМ) с получением указанного в заголовке соединения **287** в виде бледно-желтого твердого вещества (26 мг, 34%). R¹ 1,51 мин (Способ 1а) m/z 420 (М+H)<sup>+</sup> (ЭР<sup>+</sup>). ¹Н ЯМР (ДМСО-d<sub>6</sub>, 363 К): δ, ч./млн. 10,41 (с, 1H), 7,88 (д, Ј=1,9 Гц, 1H), 7,46 (д, Ј=15,4 Гц, 1H), 7,24 (д, Ј=1,9 Гц, 1H), 7,03 (д, Ј=15,4 Гц, 1H), 6,88 (т, Ј=7,7 Гц, 1H), 6,75 (д, Ј=7,7 Гц, 1H), 6,54 (дд, Ј=7,8, 1,2 Гц, 1H), 6,04 (с, 1H), 4,88 (с, 2H), 4,72 (с, 2H), 2,98 (с, 3H), 2,47 (с, 3H), 1,30 (с, 6H).

**Пример 62.** Синтез (E)-N-((7-амино-2-метилбензофуран-3-ил)метил)-3-((2R,3S)-3-гидрокси-2-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-N-метилакриламида (соединение **290**).

Общая схема синтеза.

**Условия реакции**: a) Pd-116, ДИПЭА, 1,4-диоксан, 90°C; b) ТФК, ДХМ; c) ГАТУ, ДИПЭА, ДМФ.

6,35 (д, J=16,0 Гц, 1H), 6,11 (д, J=5,7 Гц, 1H), 5,15 (д, J=4,8 Гц, 1H), 4,18 (дд, J=4,8, 3,3 Гц, 1H), 3,77-3,69 (м, 1H), 1,48 (с, 9H), 1,08 (д, J=6,5 Гц, 3H).

Стадия 2. 2,2,2-Трифторацетат (E)-3-((2R,3S)-3-гидрокси-2-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акриловой кислоты (соединение 289). Смесь (E)-трет-бутил 3-((2R,3S)-3-гидрокси-2-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)акрилата 288 (411 мг, 1,29 ммоль) в ДХМ (5 мл) и ТФК (5 мл) перемешивают при КТ в течение 1,5 ч. Смесь концентрируют при пониженном давлении с получением бледно-оранжевой камеди. Камедь растирают с ТБМЭ (10 мл) с получением желтого твердого вещества, которое фильтруют и промывают еще ТБМЭ (10 мл) и затем MeCN (2×10 мл) с получением указанного в заголовке соединения 289 в виде ярко-желтого твердого вещества (260 мг, 53%). УЭЖХ-МС (Способ 1с):  $R^t$ =0,90 мин. m/z 264 [M+H]+(ЭP+).  $^1$ H ЯМР (500 МГц, ДМСО- $^1$ G6):  $^1$ B,  $^1$ B,

**Стадия 3.** (E)-N-((7-Амино-2-метилбензофуран-3-ил)метил)-3-((2R,3S)-3-гидрокси-2-метил-4-оксо-2,3,4,5-тетрагидро-1H-пиридо[2,3-b][1,4]диазепин-8-ил)-Nметилакриламид (соединение 290). ДИПЭА (110 мкл, 0,63 ммоль) добавляют к суспензии (E)-3-((2R,3S)-3-гидрокси-2-метил-4-оксо-2,3,4,5-тетрагидро-1H-2,2,2-трифторацетата пиридо[2,3-b][1,4] диазепин-8-ил) акриловой кислоты **289** (60 мг, 0,16 ммоль) и ГАТУ (72 мг, 0,19 ммоль) в ДМФ (1 мл), и смесь перемешивают при КТ в течение 2 мин. 2-Метил-3-((метиламино)метил)бензофуран-7-амин 74 (30 мг, 0,16 ммоль) в ДМФ (1 мл) добавляют одной порцией, и реакционную смесь перемешивают при КТ в течение 1,5 ч. Н<sub>2</sub>О (10 мл) добавляют, и полученное желтое твердое вещество фильтруют и промывают H<sub>2</sub>O (5 мл). Неочищенный продукт очищают хроматографией (2,5-5% МеОН/ДХМ) с получением указанного в заголовке соединения 290 в виде желтого твердого вещества (16 мг, 23%).  $R^t$ 1,36 мин (Способ 1a) m/z 436 (M+H)+ (ЭР+). <sup>1</sup>Н ЯМР (500 МГц, ДМСО-d<sub>6</sub>, 363K): δ, ч./млн. 9,80 (с, 1Н), 7,97 (д, Ј=1,9 Гц, 1Н), 7,44 (д, Ј=15,4 Гц, 1Н), 7,39 (д, Ј=1,9 Гц, 1Н), 7,15-7,03  $(M, 1H), 6,87 (T, J=7,7 \Gamma Ц, 1H), 6,74 (Д, J=7,7 \Gamma Ц, 1H), 6,53 (Д, J=7,7 \Gamma Ц, 1H), 5,89 (Д, J=5,7 \Gamma Ц, 1H), 6,87 (Т, J=7,7 \Gamma Ц, 1H), 6,87 (T, J=7,7 \Gamma L, J=7,7 \Gamma L,$ 1Н), 4,87 (с, 2Н), 4,76 (д, Ј=4,8 Гц, 1Н), 4,71 (с, 2Н), 4,21 (т, Ј=3,9 Гц, 1Н), 3,80-3,72 (м, 1Н), 2,98 (с, 3H), 2,47 (с, 3H), 1,11 (д, Ј=6,5 Гц, 3H).

## Пример 63 Примеры составов:

Соединение по настоящему изобретению составляют в виде раствора в концентрации 10 мг/мл в 40% водном носителе Captisol или 30% носителе Kleptose (30 минут магнитного перемешивания при комнатной температуре). Этот состав подходит для ВВ введения.

