(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(56)

(45) Дата публикации и выдачи патента

(51) Int. Cl. *C12N 15/113* (2010.01)

US-A1-20180201936 WO-A1-2017106283

2024.07.15

(21) Номер заявки

202190708

(22) Дата подачи заявки

2019.09.18

(54) МОДУЛЯТОРЫ ЭКСПРЕССИИ PNPLA3

(31) 62/733,152

(32)2018.09.19

(33)US

(43) 2021.07.19

(86) PCT/US2019/051743

(87) WO 2020/061200 2020.03.26

(71)(73) Заявитель и патентовладелец:

АЙОНИС ФАРМАСЬЮТИКАЛЗ, ИНК. (US)

(72) Изобретатель:

Фрейер Сьюзан М., Бый Хюнх-Хоа (US)

(74) Представитель:

Путинцев А.И., Черкас Д.А., Игнатьев А.В., Билык А.В., Дмитриев А.В., Бучака С.М., Бельтюкова М.В. (RU)

Поликарпов А.В., Соколова М.В.,

(57) В изобретении предусмотрены соединения, включающие модифицированные олигонуклеотиды с последовательностью нуклеиновых оснований под SEQ ID NO: 1089, а также композиции, применимые для подавления экспрессии PNPLA3, которые могут быть использованы для лечения, предупреждения или уменьшения выраженности заболевания, ассоциированного с PNPLA3.

Перечень последовательностей

Настоящая заявка подается вместе с перечнем последовательностей в электронной форме. Перечень последовательностей представлен в виде файла под названием BIOL0317USLSEQ_ST25.txt, созданного 13 сентября 2018 г., размер которого составляет 480 кБ. Информация из перечня в электронной форме включена в данный документ посредством ссылки во всей своей полноте.

Область техники

В вариантах осуществления настоящего изобретения предусматриваются способы, соединения и композиции, применимые для подавления экспрессии PNPLA3 (содержащий домен пататин-подобной фосфолипазы белок 3; гипотетический белок dJ796I17.1; адипонутрин; DJ796I17.1) и в некоторых случаях снижения количества белка PNPLA3 в клетке или у животного, что может быть применимо для лечения, предупреждения или уменьшения выраженности заболевания, ассоциированного с PNPLA3.

Предпосылки изобретения

Неалкогольная жировая болезнь печени (NAFLD) охватывает целый спектр заболеваний печени от стеатоза до неалкогольного стеатогепатита (NASH) и цирроза. NAFLD определяется как накопление жира в печени, превышающее 5% по весу, при отсутствии значительного употребления алкоголя, приема стеатогенного лекарственного препарата или наследственного заболевания (Kotronen et al., Arterioscler Thromb. Vasc. Biol. 2008, 28:27-38).

Неалкогольный стеатогепатит (NASH) представляет собой NAFLD с наличием признаков воспаления и повреждения печени. Гистологически NASH определяется по наличию макровезикулярного стеатоза, гепатоцеллюлярного баллонирования и лобулярных воспалительных инфильтратов (Sanyal, Hepatol. Res. 2011. 41:670-4). По оценкам NASH затрагивает 2-3% общей численности населения. При наличии других патологий, таких как ожирение или диабет, прогнозируемая частота встречаемости возрастает до 7 и 62% соответственно (Hashimoto et al., J. Gastroenterol. 2011. 46(1):63-69).

PNPLA3 является составляющим 481 аминокислот представителем семейства содержащих домен пататин-подобной фосфолипазы белков, который экспрессируется в ER и на липидных каплях. У людей PNPLA3 экспрессируется на высоком уровне в печени, тогда как уровень экспрессии в жировой ткани в пять раз ниже (Huang et al., Proc. Natl. Acad. Sci. USA, 2010. 107:7892-7).

Краткое изложение сущности изобретения

Согласно одному аспекту настоящего изобретения предложено соединение, анионная форма которого характеризуется следующей формулой (SEQ ID NO: 1089):

в виде его фармацевтически приемлемой соли.

Согласно еще одному аспекту настоящего изобретения предложено соединение, содержащее модифицированный олигонуклеотид и конъюгированную группу, где модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов и состоит из последовательности нуклеиновых оснований под SEQ ID NO: 1089, при этом модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

при этом гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланго-

вым сегментом, при этом каждый нуклеозид каждого флангового сегмента содержит сЕt-сахар; при этом каждая межнуклеозидная связь представляет собой фосфотиоатную связь; при этом каждый цитозин представляет собой 5-метилцитозин; и при этом конъюгированная группа расположена на 5'-конце модифицированного олигонуклеотида и представляет собой:

Согласно еще одному аспекту настоящего изобретения предложено соединение, анионная форма которого характеризуется следующей формулой (SEQ ID NO: 1089):

в виде его фармацевтически приемлемой соли.

Согласно еще одному аспекту настоящего изобретения предложено соединение, содержащее модифицированный олигонуклеотид и конъюгированную группу, где модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов и состоит из последовательности нуклеиновых оснований под SEQ ID NO: 1089, при этом модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

при этом гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, при этом каждый нуклеозид каждого флангового сегмента содержит сЕt-сахар; при этом по меньшей мере одна межнуклеозидная связь представляет собой фосфотиоатную связь; при этом каждый цитозин представляет собой 5-метилцитозин; и при этом конъюгированная группа содержит кластер GalNAc, содержащий 1-3 GalNAc-лиганда.

Согласно еще одному аспекту настоящего изобретения предложено соединение, содержащее модифицированный олигонуклеотид и конъюгированную группу, где модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов и имеет последовательность нуклеиновых оснований под SEQ ID NO: 1089, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

при этом гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом; при этом каждый нуклеозид каждого флангового сегмента содержит сЕt-сахар; при этом каждая межнуклеозидная связь представляет собой фосфотиоатную связь; при этом каждый цитозин

представляет собой 5-метилцитозин; и при этом конъюгированная группа содержит кластер GalNAc, содержащий 1-3 GalNAc-лиганда.

Согласно еще одному аспекту настоящего изобретения предложен модифицированный олигонуклеотид, состоящий из 16 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований под SEQ ID NO: 1089, при этом модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

при этом гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, при этом каждый нуклеозид каждого флангового сегмента содержит сЕt-сахар; при этом каждая межнуклеозидная связь представляет собой фосфотиоатную связь; при этом каждый цитозин представляет собой 5-метилцитозин.

В одном предпочтительном воплощении указанная фармацевтически приемлемая соль представляет собой натриевую соль.

В другом предпочтительном воплощении указанная фармацевтически приемлемая соль представляет собой калиевую соль.

Согласно еще одному аспекту настоящего изобретения предложена фармацевтическая композиция, содержащая соединение или модифицированный олигонуклеотид по настоящему изобретению и фармацевтически приемлемый носитель.

Предложенные в данном документе эффективные и переносимые соединения и композиции применимы для подавления экспрессии PNPLA3 и могут быть применимы для лечения, предупреждения, уменьшения выраженности или замедления прогрессирования заболеваний печени. Определенные варианты осуществления, предусматриваемые в данном документе, направлены на соединения и композиции, которые являются более эффективными или имеют большее терапевтическое значение, чем публично раскрытые соединения.

Подробное описание

Следует понимать, что как вышеприведенное общее описание, так и нижеследующее подробное описание являются лишь иллюстративными и пояснительными и не ограничивают заявляемые варианты осуществления. В данном документе применение формы единственного числа включает форму множественного числа, если специально не указано иное. В данном документе применение "или" означает "и/или", если не указано иное. Более того, применение термина "включающий", а также других форм, таких как "включает" и "включен", не является ограничивающим.

Применяемые в данном документе заголовки разделов служат только в организационных целях и не должны пониматься как ограничивающие описываемый объект. Все документы или части документов, процитированные в настоящем документе, включая без ограничения патенты, патентные заявки, статьи, книги, научные труды и записи эталонных последовательностей в GenBank и NCBI, настоящим явно включены посредством ссылки на части документа, обсуждаемые в данном документе, а также во всей их полноте.

Понятно, что последовательность, приведенная под каждым из SEQ ID NO в примерах, содержащихся в данном документе, не зависит от какой-либо модификации сахарного компонента, межнуклеозидной связи или нуклеинового основания. В силу этого соединения, определенные под SEQ ID NO, могут независимо содержать одну или несколько модификаций сахарного компонента, межнуклеозидной связи или нуклеинового основания. Номер ION у описанных под ним соединений указывает на комбинацию последовательности нуклеиновых оснований, химической модификации и мотива.

Определения

Если не указано иное, следующие термины имеют следующие значения.

"2'-дезоксинуклеозид" означает нуклеозид, содержащий 2'-H(H)-фуранозильный сахарный компонент, обнаруживаемый во встречающихся в природе дезоксирибонуклеиновых кислотах (ДНК). В определенных вариантах осуществления 2'-дезоксинуклеозид может содержать модифицированное нуклеиновое основание или может содержать нуклеиновое основание РНК (урацил).

"2'-О-метоксиэтил" (также 2'-МОЕ) относится к 2'-О(СН₂)₂-ОСН₃) вместо группы 2'-ОН рибозильного кольца. 2'-О-метоксиэтил-модифицированный сахар является модифицированным сахаром.

"2'-МОЕ-нуклеозид" (также 2'-О-метоксиэтилнуклеозид) означает нуклеозид, содержащий 2'-МОЕ-модифицированный сахарный компонент.

"2'-замещенный нуклеозид" или "2-модифицированный нуклеозид" означает нуклеозид, содержащий 2'-замещенный или 2'-модифицированный сахарный компонент. Как используется в данном документе, "2'-замещенный" или "2-модифицированный" применительно к сахарному компоненту означает, что сахарный компонент содержит по меньшей мере одну 2'-замещающую группу, отличную от Н или ОН.

"3'-концевой сайт-мишень" относится к нуклеотиду нуклеиновой кислоты-мишени, который является комплементарным самому крайнему 3'-концевому нуклеотиду конкретного соединения.

"5'-концевой сайт-мишень" относится к нуклеотиду нуклеиновой кислоты-мишени, который явля-

ется комплементарным самому крайнему 5'-концевому нуклеотиду конкретного соединения.

"5'-метилцитозин" означает цитозин с присоединенной в 5'-положении метильной группой.

"Приблизительно" означает в пределах $\pm 10\%$ от значения. Например, если указано, что "соединения осуществляли подавление PNPLA3 по меньшей мере приблизительно на 70%", подразумевается, что уровни PNPLA3 подавляются на величину в диапазоне от 60 до 80%.

"Введение" или "осуществление введения" относится к путям введения индивидууму соединения или композиции, предусматриваемых в данном документе, для выполнения их предполагаемой функции. Пример пути введения, который можно применять, включает без ограничения парентеральное введение, такое как подкожная, внутривенная или внутримышечная инъекция или инфузия.

"Вводимые одновременно" или "совместное введение" означает введение двух или более соединений любым способом, при котором у пациента проявляются фармакологические эффекты их обоих. Для одновременного введения не требуется, чтобы оба соединения вводились в одной и той же фармацевтической композиции, в одной и той же лекарственной форме, посредством одного и того же пути введения или в одно и то же время. Эффекты обоих соединений необязательно должны проявляться в одно и то же время. Эффекты должны перекрываться только в течение определенного периода времени и необязательно должны иметь одинаковую длительность. Одновременное введение или совместное введение охватывает параллельное или последовательное введение.

"Уменьшение интенсивности" относится к улучшению или ослаблению по меньшей мере одного проявления, признака или симптома ассоциированного заболевания, нарушения или состояния. В определенных вариантах осуществления уменьшение интенсивности включает задержку или замедление прогрессирования или снижение степени тяжести одного или нескольких проявлений состояния или заболевания. Прогрессирование или степень тяжести проявлений может определяться с помощью субъективных или объективных показателей, которые известны специалистам в данной области.

"Животное" относится к человеку или отличному от человека животному, в том числе без ограничения мышам, крысам, кроликам, собакам, кошкам, свиньям и отличным от человека приматам, в том числе без ограничения нечеловекообразным обезьянам и шимпанзе.

"Антисмысловая активность" означает любую поддающуюся обнаружению и/или измерению активность, связанную с гибридизацией антисмыслового соединения с его нуклеиновой кислотоймишенью. В определенных вариантах осуществления антисмысловая активность представляет собой уменьшение количества или экспрессии нуклеиновой кислоты-мишени или белка, кодируемого такой нуклеиновой кислотой-мишенью, по сравнению с уровнями нуклеиновой кислоты-мишени или уровнями белка-мишени в отсутствие антисмыслового соединения для мишени.

"Антисмысловое соединение" означает соединение, содержащее олигонуклеотид и необязательно один или несколько дополнительных компонентов, таких как конъюгированная группа или концевая группа. Примеры антисмысловых соединений включают однонитевые и двухнитевые соединения, такие как олигонуклеотиды, рибозимы, siRNA, shRNA, ssRNA, и соединения, активность которых зависит от степени занятости активных центров.

