

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2024.02.23

(21) Номер заявки 202391931

(22) Дата подачи заявки 2023.07.05 **(51)** Int. Cl. *G01N 23/22* (2018.01) *G01V 5/00* (2006.01)

(54) НЕЙТРОННО-ФИЗИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПИРИТА В УГЛЕ

(43) 2024.02.22

(96) KZ2023/050 (KZ) 2023.07.05

(71)(73) Заявитель и патентовладелец: ПАК ЮРИЙ (KZ)

(72) Изобретатель:

Пак Юрий, Нургужин Марат Рахмалиевич, Кропачев Пётр Александрович, Мизерная Марина Александровна, Пак Дмитрий Юрьевич, Мустафина Лэззэтжан Мухамеджановна, Тебаева Анар Юлаевна, Кузьмина Оксана Николаевна, Абдугалиева Гульнур Баймурзаевна (KZ)

(56) EA-B1-39075 KZ-A4-24014 WO-A1-2016007265 US-A-4152596 US-A-4090074

Изобретение относится к ядерно-физическим способам анализа сложных веществ. Задачей изобретения является повышение чувствительности определения пирита в условиях значительной изменчивости состава углей и расширение сферы применения способа. Нейтронно-физический способ определения пирита в угле, основанный на его облучении потоком быстрых нейтронов и регистрации гамма-излучения радиационного захвата (ГИРЗ) тепловых нейтронов, отличающийся тем, что дополнительно на стандартных образцах угля с минимальным и максимальным содержанием пирита измеряют энергетическое распределение ГИРЗ при различной длине зонда L, находят длину зонда L_i и выбирают энергетические интервалы: ΔE_S в области ГИРЗ тепловых нейтронов ядрами серы (~5,42 МэВ) и ΔE_{Fe} в области ГИРЗ тепловых нейтронов ядрами железа (~7,64 МэВ), при которых наблюдается максимальная контрастность интенсивности ГИРЗ в выбранных энергетических интервалах ΔE_{s} и ΔE_{fe} от стандартных образцов с минимальным и максимальным содержанием пирита, а содержание пирита в угле определяют по интенсивностям ГИРЗ, измеренным при найденной длине зонда L_i и выбранных энергетических интервалах ΔE_S и ΔE_{Fe} . Технический результат изобретения состоит в расширении сферы применения способа и повышении чувствительности определения пирита за счет нахождения на угле с минимальным и максимальным содержанием пирита оптимальной длины зонда L_i и энергетических интервалов ΔE_{S} и ΔE_{Fe} , при которых наблюдается максимальная контрастность интенсивностей ГИРЗ в выбранных энергетических интервалах от стандартных образцов с минимальным и максимальным содержанием пирита, и определении содержания пирита по интенсивностям ГИРЗ, измеренным при найденной длине зонда L_i и выбранных энергетических интервалах ΔE_S и ΔE_{Fe} .

Изобретение относится к ядерно-физическим способам анализа сложных веществ. Оно может быть использовано для анализа углей и продуктов их переработки в угледобывающей, металлургической и других отраслях промышленности.

Широко известен рентгенофлуоресцентный способ анализа угля, заключающийся в измерении интенсивности рентгеновского флуоресцентного излучения элемента (Евразийский патент № 039341, 2022 г. Способ рентгенофлуоресцентного анализа угля. Авторы: Пак Ю., Пак Д. и др.).

Недостатком известного способа является низкая представительность анализа, обусловленная необходимостью анализа тонкоизмельченного угля аналитической крупности (~0,1 мм) массой 1-2 г.

Наиболее близким по технической сущности и достигаемому результату является нейтронный гамма способ, основанный на облучении анализируемого угля потоком нейтронов и регистрации гаммаизлучения радиационного захвата тепловых нейтронов ядрами железа (Пак Ю.Н., Пак Д.Ю. Методы и приборы ядерно-физического анализа углей. Караганда. Изд-во КарГТУ, 2012, с. 186).

Недостатком известного способа является невысокая чувствительность, обусловленная тем, что содержание пирита (FeS₂) в угле определяют только по избирательной информации о железе.

Задачей изобретения является повышение чувствительности определения пирита в условиях значительной изменчивости вещественного состава углей и расширение сферы применения способа.

Технический результат изобретения состоит в расширении сферы применения способа и повышении чувствительности определения пирита в угле.

Поставленная задача решается следующим образом. Интенсивность гамма-излучения, возникающего при радиационном захвате тепловых нейтронов (далее ГИРЗ) ядрами элементов, находится в сложной зависимости от многих факторов (длины зонда, нейтронно-замедляющих свойств, нейтроннопоглощающих свойств, концентрации аномальных поглотителей). В контексте поставленной задачи (определение концентрации пирита в угле) уголь можно представить трехкомпонентной смесью: углерод, пирит (FeS₂), алюмосиликатные минеральные соединения. Иными словами в анализируемых углях находятся углерод, кислород, алюминий, кремний, сера, кальций и железо. Последние 5 элементов составляют более 95% всей минеральной части угля.

В табл. 1 даны значения макроскопических сечений радиационного захвата тепловых нейтронов и значения энергий ГИРЗ. Вероятность радиационного захвата тепловых нейтронов максимальна у Fe (2,8 cm^2/Γ) и серы (0,96 cm^2/Γ).