Ссоединение по настоящему изобретению составляют в виде твердой дисперсии при лекарственной нагрузке 20% в HPMC AS: соединение и полимер солюбилизируют в смеси метиленхлорида:метанола (отношение 3:1 масс./масс.), концентрация полимера составляет 1,4% масс./масс. в органической фазе (масштаб партии 85 мг). Этот раствор затем сушат

распылением на распылительной сушилке Procept 4M8-Trix (параметры процесса: cyclone S, скорость воздуха 0,35 м³/мин, температура на входе 50°C, скорость раствора сырья: 6 г/мин, давление форсунки 10 л/мин, охлаждение воздухом 80 л/мин). Восстановление составляет 64%. ДСК и ПРД анализы подтверждают получением раствора твердого вещества (аморфная физическая форма, единственная Тg при 95°C). Затем состав составляют в виде таблеток или гранул для ПО введения.

Соединение по настоящему изобретению составляют (в концентрации от 1 мг/мл до 300 мг/мл) в виде наносуспензии или микросуспензии в воде или масле и стабилизируют полимером, таким как целлюлоза, 2-гидроксипропиловый эфир или этиловый эфир целлюлозы в концентрации от 0,01 до 10%. Указанный состав дополнительно содержит поверхностно-активное вещество, такое как полиоксиэтилен 20 сорбитан моноолеат в концентрации от 0,01 и 10%. Этот состав подходит для введения пероральным путем.

Соединение по настоящему изобретению составляют (в концентрации от 1 мг/мл до 300 мг/мл) в виде наносуспензии или микросуспензии в воде или масле. Состав дополнительно содержит полимер, такой как полиэтиленгликоль 4000 или а-гидро-огидроксиполи(окси-1,2-этандиил)целлюлоза в концентрации от 0,01 до 10%, и поверхностно-активное вещество, такое как полиоксиэтилен 20 сорбитан моноолеат в концентрации от 0,01 и 10%. Состав является составом с замедленным выделением (замедленное выделение от 12 до 72 часов). Этот состав подходит для введения внутримышечным путем.

Соединение по настоящему изобретению составляют в виде наносуспензии или микроэмульсии в воде в концентрации от 10 мг/мл. Состав дополнительно содержит полиэтиленгликоль 4000 в концентрации 10%, и Полиоксиэтилен 20 сорбитан моноолеат в концентрации 10%. Этот состав подходит для введения внутримышечным путем.

Соединение по настоящему изобретению составляют (в концентрации от 1 мг/мл до 300 мг/мл) в виде наносуспензии или микроэмульсии в воде в комбинации с гидрофильным пролекарством по настоящему изобретению в отношении (соединение:гидрофильное пролекарство) от 1:99 до 99:1. Композиция дополнительно содержит полимер, такой как коповидон или полимер этенилового эфира уксусной кислоты с 1-этенил-2-пирролидиноном в концентрации от 0,01 до 10%, и поверхностно-активное вещество, например Полиоксиэтилен 20 сорбитан моноолеат, в концентрации от 0,01 до 10%. Состав является составом с замедленным выделением (замедленное выделение от 12 до 72 часов). Этот состав подходит для введения внутримышечным путем.

Ссоединение по настоящему изобретению составляют (в концентрации от 1 мг/мл до 300 мг/мл) в виде дисперсии твердого вещества, сделанного из мигрогранул, микросфер или имплантата, при лекарственной нагрузке 10-95% в пределах PLGA (или другой подходящей матрицы, такой как PLA) в водной или масляной среде, такой как конопляное масло. Состав стабилизирован полимером, таким как коповидон или полимер этенилового эфира уксусной кислоты с 1-этенил-2-пирролидиноном, в концентрации от 0,01 и 10%. Такой состав дополнительно содержит поверхностно-активное вещество Полиоксиэтилен

20 сорбитан моноолеат в концентрации от 0,01 и 10%. Состав является составом с замедленным выделением (замедленное выделение от 12 до 72 часов, например 24 и 72 ч), этот состав подходит для введения внутримышечным путем.

Соединение по настоящему изобретению составляют (в концентрации от 1 мг/мл до 300 мг/мл) в виде гидрогеля или олеогеля, содержащего полимер, такой как PEG-PLA полиэтиленгликоль-полимолочная кислота, или полисахариды в концентрации от 0,01 до 50%. Состав является составом с замедленным выделением (замедленное выделение от 12 до 72 часов, например 24 и 72 ч). Этот состав подходит для введения внутримышечным путем.

Соединение по настоящему изобретению составляют в виде липофильного твердого вещества или маслянистого пролекарства (в концентрации от 1 мг/мл до 300 мг/мл) с маслом, таким как конопляное масло, и сорастворителем, например, бензиловым спиртом и/или этанолом. Состав является составом с замедленным выделением (замедленное выделение от 12 до 72 часов). Этот состав подходит для введения внутримышечным путем.

## Пример 64 Антибактериальная активность

Типовые соединения тестируют на активность, на основе следующих методик тестирования:

Анализ ингибирования FabI Neisseria gonorrhoeae:

Ингибирование FabI ферментной активности *Neisseria gonorrhoeae* тестируют через измерение скорости потребления NADH ( $\Delta$  абсорбции при 340 нм/мин) при 30°C в 96-луночном планшете с применением автоматизированного планшетного ридера в присутствии или отсутствии тестируемых соединений. Смесь для анализа содержит 100 мМ Трис-HCl, pH 7,2, 100 мМ ацетата аммония, 0,05% плуроник F-68, 25 мкМ кротонил АСР, 50 мкМ NADH, 50 рМ рекомбининатного FabI белка *N. gonorrhoeae*, 7,5% ДМСО и тестируемые соединения в концентрациях, варьирующихся от 0,17 до 10000 нМ в конечном объеме лунки 100 мкл. Этот дозозависимый анализ ингибирования проводят с применением 11-точечных серий серийного разведения для каждого тестируемого соединения. Значения IС<sub>50</sub> для каждого тестируемого соединения определяют из подбора логистической сигмоидной кривой из кривых дозозависимого ингибирования.