"Антисмысловое подавление" означает снижение уровней нуклеиновой кислоты-мишени в присутствии антисмыслового соединения, комплементарного нуклеиновой кислоте-мишени, по сравнению с уровнями нуклеиновой кислоты-мишени в отсутствие антисмыслового соединения.

"Антисмысловые механизмы" представляют собой все такие механизмы, предполагающие гибридизацию соединения с нуклеиновой кислотой-мишенью, где результатом или эффектом гибридизации является либо разрушение мишени, либо занятие мишени с сопутствующей блокировкой клеточного механизма, предполагающего, например, транскрипцию или сплайсинг.

"Антисмысловой олигонуклеотид" означает олигонуклеотид, имеющий последовательность нуклеиновых оснований, комплементарную нуклеиновой кислоте-мишени или ее области или сегменту. В определенных вариантах осуществления антисмысловой олигонуклеотид способен к специфической гибридизации с нуклеиновой кислотой-мишенью или ее областью или сегментом.

"Бициклический нуклеозид" или "BNA" означает нуклеозид, содержащий бициклический сахарный компонент. "Бициклический сахар" или "бициклический сахарный компонент" означает модифицированный сахарный компонент, содержащий два кольца, где второе кольцо образовано с помощью мостика, соединяющего два атома в первом кольце, за счет чего обеспечивается образование бициклической структуры. В определенных вариантах осуществления первое кольцо бициклического сахарного компонента представляет собой фуранозильный компонент. В определенных вариантах осуществления бициклический сахарный компонент не содержит фуранозильный компонент.

"Разветвляющая группа" означает группу атомов по меньшей мере с 3 положениями, которые могут образовывать ковалентные связи по меньшей мере с 3 группами. В определенных вариантах осуществления разветвляющаяся группа обеспечивает несколько реакционноспособных сайтов для присоединения связанных лигандов к олигонуклеотиду с помощью конъюгирующего линкера и/или расщепляемого компонента.

"Нацеливающий на клетку компонент" означает конъюгированную группу или фрагмент конъюгированной группы, которые способны связываться с клеткой конкретного типа или с клетками конкрет-

ных типов.

"cEt" или "конформационно ограниченный этилом" означает бициклический рибозильный сахарный компонент, где второе кольцо бициклического сахара образовано посредством мостика, соединяющего 4'-атом углерода и 2'-атом углерода, при этом мостик имеет формулу: 4'-CH(CH₃)-O-2', и при этом метильная группа мостика находится в S-конфигурации.

"сЕt-нуклеозид" означает нуклеозид, содержащий сЕt-модифицированный сахарный компонент.

"Химическая модификация" в соединении описывает замещения или изменения в результате химической реакции любой из структурных единиц в соединении по сравнению с исходным состоянием такой структурной единицы. "Модифицированный нуклеозид" означает нуклеозид, независимо имеющий модифицированный сахарный компонент и/или модифицированное нуклеиновое основание. "Модифицированный олигонуклеотид" означает олигонуклеотид, содержащий по меньшей мере одну модифицированную межнуклеозидную связь, модифицированный сахар и/или модифицированное нуклеиновое основание.

"Химически отличная область" относится к области соединения, которая некоторым образом химически отличается от другой области того же самого соединения. Например, область с 2'-О-метоксиэтилнуклеотидами химически отличается от области с нуклеотидами без 2'-О-метоксиэтильных модификаций.

"Химерные антисмысловые соединения" означают антисмысловые соединения, которые имеют по меньшей мере две химически отличные области, при этом на каждое положение приходится несколько субъединиц.

"Расщепляемая связь" означает любую химическую связь, которая может быть разорвана. В определенных вариантах осуществления расщепляемая связь выбрана из амидной, полиамидной, сложноэфирной, эфирной, одной или обеих сложноэфирных в фосфодиэфирной связи, фосфоэфирной, карбаматной, дисульфидной или пептидной.

"Расщепляемый компонент" означает связь или группу атомов, которые расщепляются в физиологических условиях, например внутри клетки, животного или человека.

"Комплементарный" применительно к олигонуклеотиду означает, что последовательность нуклеиновых оснований такого олигонуклеотида или одной или нескольких его областей соответствует последовательности нуклеиновых оснований другого олигонуклеотида или нуклеиновой кислоты или одной или нескольких их областей при выравнивании двух последовательностей нуклеиновых оснований в противоположных направлениях. Описанные в данном документе совпадения нуклеиновых оснований или комплементарные нуклеиновые основания ограничены следующими парами: аденин (А) и тимин (Т), аденин (А) и урацил (U), цитозин (С) и гуанин (G) и 5-метилцитозин (^тС) и гуанин (G), если не указано иное. Комплементарные олигонуклеотиды и/или нуклеиновые кислоты не должны характеризоваться комплементарностью нуклеиновых оснований по каждому нуклеозиду и могут содержать одно или несколько несовпадений нуклеиновых оснований. В отличие от этого, "полностью комплементарные" или "на 100% комплементарные" применительно к олигонуклеотидам означает, что такие олигонуклеотиды характеризуются совпадениями нуклеиновых оснований по каждому нуклеозиду без каких-либо несовпадений нуклеиновых оснований.

"Конъюгированная группа" означает группу атомов, которая присоединена к олигонуклеотиду. Конъюгированные группы содержат конъюгированный компонент и конъюгирующий линкер, который присоединяет конъюгированный компонент к олигонуклеотиду.

"Конъюгирующий линкер" означает группу атомов, содержащую по меньшей мере одну связь, которая соединяет конъюгированный компонент с олигонуклеотидом.

"Конъюгированный компонент" означает группу атомов, которая присоединена к олигонуклеотиду посредством конъюгирующего линкера.

"Смежный" применительно к олигонуклеотиду относится к нуклеозидам, нуклеиновым основаниям, сахарным компонентам или межнуклеозидным связям, которые непосредственно примыкают друг к другу. Например, "смежные нуклеиновые основания" означают нуклеиновые основания, которые непосредственно примыкают друг к другу в последовательности.

"Конструирование" или "сконструированный для" относится к способу конструирования соединения, которое специфически гибридизируется с выбранной молекулой нуклеиновой кислоты.

"Разбавитель" означает ингредиент в композиции, который не обладает фармакологической активностью, но является фармацевтически необходимым или желательным. Например, разбавитель в композиции для инъекции может быть жидкостью, например физиологическим раствором.

"Модифицированные разными способами" означает химические модификации или химические заместители, которые отличаются друг от друга, включая отсутствие модификаций. Так, например, МОЕ-нуклеозид и немодифицированный нуклеозид ДНК являются "модифицированными разными способами", даже несмотря на то, что нуклеозид ДНК является немодифицированным. Аналогичным образом, ДНК и РНК являются "модифицированными разными способами", даже несмотря на то, что оба они представляют собой встречающиеся в природе немодифицированные нуклеозиды. Нуклеозиды, которые являются одинаковыми, но содержат различные нуклеиновые основания, не являются модифицирован-

ными разными способами. Например, нуклеозид, содержащий 2'-ОМе-модифицированный сахар и немодифицированное адениновое нуклеиновое основание, и нуклеозид, содержащий 2'-ОМе-модифицированный сахар и немодифицированное тиминовое нуклеиновое основание, не являются модифицированными разными способами.

"Доза" означает определенное количество соединения или фармацевтического средства, предоставляемое за одно введение или за определенный период времени. В определенных вариантах осуществления доза может быть введена в виде двух или более болюсов, таблеток или инъекций. Например, в определенных вариантах осуществления, если необходимо подкожное введение, для необходимой дозы может потребоваться объем, который трудно вместить в одну инъекцию. В таких вариантах осуществления для достижения необходимой дозы можно применять две или более инъекции. В определенных вариантах осуществления дозу можно вводить двумя или более инъекциями для уменьшения реакции в месте инъекции у индивидуума. В других вариантах осуществления соединение или фармацевтическое средство вводят путем инфузии в течение длительного периода времени или непрерывно. Дозы могут быть указаны в виде количества фармацевтического средства в час, день, неделю или месяц.

"Схема введения доз" представляет собой комбинацию доз, разработанную для достижения одного или нескольких необходимых эффектов.

"Двухнитевое антисмысловое соединение" означает антисмысловое соединение, содержащее два олигомерных соединения, которые являются комплементарными друг другу и формируют дуплекс, и где одно из двух указанных олигомерных соединений содержит олигонуклеотид.

"Эффективное количество" означает количество соединения, достаточное для достижения необходимого физиологического результата у индивидуума, нуждающегося в соединении. Эффективное количество может варьироваться для индивидуумов в зависимости от состояния здоровья и физического состояния индивидуума, подлежащего лечению, таксономической группы индивидуумов, подлежащих лечению, состава композиции, оценки медицинского состояния индивидуума, а также других учитываемых факторов.

"Эффективность" означает способность обеспечивать желаемый эффект.

"Экспрессия" включает все функции, посредством которых закодированная в гене информация преобразуется в присутствующие и функционирующие в клетке структуры. Такие структуры включают без ограничения продукты транскрипции и трансляции.

"Гэпмер" означает олигонуклеотид, содержащий внутреннюю область, имеющую несколько нуклеозидов, которые способствуют расщеплению под действием РНКазы H, расположенную между внешними областями, имеющими один или несколько нуклеозидов, где нуклеозиды, образующие внутреннюю область, химически отличаются от нуклеозида или нуклеозидов, образующих внешние области. Внутренняя область может называться "гэпом", а внешние области могут называться "флангами".

"Гибридизация" означает отжиг олигонуклеотидов и/или нуклеиновых кислот. Без ограничения конкретным механизмом, наиболее распространенный механизм гибридизации предполагает образование водородных связей, которое может представлять собой образование водородных связей по типу уотсон-криковского, хугстиновского или обратного хугстиновского взаимодействия между комплементарными нуклеиновыми основаниями. В определенных вариантах осуществления комплементарные молекулы нуклеиновой кислоты включают без ограничения антисмысловое соединение и нуклеиновую кислоту-мишень. В определенных вариантах осуществления комплементарные молекулы нуклеиновой кислоты включают без ограничения олигонуклеотид и нуклеиновую кислоту-мишень.

"Непосредственно примыкающий" означает, что между непосредственно примыкающими элементами одного типа отсутствуют промежуточные элементы (например, между непосредственно примыкающими нуклеиновыми основаниями отсутствуют промежуточные нуклеиновые основания).

"Индивидуум" означает человека или отличного от человека животного, выбранного для лечения или терапии.

"Подавление экспрессии или активности" относится к снижению или блокированию экспрессии или активности по сравнению с экспрессией или активностью в необработанном или контрольном образце и не обязательно указывает на полное устранение экспрессии или активности.

"Межнуклеозидная связь" означает группу или связь, которые образуют ковалентную связь между примыкающими друг к другу нуклеозидами в олигонуклеотиде. "Модифицированная межнуклеозидная связь" означает любую межнуклеозидную связь, отличную от встречающейся в природе фосфатной межнуклеозидной связи. Нефосфатные связи называются в данном документе модифицированными межнуклеозидными связями.

"Удлиненные олигонуклеотиды" представляют собой олигонуклеотиды, которые содержат один или несколько дополнительных нуклеозидов по сравнению с олигонуклеотидом, раскрытым в данном документе, например, исходным олигонуклеотидом.

"Связанные нуклеозиды" означают примыкающие друг к другу нуклеозиды, связанные между собой межнуклеозидной связью.

"Линкерный нуклеозид" означает нуклеозид, который связывает олигонуклеотид с конъюгированным компонентом. Линкерные нуклеозиды расположены в конъюгирующем линкере соединения. Лин-

керные нуклеозиды не считаются частью олигонуклеотидной части соединения, даже если они являются смежными с олигонуклеотидом.

"Несовпадающее" или "некомплементарное" означает нуклеиновое основание первого олигонуклеотида, которое не является комплементарным соответствующему нуклеотидному основанию второго олигонуклеотидов. Например, нуклеиновой кислоты-мишени при выравнивании первого и второго олигонуклеотидов. Например, нуклеиновые основания, в том числе без ограничения универсальные нуклеиновые основания инозин и гипоксантин, способны гибридизироваться по меньшей мере с одним нуклеиновым основанием, но тем не менее являются несовпадающими или некомплементарными относительно нуклеинового основания, с которым они гибридизируются. В качестве другого примера, нуклеиновое основание первого олигонуклеотида, которое не способно гибридизироваться с соответствующим нуклеиновым основанием второго олигонуклеотида или нуклеиновой кислоты-мишени, при выравнивании первого и второго олигонуклеотидов является несовпадающим или некомплементарным нуклеиновым основанием.