Таблица 1 Энергия ГИРЗ, МэВ Элемент Макроскопическое сечение РЗ, см²/г 7,72 0,52 Αl 0,34 4,93 Si S 0,96 5,44 Ca 0,65 6,41 7,64 2,8 Fe

Таким образом, энергетическое распределение ГИРЗ тепловых нейтронов от угля формируется ГИРЗ от ядер Al, Si, S, Ca и Fe. Превалирующий вклад вносят Fe и S.

Возможности раздельного определения концентрации отдельных минеральных компонентов угля по спектрометрии захватного гамма-излучения ограничены недостаточным энергетическим разрешением сцинтилляционного спектрометра и сложностью его аппаратурной функции. В результате аппаратурные спектры ГИРЗ искажены вкладом комптоновского распределения более высокоэнергетического гамма-

На основе измерения энергетического распределения ГИРЗ на стандартных образцах угля с минимальным и максимальным содержанием пирита (FeS $_2$) при различной длине зонда находят длину зонда L_i и выбирают энергетические интервалы ΔE_S в области ГИРЗ ядрами серы (\sim 5,44 МэВ) и ΔE_{Fe} в области ГИРЗ ядрами железа (~7,64 МэВ), при которых наблюдается максимальная контрастность (дифференциация) интенсивности Γ ИРЗ в найденных энергетических интервалах ΔE_S и ΔE_{Fe} к содержанию пирита. По интенсивности ГИРЗ, измеренным при найденной длине зонда Li и выбранных энергетических интервалах ΔE_S и ΔE_{Fe} , определяют содержание пирита. Это делает предлагаемый способ более чувствительным.

Существенным отличием изобретения от прототипа является то, что дополнительно на стандартных образцах угля с минимальным и максимальным содержанием пирита измеряют энергетическое распределение Γ ИРЗ при различной длине зонда L, находят длину зонда L_i и выбирают энергетические интервалы: ΔES в области $\Gamma UP3$ тепловых нейтронов ядрами серы (\sim 5,44 MэB) и ΔE_{Fe} в области $\Gamma UP3$ тепловых нейтронов ядрами железа (~7,64 МэВ), при которых наблюдается максимальная контрастность интенсивности Γ ИРЗ в найденных энергетических интервалах ΔE_{S} и ΔE_{Fe} от стандартных образцов с минимальным и максимальным содержанием пирита, а содержание пирита в угле определяют по интенсивностям ГИРЗ, измеренным при найденной длине зонда L_i и выбранных энергетических интервалах ΔE_S и ΔE_{Fe} .

Пример реализации способа.

В качестве анализируемого материала выбраны Карагандинские угли. Зольность менялась в пределах 18,2-34,6%. Содержание пирита - в пределах 1,44-4,64%. Источником первичного нейтронного излучения служил Ро-Ве источник. Регистрирующей аппаратурой служил гамма-спектрометр на основе сцинтилляционного детектора NaJ (Tl) и многоканального анализатора AU-1024.

На стандартных образцах угля с минимальным содержанием пирита (1,44%) и максимальным содержанием пирита (4,64%) найдены оптимальные параметры: длина зонда L_i =26 см, энергетические интервалы ΔE_S =(4,51-5,48) МэВ; ΔE_F =(6,52-7,73) МэВ.

Содержание пирита в пробах угля массой ~ 50 кг и крупностью (~ 10 мм) определялось по интенсивностям ГИРЗ тепловых нейтронов ядрами серы и железа, измеренным при найденной длине зонда 26 см и выбранных энергетических интервалах ΔE_S и ΔE_{Fe} . Это обеспечило повышенную чувствительность способа к пириту в большом диапазоне его изменения.

В табл. 2 представлены сопоставительные метрологические характеристики, полученные в процессе апробации предлагаемого и известного способов.

Таблина 2

Twomiqu =		
Способ	Диапазон	
	изменения	Относительная
	содержания:	чувствительность,
	<u>золы</u> , %	проц./% абс.
	пирита	
Прототип	18,2 – 34,6	
	1,44 - 4,64	4.86
	18,2 - 34,6	
Предлагаемый		6.14
	1,44 - 4,64	

Предлагаемый нейтронно-физический способ определения содержания пирита в угле в сравнении со способом-прототипом выгодно отличается повышенной чувствительностью к пириту в условиях значительной изменчивости состава углей, что расширяет сферу применения.

Данное исследование финансируется Комитетом науки Министерства науки и высшего образования Республики Казахстан (грант № AP 19678770).

ФОРМУЛА ИЗОБРЕТЕНИЯ

Нейтронно-физический способ определения пирита в угле, основанный на его облучении потоком быстрых нейтронов и регистрации гамма-излучения радиационного захвата (ГИРЗ) тепловых нейтронов, отличающийся тем, что дополнительно на стандартных образцах угля с минимальным и максимальным содержанием пирита измеряют энергетическое распределение ГИРЗ при различной длине зонда L, находят длину зонда L_i и выбирают энергетические интервалы: ΔES в области ГИРЗ тепловых нейтронов ядрами серы (\sim 5,42 МэВ) и ΔE_{Fe} в области ГИРЗ тепловых нейтронов ядрами железа (\sim 7,64 МэВ), при которых наблюдается максимальная контрастность интенсивности ГИРЗ в выбранных энергетических интервалах ΔE_S и ΔE_{Fe} от стандартных образцов с минимальным и максимальным содержанием пирита, а содержание пирита в угле определяют по интенсивностям ГИРЗ, измеренным при найденной длине зонда L_i и выбранных энергетических интервалах ΔE_S и ΔE_{Fe} .