МІС 50: МІС определяют согласно подходящей методологии Clinical and Laboratory Standards Institute (CLSI) через способ тестирования чувствительности при разведении агара в GC агаровом основании. Панель скрининга изолятов, применяемая для оценки активности против разных штаммов *Neisseria gonorrhoeae* и для определения МІС 50, содержит минимум 15 клинических изолятов *N. gonorrhoea*, включая несколько штаммов из эталонной коллекции АТСС и штамм, резистентный к Ципрофлоксацину. МІС 50 представляет собой значение МІС, при котором ≥50% изолятов в тестируемой популяции ингибированы; она эквивалента медианному значению МІС.

**Анализ Сасо-2:** Соединения инкубируют в 24-трансвел системе Caco-2 (Solvo Biotechnologies, Hungary) в течение 120 мин, после чего образцы берут из донорных и акцепторных компартментов трансвел системы. Целостность каждого монослоя клеток

контролируют через измерение трансэпителиального электрического сопротивления (TEER) до эксперимента. Проницаемость Люцифера желтого (В к A) также тестируют в качестве контроля на том же планшете (все лунки) после актуального эксперимента. Образцы анализируют с применением УЭЖХ/МС/МС. Проницаемость соединений отслеживают с применением относительных площадей пиков ЖХ/МС/МС (образец исходного донорного раствора=100%). Данные применяют для расчета кажущейся проницаемости (Рарр в см/с\* $10^{-6}$ ) и восстановления во время эксперимента.

Прогнозирование коэффициента экстракции (ER): In vitro стабильность метаболическую свойственного оценивают через определение метаболического клиренса после инкубирования тестируемых соединений с микросомами печени мыши и человека. Коротко, исследуемые соединения инкубируют с микросомами печени с добавлением кофакторов (1 мМ NADPH, 1 мМ UDPGA+15 мМ аламетицина). В выбранные моменты времени, анализы останавливают с применением равного объема холодного ацетонитрила и образцы анализируют УЭЖХ/ВР-МС для отслеживания скорости исчезновения соединений. Обеднение субстрата оценивают на основе площадей пиков (0 мин=100%), и применяют для расчета периодов полувыведения и затем in vitro клиренсов (CLint, в мкл/мин/мг белка). При применении видоспецифических физиологически обоснованных коэффициентов масштабирования (PBSF) и Well-Stirred модели печеночного клиренса, модифицированной Poulin et al, Journal of Pharmaceutical Sciences, vol. 101, no. 2, February 2012 и Poulin et al., Journal of Pharmaceutical Sciences, vol. 101, no. 11, November 2012, in vitro CLint затем трансформируют в in vivo CLint и в коэффициент экстракции печенью (ER) для мыши и человека.

Определение ФК и пероральной биодоступности на мышиной кассете: Самки мышей ВАLВ/с (n=24 на группу) получают одну внутривенную (вв, 1 мг/кг) или пероральную (по, 2 мг/кг) дозы соединений. Объемы доз составляют 5 мл/кг и 10 мл/кг для ВВ и перорального введения, соответственно. Соединения совместно составляют в 10% ДМСО (об./об.) и 40% Captisol (масс./об.) в составах на основе солевого раствора (вплоть до 3 соединений в кассете). Образцы крови (3 мыши на момент времени) берут через 0,0833, 0,25, 0,5, 1, 2, 4, 6 и 8 ч после введения, и концентрации соединения измеряют в плазме с применением стандартных аналитических способов ВЭЖХ/МС. Ттах, Стах, ППК, клиренс, объем распределения и пероральную биодоступность оценивают из концентраций в плазме с применением не компартментных фармакокинетических моделей. В частности, пероральную биодоступность (F%) определяют как F=(Дозавв\*ППКпо)/(Дозапо\*ППКвв)\*100

## Цитотоксичность HepG2

День -1: Получение планшетов С

- Анализы цитотоксичности проводят в 96-луночных титровальных микропланшетах (Biofil, TCP 011096), внутренние лунки (60 внутренних лунок, окруженных стерильной водой) получают 190 мкл культуральной среды с определенным количеством клеток (7500 жизнеспособных клеток/лунку). Один планшет С, содержащий клетки, готовят для 2 соединений (8 концентраций, n=3/концентрацию). Один фоновый

планшет без клеток готовят для 6 соединений (8 концентраций, n=1/концентрацию)

- Планшеты оставляют на месте в течение 30 мин, чтобы позволить гомогенную адгезию клеток в лунках.
  - Затем планшеты инкубируют в течение ночи при 37°C с 5%  ${\rm CO_2}$

День 0: Получение планшета А

- Исходные растворы серийно разводят (полулогарифмическое разведение, 3,16х) в соответствующем 100% ДМСО в 96-луночном ПП планшете (Greiner Bio-one, 7,651,261): 79 мкл исходного раствора с 10000 мкм в 100% ДМСО добавляют в колонку 3, 54 мкл 100% ДМСО добавляют в колонки 4-11. 25 мкл исходного раствора соединения переносят из колонки 3 в колонку 4 (пипетируют вверх и вниз 3Х, кончики меняют после каждого переноса). Это продолжают вплоть до 10 колонки. Для положительного контроля Доксорубицина, исходный раствор при 1000 мкм применяют в качестве исходной точки.