"Модулирование" относится к изменению или корректировке признака в клетке, ткани, органе или организме. Например, модулирование PHK PNPLA3 может означать увеличение или уменьшение уровня PHK PNPLA3 и/или белка PNPLA3 в клетке, ткани, органе или организме. "Модулятор" осуществляет изменение в клетке, ткани, органе или организме. Например, оказывающее воздействие на PNPLA3 соединение может представлять собой модулятор, который обеспечивает уменьшение количества PHK PNPLA3 и/или белка PNPLA3 в клетке, ткани, органе или организме.

"МОЕ" означает метоксиэтил.

"Мономер" относится к одной структурной единице олигомера. Мономеры включают без ограничения нуклеозиды и нуклеотиды.

"Мотив" означает характерный участок из немодифицированных и/или модифицированных сахарных компонентов, нуклеиновых оснований и/или межнуклеозидных связей в олигонуклеотиде.

"Природные" или "встречающиеся в природе" средства обнаруживаются в природе.

"Небициклический модифицированный сахар" или "небициклический модифицированный сахарный компонент" означает модифицированный сахарный компонент, который содержит модификацию, такую как заместитель, который не образует мостик между двумя атомами сахара с образованием второго кольна

"Нуклеиновая кислота" относится к молекулам, состоящим из мономерных нуклеотидов. Нуклеиновая кислота включает без ограничения рибонуклеиновые кислоты (РНК), дезоксирибонуклеиновые кислоты (ДНК), однонитевые нуклеиновые кислоты и двухнитевые нуклеиновые кислоты.

"Нуклеиновое основание" означает гетероциклический компонент, способный к спариванию с основанием другой нуклеиновой кислоты. Как используется в данном документе, "встречающееся в природе нуклеиновое основание" представляет собой аденин (А), тимин (Т), цитозин (С), урацил (U) и гуанин (G). "Модифицированное нуклеиновое основание" представляет собой встречающееся в природе нуклеиновое основание, которое является химически модифицированным. "Универсальное основание" или "универсальное нуклеиновое основание" представляет собой нуклеиновое основание, отличное от встречающегося в природе нуклеинового основания и модифицированного нуклеинового основания и способное к спариванию с любым нуклеиновым основанием.

"Последовательность нуклеиновых оснований" означает порядок расположения смежных нуклеиновых оснований в нуклеиновой кислоте или олигонуклеотиде независимо от какого-либо сахара или межнуклеозидной связи.

"Нуклеозид" означает соединение, содержащее нуклеиновое основание и сахарный компонент. Нуклеиновое основание и сахарный компонент независимо друг от друга являются немодифицированными или модифицированными. "Модифицированный нуклеозид" означает нуклеозид, содержащий модифицированное нуклеиновое основание и/или модифицированный сахарный компонент. Модифицированные нуклеозиды включают в себя нуклеозиды с удаленными азотистыми основаниями, у которых отсутствует нуклеиновое основание.

"Олигомерное соединение" означает соединение, содержащее один олигонуклеотид и необязательно один или несколько дополнительных компонентов, таких как конъюгированная группа или концевая группа.

"Олигонуклеотид" означает полимер из связанных нуклеозидов, каждый из которых может быть модифицированным или немодифицированным независимо друг от друга. Если не указано иное, олигонуклеотиды состоят из 8-80 связанных нуклеозидов. "Модифицированный олигонуклеотид" означает олигонуклеотид, где по меньшей мере один сахар, нуклеиновое основание или межнуклеозидная связь являются модифицированными. "Немодифицированный олигонуклеотид" означает олигонуклеотид, который не содержит какую-либо модификацию сахара, нуклеинового основания или межнуклеозидной связи.

"Исходный олигонуклеотид" означает олигонуклеотид, последовательность которого применяют в качестве основы для конструирования большего количества олигонуклеотидов со сходной последовательностью, но с различной длиной, мотивами и/или химическими структурами. Новые сконструирован-

ные олигонуклеотиды могут иметь такую же или перекрывающуюся последовательность в сравнении с исходным олигонуклеотидом.

"Парентеральное введение" означает введение путем инъекции или инфузии. Парентеральное введение включает подкожное введение, внутривенное введение, внутримышечное введение, внутриартериальное введение, внутрибрюшинное введение или внутричерепное введение, например интратекальное или интрацеребровентрикулярное введение.

"Фармацевтически приемлемый носитель или разбавитель" означает любое вещество, подходящее для применения при введении индивидууму. Например, фармацевтически приемлемый носитель может представлять собой стерильный водный раствор, такой как PBS или вода для инъекций.

"Фармацевтически приемлемые соли" означают физиологически и фармацевтически приемлемые соли соединений, таких как олигомерные соединения или олигонуклеотиды, т.е. соли, которые сохраняют необходимую биологическую активность исходного соединения и не придают ему нежелательных токсикологических свойств.

"Фармацевтическое средство" означает соединение, которое оказывает терапевтически благоприятный эффект при введении индивидууму.

"Фармацевтическая композиция" означает смесь веществ, подходящих для введения индивидууму. Например, фармацевтическая композиция может содержать одно или несколько соединений или их соль и стерильный водный раствор.

"Фосфотиоатная связь" означает модифицированную фосфатную связь, в которой один из немостиковых атомов кислорода замещен атомом серы. Фосфотиоатная межнуклеозидная связь представляет собой модифицированную межнуклеозидную связь.

"Фосфорный компонент" означает группу атомов, содержащую атом фосфора. В определенных вариантах осуществления фосфорный компонент включает в себя моно-, ди- или трифосфат или фосфотиоат.

"Фрагмент" означает определенное количество смежных (т.е. связанных) нуклеиновых оснований нуклеиновой кислоты. В определенных вариантах осуществления фрагмент представляет собой определенное количество смежных нуклеиновых оснований нуклеиновой кислоты-мишени. В определенных вариантах осуществления фрагмент представляет собой определенное количество смежных нуклеиновых оснований олигомерного соединения.

"Предупреждение" относится к задержке или предотвращению начала проявления, развития или прогрессирования заболевания, нарушения или состояния в течение периода времени от нескольких минут до неопределенного срока.

"Пролекарство" означает соединение в форме вне организма, которое при введении индивидууму метаболизируется до другой формы внутри его организма или клеток. В определенных вариантах осуществления метаболизированная форма является активной или более активной формой соединения (например, лекарственного средства). Как правило, превращение пролекарства внутри организма облегчается благодаря действию фермента(ферментов) (например, эндогенного или вирусного фермента) или химического(химических) вещества(веществ), присутствующих в клетках или тканях, и/или физиологическим условиям.

"Снижение" означает доведение до меньших степени, размера, количества или числа.

"№ в RefSeq" представляет собой уникальную комбинацию букв и цифр, присвоенных последовательности, которые указывают на то, что последовательность соответствует конкретному транскриптумишени (например, гену-мишени). Такая последовательность и информация о гене-мишени (в совокупности, запись о гене) могут быть найдены в базе данных генетических последовательностей. Базы данных генетических последовательностей включают базу данных эталонных последовательностей NCBI, GenBank, Европейский архив нуклеотидов и Японский банк данных о ДНК (последние три образуют Международное сотрудничество баз данных по нуклеотидным последовательностям или INSDC).

"Область" определяется как фрагмент нуклеиновой кислоты-мишени, имеющий по меньшей мере одну идентифицируемую структуру, функцию или характеристику.

"Соединение для RNAi" означает антисмысловое соединение, которое действует, по меньшей мере частично, посредством RISC или Ago2, но не посредством РНКазы H, модулируя нуклеиновую кислотумишень и/или белок, кодируемый нуклеиновой кислотой-мишенью. Соединения для RNAi включают без ограничения двухнитевую siRNA, однонитевую PHK (ssRNA) и microRNA, в том числе миметики microRNA.

"Сегменты" определяются как более мелкие фрагменты или субфрагменты областей в пределах нуклеиновой кислоты.

"Побочные эффекты" означают физиологическое заболевание и/или состояния, связанные с лечением, которые отличаются от желаемых эффектов. В определенных вариантах осуществления побочные эффекты включают реакции в месте инъекции, аномалии функциональных печеночных проб, аномалии функционирования почек, гепатотоксичность, почечную токсичность, аномалии функционирования центральной нервной системы, миопатии и недомогание. Например, повышенные уровни аминотрансферазы в сыворотке крови могут указывать на гепатотоксичность или аномалию функционирования печени. На-

пример, повышенные уровни билирубина могут указывать на гепатотоксичность или аномалию функционирования печени.

"Однонитевое" применительно к соединению означает, что соединение имеет только один олигонуклеотид. "Самокомплементарный" означает олигонуклеотид, который по меньшей мере частично гибридизируется сам с собой. Соединение, состоящее из одного олигонуклеотида, где олигонуклеотид соединения является самокомплементарным, является однонитевым соединением. Однонитевое соединение может быть способно связываться с комплементарным соединением с образованием дуплекса.

"Сайты" определяются как уникальные положения нуклеиновых оснований в пределах нуклеиновой кислоты-мишени.

"Специфически гибридизирующийся" относится к олигонуклеотиду, характеризующемуся достаточной степенью комплементарности между олигонуклеотидом и нуклеиновой кислотой-мишенью для индуцирования желаемого эффекта, проявляющему в то же время минимальные эффекты или не проявляющему такие эффекты в отношении нуклеиновых кислот, не являющихся мишенями. В определенных вариантах осуществления специфическая гибридизация происходит в физиологических условиях.

"Специфическое подавление" применительно к нуклеиновой кислоте-мишени означает снижение или блокирование экспрессии нуклеиновой кислоты-мишени при проявлении в то же время меньших, минимальных эффектов или без проявления таких эффектов в отношении нуклеиновых кислот, не являющихся мишенями. Снижение не обязательно указывает на полное устранение экспрессии нуклеиновой кислоты-мишени.

"Стандартный клеточный анализ" означает анализ(анализы), описанные в примерах, и их приемлемые варианты.

"Стандартный эксперимент in vivo" означает процедуру(процедуры), описанные в примере(примерах), и их приемлемые варианты.

"Стереослучайный хиральный центр" в контексте совокупности молекул с идентичной молекулярной формулой означает хиральный центр, имеющий случайную стереохимическую конфигурацию. Например, в совокупности молекул, содержащих стереослучайный хиральный центр, количество молекул, имеющих (S)-конфигурацию стереослучайного хирального центра, может необязательно являться таким же, как количество молекул, имеющих (S)-конфигурацию стереослучайного хирального центра. Стереохимическая конфигурация хирального центра считается случайной, если она является результатом способа синтеза, который не предназначен для контроля стереохимической конфигурации. В определенных вариантах осуществления стереослучайный хиральный центр представляет собой стереослучайную фосфотиоатную межнуклеозидную связь.

"Сахарный компонент" означает немодифицированный сахарный компонент или модифицированный сахарный компонент. "Немодифицированный сахарный компонент" или "немодифицированный сахарный компонент 2'-ОН(Н)-рибозильный компонент, обнаруживаемый в РНК ("немодифицированный сахарный компонент РНК"), или 2'-Н(Н)-компонент, обнаруживаемый в ДНК ("немодифицированный сахарный компонент ДНК"). "Модифицированный сахарный компонент" или "модифицированный сахар" означает модифицированный фуранозильный сахарный компонент или имитатор сахара. "Модифицированный фуранозильный сахарный компонент" означает фуранозильный сахар, содержащий отличный от атома водорода заместитель вместо по меньшей мере одного атома водорода или гидроксила немодифицированного сахарного компонента. В определенных вариантах осуществления модифицированный фуранозильный сахарный компонент представляет собой 2'-замещенный сахарный компонент. Такие модифицированные фуранозильные сахарные компоненты включают в себя бициклические сахара и небициклические сахара.

"Имитатор сахара" означает модифицированный сахарный компонент, отличный от фуранозильного компонента, который может связывать нуклеиновое основание с другой группой, такой как межнуклеозидная связь, конъюгированная группа или концевая группа, в олигонуклеотиде. Модифицированные нуклеозиды, содержащие имитаторы сахаров, могут быть включены в состав олигонуклеотида в одном или нескольких положениях, и такие олигонуклеотиды способны к гибридизации с комплементарными соединениями или нуклеиновыми кислотами.

"Синергизм" или "действовать синергетическим образом" относится к эффекту комбинации, который превышает совокупный эффект каждого компонента по отдельности в тех же дозах.

"PNPLA3" означает любую нуклеиновую кислоту или белок PNPLA3. "Нуклеиновая кислота PNPLA3" означает любую нуклеиновую кислоту, кодирующую PNPLA3. Например, в определенных вариантах осуществления нуклеиновая кислота PNPLA3 включает последовательность ДНК, кодирующую PNPLA3, последовательность РНК, транскрибируемую из ДНК, кодирующей PNPLA3 (включая геномную ДНК, содержащую интроны и экзоны), и последовательность mRNA, кодирующую PNPLA3. "mRNA PNPLA3" означает mRNA, кодирующую белок PNPLA3. Мишень может быть указана в верхнем или нижнем регистре.