Планшет А:

| TIJIAIIIICI 71. |         | T       | 1      | 1      |       |       |      |      |
|-----------------|---------|---------|--------|--------|-------|-------|------|------|
| Соединение 1    | 3164,56 | 1001,44 | 316,91 | 100,29 | 31,74 | 10,04 | 3,18 | 100% |
| 10000 мкМ       | ,       | ,       | ,      |        |       |       |      | ДМСО |
| Соединение 2    | 3164,56 | 1001,44 | 316,91 | 100,29 | 31,74 | 10,04 | 3,18 | 100% |
| 10000 мкМ       | 5101,50 |         |        |        |       | 10,01 |      | ДМСО |
| Соединение 3    | 3164,56 | 1001,44 | 316,91 | 100,29 | 31,74 | 10,04 | 3,18 | 100% |
| 10000 мкМ       | 3104,30 | 1001,74 |        | 100,27 |       |       |      | ДМСО |
| Соединение 4    | 3164,56 | 1001,44 | 316,91 | 100,29 | 31,74 | 10,04 | 3,18 | 100% |
| 10000 мкМ       |         | 1001,44 | 510,51 | 100,29 |       | 10,04 |      | ДМСО |
| Соединение 5    | 3164,56 | 1001,44 | 316,91 | 100,29 | 31,74 | 10,04 | 3,18 | 100% |
| 10000 мкМ       |         |         |        |        |       |       |      | дмсо |
| Соединение 6    | 3164,56 | 1001,44 | 316,91 | 100,29 | 31,74 | 10,04 | 3,18 | 100% |
| 10000 мкМ       |         | 1001,74 | 310,71 |        |       |       |      | дмсо |
| Соединение 7    | 3164,56 | 1001,44 | 316,91 | 100,29 | 31,74 | 10,04 | 3,18 | 100% |
| 10000 мкМ       | 3104,30 | 1001,44 | 310,91 | 100,29 | 31,74 | 10,04 | 3,10 | дмсо |
| Доксорубицин    | 316,46  | 100,14  | 31,69  | 10,03  | 3,17  | 1,00  | 0.22 | 100% |
| 1000 мкМ        | 310,40  | 100,14  | 31,09  | 10,03  |       | 1,00  | 0,32 | дмсо |
|                 |         |         |        |        |       |       |      |      |

# Получение планшета В

- Соединения, полученные в планшете A, разводят 5X в 200 мкл в полной среде в 96-луночном ПП планшете (Greiner Bio-one, 7,651,261): В колонку 2 добавляют 200 мкл среды, содержащей 16% Tritron X-100. В колонки 3-11 добавляют 160 мкл среды. 40 мкл заранее разведенных соединений из планшета A переносят в колонки 3-11 (пипетируют вверх и вниз 3X, кончики меняют после каждого переноса).

Планшет В:

| 16%      | Соединение 1 |           |           |          |          |         |         |        | 20%  |
|----------|--------------|-----------|-----------|----------|----------|---------|---------|--------|------|
| Triton X | 2000000 нМ   | 632911,39 | 200288,42 | 63382,41 | 20057,72 | 6347,38 | 2008,66 | 635,65 | дмсо |
| 16%      | Соединение 2 |           |           |          |          |         |         |        | 20%  |
| Triton X | 2000000 нМ   | 632911,39 | 200288,42 | 63382,41 | 20057,72 | 6347,38 | 2008,66 | 635,65 | ДМСО |
| 16%      | Соединение 3 |           |           |          |          |         |         |        | 20%  |
| Triton X | 2000000 нМ   | 632911,39 | 200288,42 | 63382,41 | 20057,72 | 6347,38 | 2008,66 | 635,65 | дмсо |
| 16%      | Соединение 4 |           |           |          |          |         |         |        | 20%  |
| Triton X | 2000000 нМ   | 632911,39 | 200288,42 | 63382,41 | 20057,72 | 6347,38 | 2008,66 | 635,65 | ДМСО |
| 16%      | Соединение 5 |           |           |          |          |         |         |        | 20%  |
| Triton X | 2000000 нМ   | 632911,39 | 200288,42 | 63382,41 | 20057,72 | 6347,38 | 2008,66 | 635,65 | дмсо |
| 16%      | Соединение 6 |           |           |          |          |         |         |        | 20%  |
| Triton X | 2000000 нМ   | 632911,39 | 200288,42 | 63382,41 | 20057,72 | 6347,38 | 2008,66 | 635,65 | дмсо |
| 16%      | Соединение 7 |           |           |          |          |         |         |        | 20%  |
| Triton X | 2000000 нМ   | 632911,39 | 200288,42 | 63382,41 | 20057,72 | 6347,38 | 2008,66 | 635,65 | дмсо |
| 16%      | Доксорубицин |           |           |          |          |         |         |        | 20%  |
| Triton X | 200000 нМ    | 63291,14  | 20028,84  | 6338,24  | 2005,77  | 634,74  | 200,87  | 63,57  | ДМСО |

-20X растворы из планшета В разводят в планшетах С (с и без (фоновый планшет) клеток): в колонки 2-11 добавляют 10 мкл растворов соединений из планшета В соединение (пипетируют вверх и вниз 3X, кончики меняют после каждого переноса). 2 соединения распределяют в планшет С трижды (упрощают для фонового планшета)

Пример планшета С:

| 0,8%<br>Triton X | Соединение 7<br>100000 нМ | 31645,57 | 10014,42 | 3169,12 | 1002,89 | 317,37 | 100,43 | 31,78 | 1% ДМСО |  |
|------------------|---------------------------|----------|----------|---------|---------|--------|--------|-------|---------|--|
| 0,8%<br>Triton X | Соединение 7<br>100000 нМ | 31645,57 | 10014,42 | 3169,12 | 1002,89 | 317,37 | 100,43 | 31,78 | 1% ДМСО |  |
| 0,8%<br>Triton X | Соединение 7<br>100000 нМ | 31645,57 | 10014,42 | 3169,12 | 1002,89 | 317,37 | 100,43 | 31,78 | 1% ДМСО |  |
| 0,8%<br>Triton X | Доксорубицин<br>10000 нМ  | 3164,56  | 1001,44  | 316,91  | 100,29  | 31,74  | 10,04  | 3,18  | 1% ДМСО |  |
| 0,8%<br>Triton X | Доксорубицин<br>10000 нМ  | 3164,56  | 1001,44  | 316,91  | 100,29  | 31,74  | 10,04  | 3,18  | 1% ДМСО |  |
| 0,8%<br>Triton X | Доксорубицин<br>10000 нМ  | 3164,56  | 1001,44  | 316,91  | 100,29  | 31,74  | 10,04  | 3,18  | 1% ДМСО |  |
|                  |                           |          |          |         |         |        |        |       |         |  |