"Специфический ингибитор PNPLA3" относится к любому средству, способному к специфическому подавлению экспрессии или активности PHK PNPLA3 и/или белка PNPLA3 на молекулярном уровне. Например, специфические ингибиторы PNPLA3 включают нуклеиновые кислоты (в том числе антисмы-

словые соединения), пептиды, антитела, малые молекулы и другие средства, способные к подавлению экспрессии РНК PNPLA3 и/или белка PNPLA3.

"Ген-мишень" относится к гену, кодирующему мишень.

"Нацеливание" означает специфическую гибридизацию соединения с нуклеиновой кислотой-мишенью с целью индуцирования желаемого эффекта.

Все из "нуклеиновой кислоты-мишени", "РНК-мишени", "РНК-транскрипта-мишени" и "нуклеиновой кислоты-мишени" означают нуклеиновую кислоту, на которую способны нацеливаться соединения, описанные в данном документе.

"Область-мишень" означает фрагмент нуклеиновой кислоты-мишени, на который нацеливается одно или несколько соединений.

"Сегмент-мишень" означает последовательность нуклеотидов нуклеиновой кислоты-мишени, на которую нацеливается соединение. "5'-концевой сайт-мишень" относится к самому крайнему 5'-концевому нуклеотиду сегмента-мишени. "3'-концевой сайт-мишень" относится к самому крайнему 3'-концевому нуклеотиду сегмента-мишени.

"Концевая группа" означает химическую группу или группу атомов, которая ковалентно связана с концом олигонуклеотида.

"Терапевтически эффективное количество" означает количество соединения, фармацевтического средства или композиции, которое оказывает терапевтически благоприятный эффект в отношении индивидуума.

"Лечение" относится к введению соединения или фармацевтической композиции животному с целью осуществления изменения или улучшения в отношении заболевания, нарушения или состояния у животного.

Определенные варианты осуществления

В определенных вариантах осуществления предусмотрены способы, соединения и композиции для подавления экспрессии PNPLA3 (PNPLA3).

В определенных вариантах осуществления предусмотрены соединения, нацеленные на нуклеиновую кислоту PNPLA3. В определенных вариантах осуществления нуклеиновая кислота PNPLA3 имеет последовательность, приведенную в RefSeq или GENBANK под номером доступа NM_025225.2 (включена посредством ссылки, раскрыта в данном документе под SEQ ID NO: 1); NC_000022.11 с усечением нуклеотидов от 43921001 до 43954500 (включена посредством ссылки, раскрыта в данном документе под SEQ ID NO: 2); AK123806.1 (включена посредством ссылки, раскрыта в данном документе под SEQ ID NO: 3); BQ686328.1 (включена посредством ссылки, раскрыта в данном документе под SEQ ID NO: 4); BF762711.1 (включена посредством ссылки, раскрыта в данном документе под SEQ ID NO: 5); DA290491.1 (включена посредством ссылки, раскрыта в данном документе под SEQ ID NO: 6); и последовательности, перечисленные под SEQ ID NO: 7, 8, 9 и 10. В определенных вариантах осуществления соединение представляет собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение является однонитевым. В определенных вариантах осуществления соединение является однонитевым. В определенных вариантах осуществления соединение является однонитевым.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов. В определенных вариантах осуществления соединение представляет собой антисмысловое соединение или олигомерное соединение.

В определенных вариантах осуществления предусмотрено соединение, содержащее модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение представляет собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение является двухнитевым.

В определенных вариантах осуществления предусматривается соединение, содержащее модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение представляет собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение является однонитевым. В определенных вариантах осуществления соединение является двухнитевым.

В определенных вариантах осуществления предусмотрено соединение, содержащее модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов и в пределах нуклеотидных оснований 5567-5642, 5644-5731, 5567-5731, 5567-5620, 13697-13733, 20553-20676, 20664-20824, 20553-20824 и 25844-25912 и являющийся комплементарным по отношению к SEQ ID NO: 2, где указанный модифицированный олигонуклеотид является по меньшей мере на 85%, по меньшей мере на 90%, по меньшей мере на 95 или 100% комплементарным по отношению к SEQ ID NO: 2. В определенных вариантах осуществления соединение представляет собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение является однонитевым. В определенных вариантах осуществления соединение является двухнитевым.

В определенных вариантах осуществления соединения нацеливаются на нуклеотиды 5567-5620

нуклеиновой кислоты PNPLA3. В определенных вариантах осуществления соединения нацеливаются на участок в пределах нуклеотидов 5567-5642, 5644-5731, 5567-5731, 5567-5620 нуклеиновой кислоты PNPLA3, имеющей последовательность нуклеиновых оснований под SEQ ID NO: 2. В определенных вариантах осуществления соединения содержат фрагмент по меньшей мере из 8, 9, 10, 11, 12, 13, 14, 15 или 16 смежных нуклеиновых оснований, комплементарный фрагменту равной длины в пределах нуклеотидов 5567-5642, 5644-5731, 5567-5731, 5567-5620 нуклеиновой кислоты PNPLA3, имеющей последовательность нуклеиновых оснований под SEQ ID NO: 2. В определенных вариантах осуществления такие соединения представляют собой антисмысловые соединения, олигомерные соединения или олигонуклеотиды.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую фрагмент по меньшей мере из 8, 9, 10, 11, 12, 13, 14, 15 или 16 смежных нуклеиновых оснований из SEQ ID NO: 1089.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую SEQ ID NO: 1089.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, который имеет последовательность нуклеиновых оснований, состоящую из SEQ ID NO: 1089.

В определенных вариантах осуществления соединения, нацеленные на PNPLA3, представляют собой ION 975616, 994284, 975605, 994282, 975613, 975617, 975735, 975736 или 975612. Из более чем 2384 соединений, которые были подвергнуты скринингу, как описано в разделе "Примеры" ниже, ION 975616, 994284, 975605, 994282, 975613, 975617, 975735, 975736 и 975612 оказались наилучшими лидерными соединениями.

В определенных вариантах осуществления любой из вышеперечисленных модифицированных олигонуклеотидов содержит по меньшей мере одну модифицированную межнуклеозидную связь, по меньшей мере один модифицированный сахар и/или по меньшей мере одно модифицированное нуклеиновое основание.

В определенных вариантах осуществления любой из вышеперечисленных модифицированных олигонуклеотидов содержит по меньшей мере один модифицированный сахар. В определенных вариантах осуществления по меньшей мере один модифицированный сахар содержит 2'-О-метоксиэтильную группу. В определенных вариантах осуществления по меньшей мере один модифицированный сахар представляет собой бициклический сахар, такой как содержащий группу 4'-CH(CH₃)-O-2', группу 4'-CH₂-O-2' или группу 4'-(CH₂)₂-O-2'.

В определенных вариантах осуществления модифицированный олигонуклеотид содержит по меньшей мере одну модифицированную межнуклеозидную связь, такую как фосфотиоатная межнуклеозидная связь.

В определенных вариантах осуществления любой из вышеперечисленных модифицированных олигонуклеотидов содержит по меньшей мере одно модифицированное нуклеиновое основание, такое как 5-метилцитозин.

В определенных вариантах осуществления любой из вышеперечисленных модифицированных олигонуклеотидов содержит:

гэп-сегмент, состоящий из связанных дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из связанных нуклеозидов;

где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, и

где каждый нуклеозид каждого флангового сегмента содержит модифицированный сахар.

В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов, при этом он имеет последовательность нуклеиновых оснований, предусматривающую последовательность, приведенную под SEQ ID NO: 1089. В определенных вариантах осуществления модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов, при этом он имеет последовательность нуклеиновых оснований, состоящую из последовательности, приведенной под SEQ ID NO: 1089.

В определенных вариантах осуществления соединение содержит или состоит из модифицированного олигонуклеотида, имеющего длину 16 связанных нуклеиновых оснований, при этом он имеет последовательность нуклеиновых оснований, предусматривающую последовательность, приведенную под SEQ ID NO: 1089, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

при этом гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, при этом каждый нуклеозид каждого флангового сегмента содержит сЕt-сахар; при этом

каждая межнуклеозидная связь представляет собой фосфотиоатную связь, и при этом каждый цитозин представляет собой 5-метилцитозин.

В определенных вариантах осуществления модифицированный олигонуклеотид состоит из 16 связанных нуклеозидов.

В определенных вариантах осуществления соединение состоит из модифицированного олигонуклеотида и конъюгированной группы, где модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов и состоит из последовательности под SEQ ID NO: 1089, при этом модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

- 5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и
- 3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

при этом гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, при этом каждый нуклеозид каждого флангового сегмента содержит сЕt-сахар; при этом каждая межнуклеозидная связь представляет собой фосфотиоатную связь; при этом каждый цитозин представляет собой 5-метилцитозин; и при этом конъюгированная группа расположена на 5'-конце модифицированного олигонуклеотида и представляет собой:

В определенных вариантах осуществления соединение содержит ION 916333 или его соль или состоит из них, при этом они имеют следующую химическую структуру:

В определенных вариантах осуществления соединение содержит ION 975616 или его соль или состоит из них, при этом они имеют следующую химическую структуру:

В определенных вариантах осуществления соединение содержит натриевую соль 975616 или состоит из нее, при этом она имеет следующую химическую структуру:

В определенных вариантах осуществления соединение содержит ION 975613 или его соль или состоит из них, при этом они имеют следующую химическую структуру:

В определенных вариантах осуществления соединение содержит натриевую соль 975613 или состоит из нее, при этом она имеет следующую химическую структуру:

В определенных вариантах осуществления соединение содержит ION 975612 или его соль или состоит из них, при этом они имеют следующую химическую структуру:

В определенных вариантах осуществления соединение содержит натриевую соль 975612 или состоит из нее, при этом она имеет следующую химическую структуру:

В определенных вариантах осуществления соединение содержит ION 916789 или его соль или состоит из них, при этом они имеют следующую химическую структуру:

В определенных вариантах осуществления соединение содержит натриевую соль 916789 или состоит из нее, при этом она имеет следующую химическую структуру:

В определенных вариантах осуществления соединение содержит ION 916602 или его соль или состоит из них, при этом они имеют следующую химическую структуру:

В определенных вариантах осуществления соединение содержит натриевую соль 916602 или состоит из нее, при этом она имеет следующую химическую структуру:

В любом из вышеперечисленных вариантов осуществления соединение или олигонуклеотид могут быть по меньшей мере на 85%, по меньшей мере на 90%, по меньшей мере на 95%, по меньшей мере на 98%, по меньшей мере на 99 или 100% комплементарными нуклеиновой кислоте, кодирующей PNPLA3.

В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым. В определенных вариантах осуществления соединение содержит дезоксирибонуклеотиды. В определенных вариантах осуществления соединение является двухнитевым. В определенных вариантах осуществления соединение является двухнитевым и содержит рибонуклеотиды. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение.

В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, описанный в данном документе, и конъюгированную группу. В определенных вариантах осуществления конъюгированная группа связана с модифицированным олигонуклеотидом на 5'-конце модифицированного олигонуклеотида. В определенных вариантах осуществления конъюгированная группа связана с модифицированным олигонуклеотидом на 3'-конце модифицированного олигонуклеотида. В определенных вариантах осуществления конъюгированная группа содержит по меньшей мере один N-ацетилгалактозамин (GalNAc), по меньшей мере два N-ацетилгалактозамина (GalNAc) или по меньшей мере три N-ацетилгалактозамина (GalNAc).

В определенных вариантах осуществления соединения или композиции, предусмотренные в данном документе, содержат фармацевтически приемлемую соль модифицированного олигонуклеотида. В определенных вариантах осуществления соль представляет собой натриевую соль. В определенных вариантах осуществления соль представляет собой калиевую соль.

В определенных вариантах осуществления соединения или композиции, описанные в данном документе, являются активными в силу того, что они характеризуются по меньшей мере одной из IC_{50} in vitro, составляющей менее 2 мкМ, менее 1,5 мкМ, менее 1 мкМ, менее 0,9 мкМ, менее 0,8 мкМ, менее 0,7 мкМ, менее 0,6 мкМ, менее 0,5 мкМ, менее 0,4 мкМ, менее 0,3 мкМ, менее 0,2 мкМ, менее 0,1 мкМ, менее 0,05 мкМ, менее 0,04 мкМ, менее 0,03 мкМ, менее 0,01 мкМ.