- Планшеты C инкубируют в течение 72 часов при 37°C с 5%  ${\rm CO_2}$  День 3:
- 20 мкл Alamar blue добавляют и инкубируют в течение 6 ч при 37°C с или без CO<sub>2</sub>
- флуоресценция считывают при возб 570 нм и исп 585 нм
- скорректированные на фон измерения флуоресценции превращают в % шкалы, учитывая значение носителя (1% ДМСО) как 100% активность (относительные измерения), или их нормализуют с учетом значений Triton X-100 как 0% жизнеспособности и значений носителя как 100% жизнеспособности (нормализованные измерения). Затем относительные измерения и абсолютные измерения анализируют с применением программы GraphPad Prism для получения значений относительной IC50 и абсолютной IC50, соответственно

Результаты этих тестов активности суммированы в таблице 1 ниже.

Таблица 1

| Номер<br>соединения<br>(патентный<br>пример) | ngFab<br>I<br>IC50<br>(HM) | МІС50<br>(мкг/мл) | Сасо-2<br>Рарр<br>A2B<br>(10-6<br>см/с) | Прогноз<br>hep ER<br>человека | F<br>(%)<br>мы<br>ши | Цитотоксичность % жизнеспособности при 10 мкм |
|----------------------------------------------|----------------------------|-------------------|-----------------------------------------|-------------------------------|----------------------|-----------------------------------------------|
| 5(1)                                         | < 10                       | < 1               | 22,6                                    | 0,17                          | 100                  | НД                                            |
| 7(2)                                         | < 10                       | < 1               | 7,6                                     | 0,12                          | 68                   | НД                                            |
| 10(3)                                        | < 10                       | < 1               | 22,6                                    | 0,22                          | 73                   | НД                                            |
| 19(4)                                        | < 10                       | < 1               | 16                                      | 0,26                          | 62                   | 100                                           |
| 31(6)                                        | <10                        | <1                | 10,9                                    | 0,18                          | НД                   | НД                                            |
| 32(6)                                        | < 10                       | < 1               | 10,8                                    | 0,08                          | 42                   | НД                                            |
| 33(6)                                        | <10                        | <1                | 11,5                                    | 0,09                          | НД                   | НД                                            |
| 39(7)                                        | <10                        | <1                | 11,3                                    | 0,17                          | НД                   | нд                                            |
| 40(7)                                        | < 10                       | < 1               | 10,3                                    | 0,21                          | 57                   | НД                                            |
| 41(7)                                        | <10                        | <1                | 12,2                                    | 0,09                          | НД                   | НД                                            |
| 49(8)                                        | < 10                       | < 1               | 26                                      | 0,13                          | 70                   | 100                                           |
| 50(8)                                        | <10                        | <1                | 19,1                                    | 0,09                          | НД                   | НД                                            |
| 60(9)                                        | < 10                       | < 1               | 3                                       | 0,07                          | 52                   | нд                                            |

| 64(10)  | < 10 | < 1 | 16,3 | 0,21 | 32 | нд  |
|---------|------|-----|------|------|----|-----|
| 75(11)  | < 10 | < 1 | 5,9  | 0,13 | 30 | нд  |
| 80(12)  | < 10 | < 1 | нд   | 0,25 | 35 | нд  |
| 84(13)  | < 10 | < 1 | 3,29 | 0,40 | 24 | нд  |
| 90(14)  | < 10 | < 1 | 10,7 | 0,03 | 7  | нд  |
| 96(15)  | < 10 | < 1 | нд   | 0,2  | 16 | нд  |
| 101(16) | < 10 | < 1 | 2,69 | 0,43 | 2  | нд  |
| 109(17) | < 10 | < 1 | 19,8 | 0,28 | 47 | нд  |
| 115(18) | < 10 | < 1 | 3,4  | 0,28 | 18 | нд  |
| 119(19) | < 10 | < 1 | нд   | 0,08 | НД | нд  |
| 123(20) | < 10 | < 1 | 2,5  | 0,13 | 26 | нд  |
| 129(21) | < 10 | < 1 | нд   | 0,02 | 26 | нд  |
| 134(22) | < 10 | < 1 | нд   | 0,43 | 9  | нд  |
| 140(23) | < 10 | < 1 | нд   | 0,13 | 13 | нд  |
| 143(24) | < 10 | < 1 | 2,3  | 0,06 | 59 | нд  |
| 150(25) | < 10 | < 1 | 25,1 | 0,08 | 20 | 100 |
| 151(26) | < 10 | < 1 | 21,7 | 0,07 | 39 | нд  |
| 152(27) | < 10 | < 1 | 2,6  | 0,08 | 38 | нд  |
| 155(28) | < 10 | < 1 | нд   | 0,32 | 28 | нд  |
| 159(29) | < 10 | < 1 | 0,7  | 0,32 | 35 | 100 |
| 164(30) | < 10 | < 1 | 0,1  | НД   | 10 | нд  |
| 167(31) | < 10 | < 1 | 5,3  | 0,12 | 35 | 100 |
| 168(32) | < 10 | < 1 | 19,6 | 0,15 | 51 | нд  |
| 170(33) | < 10 | < 1 | 22,9 | 0,15 | 98 | нд  |
| 176(36) | < 10 | < 1 | 0    | 0,07 | 44 | НД  |