В определенных вариантах осуществления соединения или композиции, описываемые в данном документе, хорошо переносятся, что показано с помощью того, что они характеризуются по меньшей мере одним из значений повышения уровня аланинаминотрансферазы (ALT) или аспартаттрансаминазы (AST), составляющим не более чем в 4 раза, в 3 раза или в 2 раза, по сравнению с контрольными животными или повышением массы печени, селезенки или почки, составляющим не более чем на 30, 20, 15, 12, 10, 5 или 2%, по сравнению с контрольными животными. В определенных вариантах осуществления соединения или композиции, описанные в данном документе, хорошо переносятся, что демонстрируется отсутствием повышения уровней АLT или AST по сравнению с контрольными животными. В определенных вариантах осуществления соединения или композиции, описанные в данном документе, хорошо переносятся, что демонстрируется отсутствием повышения массы печени, селезенки или почки по сравнению с контрольными животными.

В определенных вариантах осуществления предусматривается композиция, содержащая соединение согласно любому из вышеуказанных вариантов осуществления или любую его фармацевтически приемлемую соль и по меньшей мере один из фармацевтически приемлемого носителя или разбавителя. В определенных вариантах осуществления композиция имеет вязкость, составляющую менее чем приблизительно 40 сП (сантипуаз), менее чем приблизительно 30 сП, менее чем приблизительно 20 сП, менее чем приблизительно 15 сП или менее чем приблизительно 10 сП. В определенных вариантах осуществления композиция, имеющая любое из вышеуказанных значений вязкости, содержит соединение, предусмотренное в данном документе, в концентрации приблизительно 100 мг/мл, приблизительно 125 мг/мл, приблизительно 250 мг/мл, приблизительно 200 мг/мл, приблизительно 255 мг/мл, приблизительно 250 мг/мл, приблизительно 275 мг/мл или приблизительно 300 мг/мл. В определенных вариантах осуществления композиция, имеющая любое из вышеуказанных значений вязкости и/или концентрации соединения, имеет температуру, соответствующую комнатной температуре или составляющую приблизительно 20°С, приблизительно 21°С, приблизительно 22°С, приблизительно 23°С, приблизительно 24°С, приблизительно 25°С, приблизительно 26°С, приблизительно 27°С, приб

Некоторые показания.

Определенные варианты осуществления, предусмотренные в данном документе, относятся к способам подавления экспрессии PNPLA3, которые могут быть применимыми для лечения, предупреждения или уменьшения выраженности заболевания, ассоциированного с PNPLA3, у индивидуума путем введения соединения, которое нацеливается на PNPLA3. В определенных вариантах осуществления соединение может представлять собой специфический ингибитор PNPLA3. В определенных вариантах осуществления соединение может представлять собой антисмысловое соединение, олигомерное соединение или олигонуклеотид, нацеленный на PNPLA3.

Примеры заболеваний, ассоциированных с PNPLA3, поддающихся лечению, предупреждению и/или уменьшению их выраженности с помощью способов, предусмотренных в данном документе,

включают заболевание печени, NAFLD, стеатоз печени, неалкогольный стеатогепатит (NASH), цирроз печени, гепатоцеллюлярную карциному, алкогольную болезнь печени, алкогольный стеатогепатит (ASH), гепатит, вызванный HCV, хронический гепатит, наследственный гемохроматоз или первичный склерозирующий холангит. Определенные соединения, представленные в данном документе, направлены на соединения и композиции, которые обеспечивают снижение повреждения печени, стеатоза, фиброза печени, воспаления печени, рубцевания печени или цирроза, печеночной недостаточности, увеличения печени, повышенных уровней трансаминаз или накопления жира в печени у животного.

В определенных вариантах осуществления способ лечения, предупреждения или уменьшения выраженности заболевания, ассоциированного с PNPLA3, у индивидуума включает введение индивидууму соединения, содержащего специфический ингибитор PNPLA3, за счет чего осуществляется лечение, предупреждение или уменьшение выраженности заболевания. В определенных вариантах осуществления индивидуум идентифицирован как имеющий заболевание, ассоциированное с PNPLA3, или подверженный риску его развития. В определенных вариантах осуществления заболевание представляет собой заболевание печени. В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на PNPLA3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на PNPLA3. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из последовательностей нуклеиновых оснований под SEO ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение представляет собой ION 975616, 994284, 975605, 994282, 975613, 975617, 975735, 975736 или 975612. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение вводят индивидууму парентерально. В определенных вариантах осуществления введение соединения обеспечивает улучшение в отношении повреждения печени, стеатоза, фиброза печени, цирроза, повышенных уровней трансаминаз или накопления жира в печени, профилактику или предупреждение таковых у животного.

В определенных вариантах осуществления способ лечения, предупреждения или уменьшения выраженности повреждения печени, стеатоза, фиброза печени, воспаления печени, рубцевания печени или цирроза, печеночной недостаточности, увеличения печени, повышенных уровней трансаминаз или накопления жира в печени у животного включает введение индивидууму соединения, содержащего специфический ингибитор PNPLA3, за счет чего осуществляется лечение, предупреждение или уменьшение выраженности повреждения печени, стеатоза, фиброза печени, воспаления печени, рубцевания печени или цирроза, печеночной недостаточности, увеличения печени, повышенных уровней трансаминаз или накопления жира в печени. В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на PNPLA3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на PNPLA3. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из последовательностей нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение представляет собой ION 975616, 994284, 975605, 994282, 975613, 975617, 975735, 975736 или 975612. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение вводят индивидууму парентерально. В определенных вариантах осуществления введение соединения обеспечивает улучшение в отношении повреждения печени, стеатоза, фиброза печени, воспаления печени, рубцевания печени или цирроза, печеночной недостаточности, увеличения печени, повышенных уровней трансаминаз или накопления жира в печени, профилактику или предупреждение таковых. В определенных вариантах осуществления индивидуум идентифицирован как имеющий заболевание, ассоциированное с PNPLA3, или подверженный риску его развития.

В определенных вариантах осуществления способ подавления экспрессии PNPLA3 у индивидуума, у которого имеется заболевание, ассоциированное с PNPLA3, или который подвержен риску его разви-

тия, включает введение индивидууму соединения, содержащего специфический ингибитор PNPLA3, за счет чего осуществляется подавление экспрессии PNPLA3 у индивидуума. В определенных вариантах осуществления введение соединения обеспечивает подавление экспрессии PNPLA3 в печени. В определенных вариантах осуществления заболевание представляет собой заболевание печени. В определенных вариантах осуществления у индивидуума имеется NAFLD, стеатоз печени, неалкогольный стеатогепатит (NASH), цирроз печени, гепатоцеллюлярная карцинома, алкогольная болезнь печени, алкогольный стеатогепатит (ASH), гепатит, вызванный HCV, хронический гепатит, наследственный гемохроматоз или первичный склерозирующий холангит, или он подвержен риску их развития. В определенных вариантах осуществления у индивидуума имеется повреждение печени, стеатоз, фиброз печени, воспаление печени, рубцевание печени или цирроз, печеночная недостаточность, увеличение печени, повышенные уровни трансаминаз или накопление жира в печени или, он подвержен риску их развития. В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на PNPLA3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на PNPLA3. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из последовательностей нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение представляет собой ION 975616, 994284, 975605, 994282, 975613, 975617, 975735, 975736 или 975612. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение вводят индивидууму парентерально. В определенных вариантах осуществления введение соединения обеспечивает улучшение в отношении повреждения печени, стеатоза, фиброза печени, воспаления печени, рубцевания печени или цирроза, печеночной недостаточности, увеличения печени, повышенных уровней трансаминаз или накопления жира в печени, профилактику или предупреждение таковых.

В определенных вариантах осуществления способ подавления экспрессии PNPLA3 в клетке включает приведение клетки в контакт с соединением, содержащим специфический ингибитор PNPLA3, за счет чего осуществляется подавление экспрессии PNPLA3 в клетке. В определенных вариантах осуществления клетка представляет собой гепатоцит. В определенных вариантах осуществления клетка находится в печени. В определенных вариантах осуществления клетка находится в печени индивидуума, у которого имеется повреждение печени, стеатоз, фиброз печени, воспаление печени, рубцевание печени или цирроз, печеночная недостаточность, увеличение печени, повышенные уровни трансаминаз или накопление жира в печени или который подвержен риску их развития. В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на PNPLA3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на PNPLA3. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из последовательностей нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение представляет собой ION 975616, 994284, 975605, 994282, 975613, 975617, 975735, 975736 или 975612. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение.

В определенных вариантах осуществления способ снижения или подавления повреждения печени, стеатоза, фиброза печени, воспаления печени, рубцевания печени или цирроза, печеночной недостаточности, увеличения печени, повышенных уровней трансаминаз или накопления жира в печени у индивидуума, у которого имеется заболевание, ассоциированное с PNPLA3, или который подвержен риску его развития, включает введение индивидууму соединения, содержащего специфический ингибитор PNPLA3, за счет чего осуществляется снижение или подавление повреждения печени, стеатоза, фиброза печени, воспаления печени, рубцевания печени или цирроза, печеночной недостаточности, увеличения печени, повышенных уровней трансаминаз или накопления жира в печени у индивидуума. В определенных вариантах осуществления у индивидуума имеется NAFLD, стеатоз печени, неалкогольный стеатоге-

патит (NASH), цирроз печени, гепатоцеллюлярная карцинома, алкогольная болезнь печени, алкогольный стеатогепатит (ASH), гепатит, вызванный HCV, хронический гепатит, наследственный гемохроматоз или первичный склерозирующий холангит, или он подвержен риску их развития. В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на PNPLA3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на PNPLA3. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из последовательностей нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение представляет собой ION 975616, 994284, 975605, 994282, 975613, 975617, 975735, 975736 или 975612. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение вводят индивидууму парентерально. В определенных вариантах осуществления индивидуум идентифицирован как имеющий заболевание, ассоциированное с PNPLA3, или подверженный риску его развития.

Определенные варианты осуществления охватывают соединение, содержащее специфический ингибитор PNPLA3, для применения в лечении заболевания, ассоциированного с PNPLA3. В определенных вариантах осуществления заболевание представляет собой NAFLD, стеатоз печени, неалкогольный стеатогепатит (NASH), цирроз печени, гепатоцеллюлярную карциному, алкогольную болезнь печени, алкогольный стеатогепатит (ASH), гепатит, вызванный HCV, хронический гепатит, наследственный гемохроматоз или первичный склерозирующий холангит. В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на PNPLA3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на PNPLA3. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из последовательностей нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение представляет собой ION 975616, 994284, 975605, 994282, 975613, 975617, 975735, 975736 или 975612. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение. В определенных вариантах осуществления соединение вводят индивидууму парентерально.

Определенные варианты осуществления охватывают соединение, содержащее специфический ингибитор PNPLA3, для применения для снижения или подавления повреждения печени, стеатоза, фиброза печени, воспаления печени, рубцевания печени или цирроза, печеночной недостаточности, увеличения печени, повышенных уровней трансаминаз или накопления жира в печени у индивидуума, у которого имеется NAFLD, стеатоз печени, неалкогольный стеатогепатит (NASH), цирроз печени, гепатоцеллюлярная карцинома, алкогольная болезнь печени, алкогольный стеатогепатит (ASH), гепатит, вызванный НСУ, хронический гепатит, наследственный гемохроматоз или первичный склерозирующий холангит или который подвержен риску их развития. В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на PNPLA3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на PNPLA3. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из последовательностей нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение представляет собой ION 975616, 994284, 975605, 994282, 975613, 975617, 975735, 975736 или 975612. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение.

Определенные варианты осуществления охватывают применение соединения, содержащего специфический ингибитор PNPLA3, для изготовления или получения лекарственного препарата для лечения заболевания, ассоциированного с PNPLA3.

Определенные варианты осуществления охватывают применение соединения, содержащего специфический ингибитор PNPLA3, для получения лекарственного препарата, предназначенного для лечения заболевания, ассоциированного с PNPLA3. В определенных вариантах осуществления заболевание представляет собой заболевание печени. В определенных вариантах осуществления заболевание представляет собой NAFLD, стеатоз печени, неалкогольный стеатогепатит (NASH), цирроз печени, гепатоцеллюлярную карциному, алкогольную болезнь печени, алкогольный стеатогепатит (ASH), гепатит, вызванный HCV, хронический гепатит, наследственный гемохроматоз или первичный склерозирующий холангит. В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на PNPLA3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на PNPLA3. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из последовательностей нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение представляет собой ION 975616, 994284, 975605, 994282, 975613, 975617, 975735, 975736 или 975612. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение.