| 180(37) | < 10 | < 1 | 1,8  | 0,32 | 14 |    |
|---------|------|-----|------|------|----|----|
| 182(38) | < 10 | < 1 | 0,08 | 0,25 | 12 | нд |
| 183(39) | < 10 | < 1 | нд   | НД   | 16 | нд |
| 186(40) | < 10 | < 1 | 0,4  | НД   | 23 | нд |
| 194(41) | < 10 | < 1 | 0    | НД   | 12 | нд |
| 198(42) | < 10 | < 1 | 3,2  | 0,18 | 54 | нд |
| 207(43) | < 10 | < 1 | нд   | НД   | НД | нд |
| 208(44) | < 10 | < 1 | O    | 0,21 | НД | нд |
| 209(44) | < 10 | < 1 | 3,3  | 0,41 | 25 | нд |
| 214(45) | < 10 | < 1 | 17,9 | НД   | 88 | нд |
| 229(46) | < 10 | < 1 | 20,7 | НД   | 76 | нд |
| 230(46) | < 10 | < 1 | нд   | НД   | НД | нд |
| 247(52) | <10  | <1  | нд   | НД   | НД | нд |
| 252(53) | <10  | <1  | нд   | НД   | НД | нд |
| 260(54) | <10  | <1  | 35   | 0,03 | 56 | нд |
| 270(55) | <10  | <1  | 5,5  | 0,05 | НД | нд |
| 275(57) | <10  | <1  | нд   | НД   | 51 | нд |
| 276(58) | <10  | <1  | нд   | нд   | 43 | нд |
| 287(61) | <10  | <1  | НД   | 0,34 | НД | нд |
| 290(62) | <10  | <1  | нд   | 0,1  | НД | НД |

НД: не доступно

**Пример 65** Анализ ингибирования FabI *Chlamydia trachomatis:* 

Ингибирование FabI ферментной активности *Chlamydia trachomatis* тестируют через измерение скорости потребления NADH (Δ абсорбции при 340 нм/мин) при 30°C в 96луночном планшете с применением автоматизированного планшетного ридера в присутствии или отсутствии тестируемых соединений. Смесь для анализа содержит 100 мМ MES, pH 7,0, 200 мМ ацетата аммония, 4,0% глицерина, 0,02% плуроник F-68, 25 мкМ кротонил ACP, 50 мкМ NADH, 0,5 нМ рекомбининатного FabI белка *C. trachomatis*, 7,5%

ДМСО и тестируемые соединения в концентрациях, варьирующихся от 0,17 до 100000 нМ в конечном объеме лунки 100 мкл. Этот дозозависимый анализ ингибирования проводят с применением 11-точечных серий серийного разведения для каждого тестируемого соединения. Значения  $IC_{50}$  для каждого тестируемого соединения определяют из подбора логистической сигмоидной кривой из кривых дозозависимого ингибирования.

Результаты показаны в таблице2.

Таблица 2

| Таблица 2          |                    |
|--------------------|--------------------|
| Номер соединения   | CT FabI IC50 (мкм) |
| (патентный пример) | , ,                |
| 229                | <1                 |
| (46)               | _                  |
| 49                 | <1                 |
| (8)                | -                  |
| 152                | <1                 |
| (27)               | •                  |
| 150                | <1                 |
| (25)               | 1                  |
| 32                 | <1                 |
| (6)                | 1                  |
| 155                | <1                 |
| (28)               | -                  |
| 40                 | <5                 |
| (7)                |                    |
| 151                | <5                 |
| (26)               |                    |
| 260                | <5                 |
| (54)               |                    |
| 109                | <5                 |
| (17)               |                    |
| 214                | <5                 |
| (45)               |                    |
| 60                 | <5                 |
| (9)                |                    |
| 275                | <5                 |
| (57)               |                    |
| ·                  | ·                  |

В отношении указания Соединенных Штатов Америки установлено следующее: «Это изобретение было сделано при государственной поддержке в рамках FAIN: IDSEP160030, присужденного HHS/ASPR. Правительство имеет определенные права на изобретение».

## ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Соединение, которое выбирают из группы соединений, представленных общей формулой I

$$\begin{array}{c|c} A_1 & Q_1 \\ A_2 & Q_2 \\ \hline \\ A_2 & R^3 \end{array}$$

где

 $A_1$  представляет группу, выбранную из групп  $A_{11}$  и  $A_{12}$ , имеющих следующие структуры

$$\mathbb{R}^1$$
  $\mathbb{Q}_3$   $\mathbb{R}^1$   $\mathbb{R}^1$   $\mathbb{R}^2$   $\mathbb{C}$   $\mathbb{H}_3$   $\mathbb{A}_{12}$ ;

где линия, соединенная с экзоциклической метиленовой группой, представляет одинарную ковалентную связь, образованную с атомом азота формулы I;

А2 представляет метильную группу;

или  $A_1$  и  $A_2$  вместе с атомом азота, с которым они связаны, образуют следующую группу  $A_3$ :

$$R^8$$
 $A_3$ ;

где экзоциклическая линия, соединенная с атомом азота бицикла, представляет ковалентную связь между азотом и карбонильной группой с левой стороны формулы I;

 $Q^1$  представляет- NH;

 $Q_2$  представляет  $CR^4R^5$ , где  $CR^4R^5$  группа связывается с  $Q_1$ ;

Q<sub>3</sub> представляет О или S;

 $R^1$  представляет группу, выбранную из H, -NH<sub>2</sub>;

 $R^2$  представляет группу, выбранную из H, -O-Ar $^1$ , -O-Het $^1$ , -NR $^9$ R $^{10}$ , -O-Alk $^1$ , где Ar $^1$ представляет фенильную группу которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O- $C_{1-4}$ -алкила, -O- $(CH_2)_{1-4}$ -NR $^9R^{10}$ , или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N и O, где Het<sup>1</sup> представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, или не ароматический частично или полностью насыщенный гетероцикл с 6 атомами кольца, включающими 1 гетероатом, выбранный из N и O, где Het1 группа необязательно может быть замещена одной или несколькими группами, индивидуально выбранными из -С1-4алкила, -O- $C_{1-4}$ -алкила,-CN, -(CH<sub>2</sub>)<sub>0-4</sub>-OH; где  $R^9$  выбирают из H и - $C_{1-4}$ -алкила; где  $R^{10}$ выбирают из H,  $-C_{1-4}$ -алкила и -C(=O)- $CH_3$ ; где  $Alk^1$  представляет алкильную группу, имеющую от 1 до 6 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где Alk<sup>1</sup> группа может быть необязательно замещена одной или несколькими группами, выбранными из -ОН, -О-алкила;

 $R^3$  представляет группу, выбранную из H, -PO<sub>3</sub> $R^{3a}_2$ , -CH<sub>2</sub>-OPO<sub>3</sub> $R^{3a}_2$  и -CH<sub>2</sub>-O-C(=O)- $R^{3b}$ ;

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O- $C_{1-6}$ -алкила;

 $R^4$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила, CN и  $C_{1-4}$ -алкилен-F;

 $R^5$  представляет группу, выбранную из H,  $C_{1\text{-}4\text{-}}$ алкила,  $C_{1\text{-}4\text{-}}$ алкилен-OR,  $C_{1\text{-}4\text{-}}$ алкилен-OR, -OPO $_3R^{3a}{}_2$ ;

или  $R^4$  и  $R^5$  вместе образуют циклическую группу, имеющую от 4 до 6 членов кольца, образованную метиленовыми группами и, необязательно, атомом кислорода;

 $R^6$  представляет группу, выбранную из H, -OH,  $C_{1\text{-}4}$ -алкила, -OPO $_3R^{3a}{_2}$ ;

 $R^7$  представляет группу, выбранную из H,  $C_{1\text{-}4}$ -алкила,  $C_{1\text{-}4}$ -алкилен-OH,  $C_{1\text{-}4}$ -алкилен-OR $^3$ ,  $C_{1\text{-}4}$ -алкилен-F, -CN;

или  $R^6$  и  $R^7$  вместе образуют циклическую группу, имеющую от 4 до 6 членов кольца, образованную метиленовыми группами и, необязательно, атомом кислорода; где циклическая группа может необязательно нести заместитель, выбранный из -OH, -O-алкила;

 ${
m R}^{8}$  представляет группу, выбранную из -O-Ar $^{2}$  и -O-Het $^{2}$ ;

где  ${\rm Ar}^2$  представляет фенильную группу которая может быть необязательно

замещена одной или несколькими группами, выбранными из -CN, -O- $C_{1-4}$ -алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N, S и O, где указанный гетероцикл может необязательно нести один или два заместителя, выбранных из оксо, галогена, -O- $C_{1-4}$ -алкила,  $C_{1-4}$ -алкила и CN;

И

где  $\mathrm{Het}^2$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, которые могут необязательно быть замещены одной или несколькими группами, индивидуально выбранными из -O- $\mathrm{C}_{14}$ -алкила, -CN, F,  $\mathrm{C}_{1-4}$ -алкила,

и его фармацевтически приемлемые соли.

2. Соединение по п. 1, где соединение выбирают из группы соединений, представленных общей формулой II

$$\begin{array}{c|c}
R^1 & CH_3 & Q_2 \\
\hline
 & CH_3 & CH_3 & Q_2 \\
\hline
 & R^2 & R^3 & II
\end{array}$$

где

 $R^1$ ,  $R^2$ ,  $R^3$ ,  $Q^1$ ,  $Q_2$ ,  $Q_3$  имеют те же значения, которые определены в п. 1, 2 или 3 выше;

и где пятичленный гетероцикл, содержащий  $Q_3$ , связан с метиленамидной группой в положении 2 и с метильной группой в положении 3, или связан с метиленамидной группой в положении 3 и с метильной группой в положении 2.

3. Соединение по п. 2, где соединение выбирают из группы соединений, представленных общей формулой III

$$\begin{array}{c|c} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

где

 $R^1,\,R^2,\,R^3,\,Q^1,\,Q_2,\,Q_3$  имеют те же значения, которые определены в п. 1, 2 или 3 выше.

4. Соединение по п. 3, где соединение выбирают из группы соединений, представленных общей формулой Va или общей формулой Vb

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

где  $R^1$ ,  $R^2$  и  $R^3$  имеют те же значения, которые определены в п. 1 выше;  $R^4$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила и  $C_{1-4}$ -алкилен-F, и  $R^5$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ ;

или

где

 $R^1$ ,  $R^2$  и  $R^3$  имеют те же значения, которые определены в п. 1 выше;  $R^4$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила и  $C_{1-4}$ -алкилен-F; и  $R^5$  представляет группу, выбранную из H,  $C_{1-4}$ -алкила,  $C_{1-4}$ -алкилен-OH,  $C_{1-4}$ -алкилен-OR $^3$ , -OH; и - OPO $_3R^{3a}_2$ , где предпочтительно

 $R^1$  представляет H,  $NH_2$ ;

 $R^2$  представляет H:

 $R^3$  представляет группу, выбранную из H, -PO $_3R^{3a}_2$ , -CH $_2$ -OPO $_3R^{3a}_2$  и -CH $_2$ -O-C(=O)- $R^{3b}$ ;

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен- $OR^3$ .

5. Соединение по п. 2, где соединение выбирают из группы соединений, представленных общей формулой VIII

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{1}} \mathbb{Q}_{2}$$

$$\mathbb{R}^{2} \xrightarrow{\mathbb{R}^{3}} \mathbb{Q}_{2}$$

$$\mathbb{R}^{3} \xrightarrow{\mathbb{R}^{3}} \mathbb{Q}_{2}$$

$$\mathbb{R}^{3} \xrightarrow{\mathbb{R}^{3}} \mathbb{Q}_{2}$$

$$\mathbb{R}^{3} \xrightarrow{\mathbb{R}^{3}} \mathbb{Q}_{2}$$

где

 $R^1$ ,  $R^2$ ,  $R^3$ ,  $Q^1$ ,  $Q_2$ ,  $Q_3$  имеют те же значения, которые определены в п. 1, 2 или 3 выше.