Определенные варианты осуществления охватывают применение соединения, содержащего специфический ингибитор PNPLA3, для изготовления или получения лекарственного препарата для снижения или подавления повреждения печени, стеатоза, фиброза печени, воспаления печени, рубцевания печени или цирроза, печеночной недостаточности, увеличения печени, повышенных уровней трансаминаз или накопления жира в печени у индивидуума, у которого имеется заболевание печени, ассоциированное с PNPLA3, или который подвержен риску его развития. В определенных вариантах осуществления заболевание представляет собой NAFLD, стеатоз печени, неалкогольный стеатогепатит (NASH), цирроз печени, гепатоцеллюлярную карциному, алкогольную болезнь печени, алкогольный стеатогепатит (АSH), гепатит, вызванный НСV, хронический гепатит, наследственный гемохроматоз или первичный склерозирующий холангит. Определенные варианты осуществления охватывают применение соединения, содержащего специфический ингибитор PNPLA3, для получения лекарственного препарата для лечения заболевания, ассоциированного с PNPLA3. В определенных вариантах осуществления заболевание представляет собой NAFLD, стеатоз печени, неалкогольный стеатогепатит (NASH), цирроз печени, гепатоцеллюлярную карциному, алкогольную болезнь печени, алкогольный стеатогепатит (АSH), гепатит, вызванный HCV, хронический гепатит, наследственный гемохроматоз или первичный склерозирующий холангит. В определенных вариантах осуществления соединение содержит антисмысловое соединение, нацеленное на PNPLA3. В определенных вариантах осуществления соединение содержит олигонуклеотид, нацеленный на PNPLA3. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из последовательностей нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, и который имеет последовательность нуклеиновых оснований, содержащую последовательность нуклеиновых новых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, состоящий из последовательности нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение представляет собой ION 975616, 994284, 975605, 994282, 975613, 975617, 975735, 975736 или 975612. В любом из вышеперечисленных вариантов осуществления соединение может быть однонитевым или двухнитевым. В любом из вышеперечисленных вариантов осуществления соединение может представлять собой антисмысловое соединение или олигомерное соединение.

В любом из вышеперечисленных способов или вариантов применения соединение может быть нацеленным на PNPLA3. В определенных вариантах осуществления соединение содержит или состоит из модифицированного олигонуклеотида, например модифицированного олигонуклеотида длиной 16 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид является по меньшей мере на 80%, по меньшей мере на 85%, по меньшей мере на 90%, по меньшей мере на 95 или 100% комплементарным любой из последовательностей нуклеиновых оснований, приведенных под SEQ ID NO: 1-10. В определенных вариантах осуществления модифицированный олигонуклеотид содержит по меньшей мере одну модифицированную межнуклеозидную связь, по меньшей мере один модифицированный сахар и/или по меньшей мере одно модифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированная межнуклеозидная связь представляет собой фосфотиоатную межнуклеозидную связь, модифицированный сахар представляет собой бициклический сахар или 2'-О-метоксиэтил-модифицированный сахар, а модифицированное нуклеиновое основание представляет собой 5-метилцитозин. В определенных вариантах осуществления модифицированный олигонуклеотид содержит гэп-сегмент, состоящий из связанных дезоксинуклеозидов; 5'-концевой фланговый сегмент, состоящий из связанных нуклеозидов; и 3'-концевой фланговый сегмент, состоящий из связанных нуклеозидов, где гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, непосредственно примыкая к ним, и где каждый нуклеозид каждого флангового сегмента содержит модифицированный сахар.

В любом из вышеперечисленных вариантов осуществления модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов. В определенных вариантах осуществления модифицированный олигонуклеотид является по меньшей мере на 80%, по меньшей мере на 85%, по меньшей мере на 90%, по меньшей мере на 95 или 100% комплементарным любой из последовательностей нуклеиновых оснований, приведенных под SEQ ID NO: 1-10.

В любом из вышеперечисленных способов или вариантов применения соединение содержит или состоит из модифицированного олигонуклеотида, имеющего длину 16 связанных нуклеозидов и имеющего последовательность нуклеиновых оснований, содержащую SEQ ID NO: 1089, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из связанных 2'-дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из связанных нуклеозидов;

при этом гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, и при этом каждый нуклеозид каждого флангового сегмента содержит модифицированный сахар.

В любом из вышеперечисленных способов или вариантов применения соединение содержит модифицированный олигонуклеотид, имеющий длину 16 связанных нуклеозидов, или состоит из него, который имеет последовательность нуклеиновых оснований, содержащую последовательность, приведенную под SEQ ID NO: 1089, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

при этом гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, при этом каждый нуклеозид каждого флангового сегмента содержит сЕt-сахар; при этом каждая межнуклеозидная связь представляет собой фосфотиоатную связь, и при этом каждый цитозин представляет собой 5-метилцитозин.

В определенных вариантах осуществления соединение содержит ION 916333 или его соль или состоит из них, при этом они имеют следующую химическую структуру:

В определенных вариантах осуществления соединение содержит ION 975616 или его соль или состоит из них, при этом они имеют следующую химическую структуру:

В определенных вариантах осуществления соединение содержит натриевую соль 975616 или состоит из нее, при этом она имеет следующую химическую структуру:

В определенных вариантах осуществления соединение содержит ION 975613 или его соль или состоит из них, при этом они имеют следующую химическую структуру:

В определенных вариантах осуществления соединение содержит натриевую соль 975613 или состоит из нее, при этом она имеет следующую химическую структуру:

В определенных вариантах осуществления соединение содержит ION 975612 или его соль или состоит из них, при этом они имеют следующую химическую структуру:

В определенных вариантах осуществления соединение содержит натриевую соль 975612 или состоит из нее, при этом она имеет следующую химическую структуру:

В определенных вариантах осуществления соединение содержит ION 916789 или его соль или состоит из них, при этом они имеют следующую химическую структуру:

В определенных вариантах осуществления соединение содержит натриевую солью 916789 или состоит из нее, при этом она имеет следующую химическую структуру:

В определенных вариантах осуществления соединение содержит ION 916602 или его соль или состоит из них, при этом они имеют следующую химическую структуру:

В определенных вариантах осуществления соединение содержит натриевую солью 916602 или состоит из нее, при этом она имеет следующую химическую структуру:

В любом из вышеперечисленных способов или вариантов применения соединение можно вводить парентерально. Например, в определенных вариантах осуществления соединение можно вводить посредством инъекции или инфузии. Парентеральное введение включает подкожное введение, внутривенное введение, внутримышечное введение, внутриартериальное введение, внутрибрюшинное введение или внутричерепное введение, например интратекальное или интрацеребровентрикулярное введение.

Некоторые соединения.

В определенных вариантах осуществления соединения, описанные в данном документе, могут представлять собой антисмысловые соединения. В определенных вариантах осуществления антисмысловое соединение содержит олигомерное соединение или состоит из него. В определенных вариантах осуществления олигомерное соединение содержит модифицированный олигонуклеотид. В определенных вариантах осуществления модифицированный олигонуклеотид имеет последовательность нуклеиновых

оснований, комплементарную последовательности нуклеиновой кислоты-мишени.

В определенных вариантах осуществления соединение, описанное в данном документе, содержит модифицированный олигонуклеотид или состоит из него. В определенных вариантах осуществления модифицированный олигонуклеотид имеет последовательность нуклеиновых оснований, комплементарную последовательности нуклеиновой кислоты-мишени.

В определенных вариантах осуществления соединение или антисмысловое соединение является однонитевым. Такое однонитевое соединение или антисмысловое соединение содержит олигомерное соединение или состоит из него. В определенных вариантах осуществления такое олигомерное соединение содержит олигонуклеотид и необязательно конъюгированную группу или состоит из них. В определенных вариантах осуществления олигонуклеотид представляет собой антисмысловой олигонуклеотид. В определенных вариантах осуществления олигонуклеотид является модифицированным. В определенных вариантах осуществления олигонуклеотид однонитевого антисмыслового соединения или олигомерного соединения содержит самокомплементарную последовательность нуклеиновых оснований.

В определенных вариантах осуществления соединения являются двухнитевыми. Такие двухнитевые соединения содержат первый модифицированный олигонуклеотид, имеющий область, комплементарную нуклеиновой кислоте-мишени, и второй модифицированный олигонуклеотид, имеющий область, комплементарную первому модифицированному олигонуклеотиду. В определенных вариантах осуществления модифицированный олигонуклеотид представляет собой РНК-олигонуклеотид. В таких вариантах осуществления тиминовое нуклеиновое основание в модифицированном олигонуклеотиде замещено урациловым нуклеиновым основанием. В определенных вариантах осуществления соединение содержит конъюгированную группу. В определенных вариантах осуществления один из модифицированных олигонуклеотидов является конъюгированным. В определенных вариантах осуществления оба модифицированных олигонуклеотида являются конъюгированными. В определенных вариантах осуществления первый модифицированный олигонуклеотид является конъюгированным. В определенных вариантах осуществления второй модифицированный олигонуклеотид является конъюгированным. В определенных вариантах осуществления первый модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов, и второй модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов. В определенных вариантах осуществления один из модифицированных олигонуклеотидов имеет последовательность нуклеиновых оснований, содержащую по меньшей мере 8 смежных нуклеиновых оснований из SEQ ID NO: 1089.

В определенных вариантах осуществления антисмысловые соединения являются двухнитевыми. Такие двухнитевые антисмысловые соединения содержат первое олигомерное соединение, имеющее область, комплементарную нуклеиновой кислоте-мишени, и второе олигомерное соединение, имеющее область, комплементарную первому олигомерному соединению. Первое олигомерное соединение таких двухнитевых антисмысловых соединений, как правило, содержит модифицированный олигонуклеотид и необязательно конъюгированную группу или состоит из них. Олигонуклеотид второго олигомерного соединения такого двухнитевого антисмыслового соединения может быть модифицированным или немодифицированным. Любое из олигомерных соединений двухнитевого антисмыслового соединения или оба из них могут содержать коньюгированную группу. Олигомерные соединения двухнитевых антисмысловых соединений могут содержать некомплементарные нуклеозиды выступающих концов.

Примеры однонитевых и двухнитевых соединений включают без ограничения олигонуклеотиды, siRNA, олигонуклеотиды, нацеливающиеся на микроРНК, и однонитевые соединения для RNAi, такие как малые шпилечные PHK (shRNA), однонитевые siRNA (ssRNA) и миметики микроРНК.

В определенных вариантах осуществления соединение, описанное в данном документе, имеет последовательность нуклеиновых оснований, которая, будучи записанной в направлении 5'-3', содержит последовательность, обратно комплементарную сегменту-мишени нуклеиновой кислоты-мишени, на которую оно нацеливается.

В определенных вариантах осуществления соединение, описанное в данном документе, содержит олигонуклеотид, имеющий длину 16 связанных субъединиц. В определенных вариантах осуществления связанные субъединицы представляют собой нуклеотиды, нуклеозиды или нуклеиновые основания.

В определенных вариантах осуществления соединение может дополнительно содержать дополнительные компоненты или элементы, такие как конъюгированная группа, которые присоединены к олигонуклеотиду. В определенных вариантах осуществления такие соединения представляют собой антисмысловые соединения. В определенных вариантах осуществления такие соединения представляют собой олигомерные соединения. В вариантах осуществления, в которых конъюгированная группа содержит нуклеозид (т.е. нуклеозид, который связывает конъюгированную группу с олигонуклеотидом), нуклеозид конъюгированной группы не учитывается в длине олигонуклеотида.

В определенных вариантах осуществления соединения могут быть укороченными или усеченными. Например, одна субъединица может быть удалена с 5'-конца (5'-концевое усечение) или, в качестве альтернативы, с 3'-конца (3'-концевое усечение). В укороченном или усеченном соединении, нацеленном на нуклеиновую кислоту PNPLA3, могут быть удалены две субъединицы на 5'-конце или в качестве альтернативы могут быть удалены две субъединицы на 3'-конце соединения. В качестве альтернативы, удален-

ные нуклеозиды могут быть распределены по всему соединению.

При наличии в удлиненном соединении одной дополнительной субъединицы дополнительная субъединица может быть расположена на 5'- или 3'-конце соединения. При наличии двух или более дополнительных субъединиц добавленные субъединицы могут примыкать друг к другу, например, в соединении, имеющем две субъединицы, добавленные на 5'-конце (5'-концевое добавление) или, в качестве альтернативы, на 3'-конце (3'-концевое добавление) соединения. В качестве альтернативы, добавленные субъединицы могут быть распределены по всему соединению.

Существует возможность увеличения или уменьшения длины соединения, такого как олигонуклеотид, и/или введения несовпадающих оснований без устранения активности (Woolf et al., Proc. Natl. Acad. Sci. USA, 1992, 89:7305-7309; Gautschi et al., J., Natl. Cancer Inst. March 2001, 93:463-471; Maher and Dolnick Nuc. Acid. Res. 1998, 16:3341-3358). Однако, казалось бы, небольшие изменения в последовательности, химических структурах и мотивах олигонуклеотида могут сильно повлиять на одно или несколько из множества свойств, необходимых для клинического исследования (Seth et al., J. Med. Chem. 2009, 52, 10; Egli et al., J. Am. Chem. Soc. 2011, 133, 16642).

В определенных вариантах осуществления соединения, описанные в данном документе, представляют собой соединения на основе интерферирующей РНК (для RNAi), которые включают в себя соединения на основе двухнитевой РНК (также называемые короткими интерферирующими РНК или siRNA) и соединения на основе однонитевой RNAi (или ssRNA). Такие соединения осуществляют свою функцию по меньшей мере частично посредством сигнального пути RISC с разрушением и/или секвестрацией кислоты-мишени (следовательно, включают в себя соединения на основе microRNA/миметиков microRNA). Подразумевается, что используемый в данном документе термин "siRNA" эквивалентен другим терминам, используемым для описания молекул нуклеиновой кислоты, которые способны опосредовать RNAi, специфическую в отношении последовательности, например, короткой интерферирующей РНК (siRNA), двухнитевой РНК (dsRNA), микроРНК (miRNA), короткой шпилечной РНК (shRNA), короткому интерферирующему олигонуклеотиду, короткой интерферирующей нуклеиновой кислоте, короткому интерферирующему модифицированному олигонуклеотиду, химически модифицированной siRNA, РНК для посттранскрипционного сайленсинга генов (ptgsRNA) и другим. Кроме того, подразумевается, что используемый в данном документе термин "RNAi" эквивалентен другим терминам, используемым для описания РНК-интерференции, специфической в отношении последовательности, таким как посттранскрипционный сайленсинг генов, подавление трансляции или эпигенетические механизмы.

В определенных вариантах осуществления соединение, описанное в данном документе, может содержать любую из описанных в данном документе олигонуклеотидных последовательностей, нацеливающихся на PNPLA3. В определенных вариантах осуществления соединение может быть двухнитевым. В определенных вариантах осуществления соединение содержит первую нить, содержащую фрагмент по меньшей мере из 8, 9, 10, 11, 12, 13, 14, 15 или 16 смежных нуклеиновых оснований из SEQ ID NO: 1089, и вторую нить. В определенных вариантах осуществления соединение содержит первую нить, содержащую последовательность нуклеиновых оснований под SEQ ID NO: 1089, и вторую нить. В определенных вариантах осуществления соединение содержит рибонуклеотиды, при этом первая нить содержит урацил (U) вместо тимина (T) в SEO ID NO: 1089. В определенных вариантах осуществления соединение содержит (і) первую нить, содержащую последовательность нуклеиновых оснований, комплементарную сайту в PNPLA3, на который нацеливается SEQ ID NO: 1089, и (ii) вторую нить. В определенных вариантах осуществления соединение содержит один или несколько модифицированных нуклеотидов, у которых в 2'-положении сахара содержится галоген (такой как группа фтора; 2'-F) или содержится алкоксигруппа (такая как метоксигруппа; 2'-ОМе). В определенных вариантах осуществления соединение содержит по меньшей мере одну 2'-F-модификацию сахара и по меньшей мере одну 2'-ОМе-модификацию сахара. В определенных вариантах осуществления по меньшей мере одна 2'-F-модификация сахара и по меньшей мере одна 2'-ОМе-модификация сахара расположены в чередующемся порядке на протяжении по меньшей мере 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или 16 смежных нуклеиновых оснований вдоль нити соединения на основе dsRNA. В определенных вариантах осуществления соединение содержит между прилегающими нуклеотидами одну или несколько связей, отличных от встречающейся в природе фосфодиэфирной связи. Примеры таких связей включают фосфорамидные, фосфотиоатные и фосфодитиоатные связи. Соединения также могут представлять собой химически модифицированные молекулы нуклеиновых кислот, как раскрыто в патенте США № 6673661. В других вариантах осуществления соединение содержит одну или две кэпированные нити, как раскрыто, например, в WO 00/63364, поданной 19 апреля 2000 г.

В определенных вариантах осуществления первая нить соединения представляет собой направляющую нить siRNA, а вторая нить соединения представляет собой сопровождающую нить siRNA. В определенных вариантах осуществления вторая нить соединения комплементарна первой нити. В определенных вариантах осуществления каждая нить соединения имеет длину 16 связанных нуклеозидов. В определенных вариантах осуществления первая или вторая нить соединения может содержать конъюгированную группу.

В определенных вариантах осуществления соединение, описанное в данном документе, может содержать любую из описанных в данном документе олигонуклеотидных последовательностей, нацеливающихся на PNPLA3. В определенных вариантах осуществления соединение является однонитевым. В определенных вариантах осуществления такое соединение представляет собой однонитевое соединение для RNAi (ssRNAi). В определенных вариантах осуществления соединение содержит фрагмент по меньшей мере из 8, 9, 10, 11, 12, 13, 14, 15 или 16 смежных нуклеиновых оснований из SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит последовательность нуклеиновых оснований под SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит рибонуклеотиды, при этом урацил (U) располагается на месте тимина (T) в SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит последовательность нуклеиновых оснований, комплементарную сайту в PNPLA3, на который нацелена SEQ ID NO: 1089. В определенных вариантах осуществления соединение содержит один или несколько модифицированных нуклеотидов, у которых в 2'-положении в сахаре содержится галоген (такой как группа фтора; 2'-F) или содержится алкоксигруппа (такая как метоксигруппа; 2'-ОМе). В определенных вариантах осуществления соединение содержит по меньшей мере одну 2'-F-модификацию сахара и по меньшей мере одну 2'-ОМе-модификацию сахара. В определенных вариантах осуществления по меньшей мере одна 2'-F-модификация сахара и по меньшей мере одна 2'-ОМе-модификация сахара расположены в чередующемся порядке на протяжении по меньшей мере 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 или 16 смежных нуклеиновых оснований вдоль нити соединения. В определенных вариантах осуществления соединение содержит между прилегающими нуклеотидами одну или несколько связей, отличных от встречающейся в природе фосфодиэфирной связи. Примеры таких связей включают фосфорамидные, фосфотиоатные и фосфодитиоатные связи. Соединения также могут представлять собой химически модифицированные молекулы нуклеиновых кислот, как раскрыто в патенте США № 6673661. В других вариантах осуществления соединение содержит кэпированную нить, как раскрыто, например, в WO 00/63364, поданной 19 апреля 2000 г. В определенных вариантах осуществления соединение состоит из 16, 17, 18, 19, 20, 21, 22 или 23 связанных нуклеозидов. В определенных вариантах осуществления соединение может содержать конъюгированную группу.

Некоторые механизмы.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат модифицированные олигонуклеотиды или состоят из них. В определенных вариантах осуществления соединения, описанные в данном документе, представляют собой антисмысловые соединения. В определенных вариантах осуществления соединения содержат олигомерные соединения. В определенных вариантах осуществления соединения, описанные в данном документе, способны гибридизироваться с нуклеиновой кислотой-мишенью, что приводит к по меньшей мере одной форме антисмысловой активности. В определенных вариантах осуществления соединения, описанные в данном документе, избирательно воздействуют на одну или несколько нуклеиновых кислот-мишеней. Такие соединения содержат последовательность нуклеиновых оснований, которая гибридизируется с одной или несколькими нуклеиновыми кислотами нуклеиновыми кислотами, что приводит к одной или нескольким формам желаемой антисмысловой активности, и не гибридизируется с одной или несколькими нуклеиновыми кислотами, не являющимися мишенями, или не гибридизируется с одной или несколькими нуклеиновыми кислотами, не являющимися мишенями, таким образом, что это приводит к значительной нежелательной антисмысловой активности.

При определенных формах антисмысловой активности гибридизация соединения, описанного в данном документе, с нуклеиновой кислотой-мишенью приводит к привлечению белка, который расщепляет нуклеиновую кислоту-мишень. Например, определенные соединения, описанные в данном документе, приводят к опосредованному РНКазой Н расщеплению нуклеиновой кислоты-мишени. РНКаза Н представляет собой клеточную эндонуклеазу, которая расщепляет нить РНК в дуплексе РНК:ДНК. ДНК в таком дуплексе РНК:ДНК необязательно должна быть немодифицированной ДНК. В определенных вариантах осуществления соединения, описанные в данном документе, являются достаточно "ДНК-подобными", чтобы вызывать активность РНКазы Н. Кроме того, в определенных вариантах осуществления допускаются один или несколько нуклеозидов, не являющихся ДНК-подобными, в гэп-сегменте гэпмера.

При определенных формах антисмысловой активности соединения, описанные в данном документе, или фрагмент соединения включается в состав РНК-индуцируемого комплекса сайленсинга (RISC), что, в конечном счете, приводит к расщеплению нуклеиновой кислоты-мишени. Например, определенные соединения, описанные в данном документе, приводят к расщеплению нуклеиновой кислоты-мишени с помощью белка Argonaute. Соединения, которые включаются в состав RISC, являются соединениями для RNAi. Соединения для RNAi могут быть двухнитевыми (siRNA) или однонитевыми (ssRNA).

В определенных вариантах осуществления гибридизация соединений, описанных в данном документе, с нуклеиновой кислотой-мишенью не приводит к привлечению белка, который расщепляет нуклеиновую кислоту-мишень. В определенных подобных вариантах осуществления гибридизация соединения с нуклеиновой кислотой-мишенью приводит к изменению сплайсинга нуклеиновой кислотымишени. В определенных вариантах осуществления гибридизация соединения с нуклеиновой кислотой-

мишенью приводит к подавлению связывающего взаимодействия между нуклеиновой кислотой-мишенью и белком или другой нуклеиновой кислотой. В определенных подобных вариантах осуществления гибридизация соединения с нуклеиновой кислотой-мишенью приводит к изменению трансляции нуклеиновой кислоты-мишени.

Формы антисмысловой активности можно наблюдать непосредственно или опосредованно. В определенных вариантах осуществления наблюдение или выявление антисмысловой активности предусматривает наблюдение или выявление изменения количества нуклеиновой кислоты-мишени или белка, кодируемого такой нуклеиновой кислотой-мишенью, изменения соотношения сплайс-вариантов нуклеиновой кислоты или белка и/или фенотипического изменения в клетке или у животного.

Нуклеиновые кислоты-мишени, области-мишени и нуклеотидные последовательности.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотид, содержащий область, комплементарную нуклеиновой кислоте-мишени, или состоят из него. В определенных вариантах осуществления нуклеиновая кислота-мишень представляет собой молекулу эндогенной РНК. В определенных вариантах осуществления нуклеиновая кислота-мишень кодирует белок. В определенных подобных вариантах осуществления нуклеиновая кислота-мишень выбрана из mRNA и пре-mRNA, содержащей интронные, экзонные и нетранслируемые области. В определенных вариантах осуществления РНК-мишень представляет собой mRNA. В определенных вариантах осуществления иуклеиновая кислота-мишень представляет собой пре-mRNA. В определенных подобных вариантах осуществления область-мишень полностью находится в пределах интрона. В определенных вариантах осуществления область-мишень охватывает экзон-интронное сочленение. В определенных вариантах осуществления по меньшей мере 50% области-мишени находится в пределах интрона.

Нуклеотидные последовательности, которые кодируют PNPLA3, включают без ограничения следующие: приведенную в RefSeq или GENBANK под номерами доступа NM_025225.2 (включена посредством ссылки, раскрыта в данном документе под SEQ ID NO: 1); приведенную в GENBANK под номером доступа NC_000022.11 с усечением нуклеотидов от 43921001 до 43954500 (включена посредством ссылки, раскрыта в данном документе под SEQ ID NO: 2); AK123806.1 (включена посредством ссылки, раскрыта в данном документе под SEQ ID NO: 3); BQ686328.1 (включена посредством ссылки, раскрыта в данном документе под SEQ ID NO: 4); BF762711.1 (включена посредством ссылки, раскрыта в данном документе под SEQ ID NO: 5); DA290491.1 (включена посредством ссылки, раскрыта в данном документе под SEQ ID NO: 6) и последовательности, перечисленные под SEQ ID NO: 7, 8, 9 и 10.

Гибридизация.

В некоторых вариантах осуществления между соединением, раскрытым в данном документе, и нуклеиновой кислотой PNPLA3 происходит гибридизация. Наиболее распространенный механизм гибридизации предполагает образование водородных связей (например, образование водородных связей по типу уотсон-криковского, хугстиновского или обратного хугстиновского взаимодействия) между комплементарными нуклеиновыми основаниями молекул нуклеиновой кислоты.

Гибридизация может происходить в различных условиях. Условия гибридизации зависят от последовательности и определяются природой и составом молекул нуклеиновой кислоты, подлежащих гибридизации.

Способы определения того, может ли последовательность специфически гибридизироваться с нуклеиновой кислотой-мишенью, хорошо известны из уровня техники. В определенных вариантах осуществления соединения, предусмотренные в данном документе, могут специфически гибридизироваться с нуклеиновой кислотой PNPLA3.

Комплементарностъ.