6. Соединение по п. 5, где соединение выбирают из группы соединений, представленных общей формулой Xa и Xb

или

где

 ${\bf R}^1,\,{\bf R}^2,\,{\bf R}^3,\,{\bf R}^4$  и  ${\bf R}^5$  имеют те же значения, которые определены в п. 1 выше, где предпочтительно

 $R^1$  представляет H;

 $R^2$  представляет группу, выбранную из H, -O-Ar $^1$ , -O-Het $^1$ , -NH $_2$ , где Ar $^1$  представляет фенильную группу, которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C $_1$ -4-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N и O, где Het $^1$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, или не ароматический частично или полностью насыщенный гетероцикл с 6 атомами кольца, включающими 1 гетероатом, выбранный из N, S и O, где Het $^1$  группа необязательно может быть замещена одной или несколькими группами, индивидуально выбранными из -C $_1$ -4-алкила, -O-C $_1$ -4-алкила, -CN;

 $R^3$  представляет группу, выбранную из H, -PO $_3R^{3a}_2$ , -CH $_2$ -OPO $_3R^{3a}_2$  и -CH $_2$ -O-C(=O)- $R^{3b}$ ;

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O-C<sub>1-6</sub>-алкилв;

 $R^4$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-F; и

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH или  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше.

7. Соединение по п. 1, где соединение выбирают из группы соединений, представленных общей формулой XIII

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

где

 $R^3$ ,  $R^8$ ,  $Q^1$ ,  $Q_2$  имеют те же значения, которые определены в п. 1, 2 или 3 выше.

8. Соединение по п. 7, где соединение выбирают из группы соединений, представленных общей формулой XIVa или XIVb

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & &$$

где

 ${\bf R}^3,\,{\bf R}^4,\,{\bf R}^5,\,{\bf R}^8$  имеют те же значения, которые определены в п. 1 выше; или

$$\mathsf{R}^8 \qquad \qquad \mathsf{XIVb}$$

где

 ${
m R}^3, {
m R}^4, {
m R}^5, {
m R}^8$  имеют те же значения, которые определены для общей формулы I выше, где предпочтительно

 $R^3$  представляет группу, выбранную из H, -PO<sub>3</sub>R<sup>3a</sup><sub>2</sub>, -CH<sub>2</sub>-OPO<sub>3</sub>R<sup>3a</sup><sub>2</sub> и -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup>;

 $R^{3a}$  представляет атом водорода или катион, подходящий для образования фармацевтически приемлемой соли или -CH<sub>2</sub>-O-C(=O)-R<sup>3b</sup> или -CHMe-O-C(=O)-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CH<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup> или -CMe<sub>2</sub>-O-C(=O)-O-R<sup>3b</sup>;

 $R^{3b}$  представляет алкильную группу, имеющую от 1 до 11 атомов углерода, которая является линейной, разветвленной или циклической, или их комбинацию, где  $R^{3b}$  группа необязательно может быть замещена одной или несколькими группами, независимо выбранными из -OH, и -O- $C_{1-6}$ -алкила;

 $R^4$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-F;

 $R^5$  представляет H,  $C_{1-4}$ -алкил,  $C_{1-4}$ -алкилен-OH или  $C_{1-4}$ -алкилен-OR $^3$ , где  $R^3$  такой, как определен выше; и

 $R^8$  представляет группу, выбранную из -O-Ar<sup>2</sup> и -O-Het<sup>2</sup>;

где  $Ar^2$  представляет фенильную группу которая может быть необязательно замещена одной или несколькими группами, выбранными из -CN, -O-C<sub>1-4</sub>-алкила, или где фенильная группа может нести две замещающие группы на соседних атомах кольца так, что эти соседние замещающие группы могут быть связаны вместе с образованием 5-членного гетероцикла, имеющего один или два гетероатома, индивидуально выбранных из N, S и O, где указанный гетероцикл может необязательно нести один или два заместителя, выбранных из оксо, F, -O-C<sub>1-4</sub>-алкила, C<sub>1-4</sub>-алкила, CN;

И

где  $\mathrm{Het}^2$  представляет ароматический гетероцикл с 5 или 6 атомами кольца, включающими 1 или 2 гетероатома, индивидуально выбранных из N, S и O, которые могут необязательно быть замещены одной или несколькими группами, индивидуально выбранными из -O- $\mathrm{C}_{14}$ -алкила, -CN, F,  $\mathrm{C}_{14}$ -алкила.

- 9. Фармацевтическая композиция, содержащая соединение по любому из пп. 1-8.
- 10. Соединение по любому из пп. 1-8 или фармацевтическая композиция по п. 9 для применения в лечении бактериальной инфекции, выбранной из инфекций, вызванных N. gonorrhoeae,

Bacillus Spp., в частности, Bacillus cereus, Bacillus coagulans, Bacillus megaterium, Bacillus subtilis, Bacillus anthacis,

Bartonella Spp.,

Brucella Spp, в частности, Brucella abortus, Brucella melitensis,

Campylobacter Spp., в частности, Campylobacter jejuni,

Chlamydia trachomatis

Enterococcus faecalis, Enterococcus faecium, Legionella pneumophila,

Listeria Spp., в частности, Listeria monocytogenes, Proteus mirabilis,

Providencia stuartii,

Rickettsia Spp., в частности, Rickettsia rickettsii,

Bordetella pertussis, Bordetella parapertussis,

Burkholderia Spp., в частности, Burkholderia pseudomallei, Burkholderia mallei, Burkholderia cenocepacia,

Haemophilus influenza,

Kingella kingae,

Moraxella catarrhalis,

Streptomyces Spp.,

Nocardioides Spp.,

Frankia Spp.

Propionibacterium acnes,

Mycobacterium Spp., в частности, Mycobacterium smegmatis, Mycobacterium abscessus, Mycobacterium leprae, Mycobacterium tuberculosis, Mycobacterium avium и их комбинаций, предпочтительно, инфекций, вызванных только N. gonorrhoeae или в комбинации с Chlamydia trachomatis.