Говорят, что олигонуклеотид является комплементарным другой нуклеиновой кислоте, если последовательность нуклеиновых оснований такого олигонуклеотида или одной или нескольких его областей соответствует последовательности нуклеиновых оснований другого олигонуклеотида или нуклеиновой кислоты или одной или нескольких их областей при выравнивании двух последовательностей нуклеиновых оснований в противоположных направлениях. Описанные в данном документе совпадения нуклеиновых оснований или комплементарные нуклеиновые основания ограничены следующими парами: аденин (А) и тимин (Т), аденин (А) и урацил (U), цитозин (С) и гуанин (G) и 5-метилцитозин (т) и гуанин (G), если не указано иное. Комплементарные олигонуклеотиды и/или нуклеиновые кислоты не должны характеризоваться комплементарностью нуклеиновых оснований по каждому нуклеозиду и могут содержать одно или несколько несовпадений нуклеиновых оснований. Олигонуклеотид является полностью комплементарным или на 100% комплементарным, если такие олигонуклеотиды характеризуются совпадениями нуклеиновых оснований по каждому нуклеозиду без каких-либо несовпадений нуклеиновых оснований.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат модифицированные олигонуклеотиды или состоят из них. В определенных вариантах осуществления соединения, описанные в данном документе, представляют собой антисмысловые соединения. В определенных вариантах осуществления соединения содержат олигомерные соединения. Некомплементарные нуклеиновые основания между соединением и нуклеиновой кислотой PNPLA3 могут допускаться при

условии, что соединение сохраняет способность специфически гибридизироваться с нуклеиновой кислотой-мишенью. Более того, соединение может гибридизироваться с одним или несколькими сегментами нуклеиновой кислоты PNPLA3 таким образом, что промежуточные или примыкающие сегменты не участвуют в событии гибридизации (например, с образованием петлевой структуры, несовпадения или шпилечной структуры).

В определенных вариантах осуществления соединения, предусмотренные в данном документе, или их определенный фрагмент являются комплементарными нуклеиновой кислоте PNPLA3, ее областимишени, сегменту-мишени или определенному фрагменту на величину, составляющую по меньшей мере или составляющую до 70, 80, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 или 100%. В определенных вариантах осуществления соединения, предусмотренные в данном документе, или их определенный фрагмент являются комплементарными нуклеиновой кислоте PNPLA3, ее области-мишени, сегменту-мишени или определенному фрагменту на 70-75%, 75-80%, 80-85%, 85-90%, 90-95%, 95-100% или любую величину в пределах этих диапазонов. Процент комплементарности соединения по отношению к нуклеиновой кислоте-мишени можно определить с помощью стандартных способов.

Например, соединение, в котором 18 из 20 нуклеиновых оснований соединения являются комплементарными области-мишени и, следовательно, будут специфически гибридизироваться, будет комплементарным на 90%. В этом примере остальные некомплементарные нуклеиновые основания могут образовывать кластеры или чередоваться с комплементарными нуклеиновыми основаниями и не должны быть смежными друг с другом или с комплементарными нуклеиновыми основаниями. Соответственно, соединение, длина которого составляет 18 нуклеиновых оснований, имеющее четыре некомплементарных нуклеиновых основания, которые фланкированы двумя областями, полностью комплементарными нуклеиновой кислоте-мишени, будет характеризоваться общей комплементарностью с нуклеиновой кислотой-мишенью, составляющей 77,8%. Процент комплементарности соединения с областью нуклеиновой кислоты-мишени можно определить обычным образом с помощью программ BLAST (средства поиска основного локального выравнивания) и программ PowerBLAST, известных из уровня техники (Altschul et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656). Процент гомологии, идентичности или комплементарности последовательностей можно определить, например, с помощью программы Gap (Wisconsin Sequence Analysis Package, версия 8 для Unix, Genetics Computer Group, University Research Park, Мэдисон, Висконсин), используя настройки по умолчанию, в которой используется алгоритм Смита-Уотермана (Adv. Appl. Math., 1981, 2, 482-489).

В определенных вариантах осуществления соединения, описанные в данном документе, или их определенные фрагменты являются полностью комплементарными (т.е. на 100% комплементарными) нуклеиновой кислоте-мишени или ее определенному фрагменту. Например, соединение может быть полностью комплементарным нуклеиновой кислоте PNPLA3, или ее области-мишени, или сегменту-мишени, или последовательности-мишени. Как используется в данном документе, "полностью комплементарное" означает, что каждое нуклеиновое основание соединения является комплементарным соответствующему нуклеиновому основанию нуклеиновой кислоты-мишени. Например, 20 нуклеиновых оснований является полностью комплементарным нуклеиновой кислоте-мишени длиной 400 нуклеиновых оснований при условии, что в нуклеиновой кислоте-мишени имеется соответствующий фрагмент из 20 нуклеиновых оснований, который является полностью комплементарным соединению. "Полностью комплементарный" также можно использовать применительно к определенному фрагменту первой и/или второй нуклеиновой кислоты. Например, фрагмент из 20 нуклеиновых оснований в соединении из 30 нуклеиновых оснований может быть "полностью комплементарным" нуклеиновой кислотемишени длиной 400 нуклеиновых оснований. Фрагмент из 20 нуклеиновых оснований в соединении из 30 нуклеиновых оснований является полностью комплементарным последовательности-мишени, если в последовательности-мишени имеется соответствующий фрагмент из 20 нуклеиновых оснований, в котором каждое нуклеиновое основание является комплементарным нуклеиновому основанию во фрагменте из 20 нуклеиновых оснований в соединении. В то же самое время все соединение из 30 нуклеиновых оснований может быть или может не быть полностью комплементарным последовательности-мишени в зависимости от того, являются ли остальные 10 нуклеиновых оснований в соединении также комплементарными последовательности-мишени.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат одно или несколько несовпадающих нуклеиновых оснований относительно нуклеиновой кислотымишени. В определенных подобных вариантах осуществления антисмысловая активность в отношении мишени снижается за счет такого несовпадения, но активность в отношении молекулы, не являющейся мишенью, снижается на еще большую величину. Таким образом, в определенных подобных вариантах осуществления улучшается избирательность соединения. В определенных вариантах осуществления несовпадение имеет конкретное местоположение в пределах олигонуклеотида, имеющего гэпмерный мотив. В определенных подобных вариантах осуществления несовпадение находится в положении 1, 2, 3, 4, 5, 6, 7 или 8 от 5'-конца области гэпа. В определенных подобных вариантах осуществления несовпадение находится в положении 9, 8, 7, 6, 5, 4, 3, 2, 1 от 3'-конца области гэпа. В определенных подобных вариантах осуществления несовпадение находится в положении 1, 2, 3 или 4 от 5'-конца фланговой области. В

определенных подобных вариантах осуществления несовпадение находится в положении 4, 3, 2 или 1 от 3'-конца фланговой области. В определенных вариантах осуществления несовпадение имеет конкретное местоположение в пределах олигонуклеотида, не имеющего гэпмерный мотив. В определенных подобных вариантах осуществления несовпадение находится в положении 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, или 12 от 5'-конца олигонуклеотида. В определенных подобных вариантах осуществления несовпадение находится в положении 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, или 12 от 3'-конца олигонуклеотида.

Местоположение некомплементарного нуклеинового основания может находиться на 5'-конце или на 3'-конце соединения. В качестве альтернативы, некомплементарные нуклеиновое основание или нуклеиновые основания могут находиться во внутреннем положении-соединения. При наличии двух или более некомплементарных нуклеиновых оснований они могут быть смежными (т.е. связанными) или несмежными. В одном варианте осуществления некомплементарное нуклеиновое основание расположено во фланговом сегменте гэпмерного олигонуклеотида.

В определенных вариантах осуществления соединения, описанные в данном документе, длина которых составляет или составляет до 11, 12, 13, 14, 15 или 16 нуклеиновых оснований, содержат не более 4, не более 3, не более 2 или не более 1 некомплементарного(ых) нуклеинового(ых) основания(й) относительно нуклеиновой кислоты-мишени, такой как нуклеиновая кислота PNPLA3, или ее определенного фрагмента.

В определенных вариантах осуществления соединения, описанные в данном документе, длина которых составляет или составляет до 11, 12, 13, 14, 15 или 16 нуклеиновых оснований, содержат не более 6, не более 5, не более 4, не более 3, не более 2 или не более 1 некомплементарного(ых) нуклеинового(ых) основания(й) относительно нуклеиновой кислоты-мишени, такой как нуклеиновая кислота PNPLA3, или ее определенного фрагмента.

В определенных вариантах осуществления соединения, описанные в данном документе, также включают в себя те соединения, которые являются комплементарными фрагменту нуклеиновой кислотымишени. Как используется в данном документе, "фрагмент" относится к определенному количеству смежных (т.е. связанных) нуклеиновых оснований в пределах области или сегмента нуклеиновой кислоты-мишени. "Фрагмент" также может относиться к определенному количеству смежных нуклеиновых оснований в соединении. В определенных вариантах осуществления соединения являются комплементарными фрагменту по меньшей мере из 8 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту по меньшей мере из 9 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту по меньшей мере из 10 нуклеиновых оснований в сегментемишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту по меньшей мере из 11 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту по меньшей мере из 12 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту по меньшей мере из 13 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту по меньшей мере из 14 нуклеиновых оснований в сегменте-мишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту по меньшей мере из 15 нуклеиновых оснований в сегментемишени. В определенных вариантах осуществления соединения являются комплементарными фрагменту по меньшей мере из 16 нуклеиновых оснований в сегменте-мишени. Также предусматриваются соединения, которые являются комплементарными фрагменту по меньшей мере из 9, 10, 17, 18, 19, 20 или большего числа нуклеиновых оснований в сегменте-мишени или фрагменту в диапазоне, ограниченном любыми двумя из этих значений.

Идентичность.

Соединения, предусмотренные в данном документе, также могут характеризоваться определенным процентом идентичности с конкретной нуклеотидной последовательностью, SEQ ID NO или соединением, представленным под конкретным номером ION, или их фрагментом. В определенных вариантах осуществления соединения, описанные в данном документе, представляют собой антисмысловые соединения или олигомерные соединения. В определенных вариантах осуществления соединения, описанные в данном документе, представляют собой модифицированные олигонуклеотиды. Как используется в данном документе, соединение является идентичным последовательности, раскрытой в данном документе, если оно обладает такой же способностью образовывать пары нуклеиновых оснований. Например, РНК, которая содержит урацил вместо тимидина в раскрытой последовательности ДНК, будет считаться идентичной последовательности ДНК, поскольку как урацил, так и тимидин образуют пару с аденином. Также предусматриваются укороченные и удлиненные варианты соединений, описанных в данном документе, а также соединения, имеющие неидентичные основания относительно соединений, предусмотренных в данном документе. Неидентичные основания могут примыкать друг к другу или быть распределены по всему соединению. Процент идентичности соединения рассчитывают по количеству оснований, которые обладают идентичными свойствами образования пар оснований по сравнению с последовательностью, с которой его сравнивают.

В определенных вариантах осуществления соединения, описанные в данном документе, или их фрагменты являются идентичными одному или нескольким соединениям или SEQ ID NO или их фрагменту, раскрытым в данном документе, на величину, составляющую или составляющую по меньшей мере 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 или 100%. В определенных вариантах осуществления соединения, описанные в данном документе, являются идентичными приблизительно на 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 или 99% или любую процентную величину между такими значениями по отношению к конкретной нуклеотидной последовательности, SEQ ID NO или соединению, представленному под конкретным номером ION, или их фрагменту, при этом соединения содержат олигонуклеотид, имеющий одно или несколько несовпадающих нуклеиновых оснований. В определенных подобных вариантах осуществления несовпадение находится в положении 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 или 12 от 5'-конца олигонуклеотида. В определенных подобных вариантах осуществления несовпадение находится в положении, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 или 12 от 3'-конца олигонуклеотида.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат антисмысловые соединения или состоят из них. В определенных вариантах осуществления фрагмент антисмыслового соединения сравнивают с фрагментом равной длины в нуклеиновой кислоте-мишени. В определенных вариантах осуществления фрагмент из 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 или 25 нуклеиновых оснований сравнивают с фрагментом равной длины в нуклеиновой кислотемишени.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотиды или состоят из них. В определенных вариантах осуществления фрагмент олигонуклеотида сравнивают с фрагментом равной длины в нуклеиновой кислоте-мишени. В определенных вариантах осуществления фрагмент из 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 или 25 нуклеиновых оснований сравнивают с фрагментом равной длины в нуклеиновой кислоте-мишени.

Некоторые модифицированные соединения.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотиды, состоящие из связанных нуклеозидов, или состоят из них. Олигонуклеотиды могут представлять собой немодифицированные олигонуклеотиды (РНК или ДНК) или могут представлять собой модифицированные олигонуклеотиды. Модифицированные олигонуклеотиды содержат по меньшей мере одну модификацию по сравнению с немодифицированной РНК или ДНК (т.е. содержат по меньшей мере один модифицированный нуклеозид (содержащий модифицированный сахарный компонент и/или модифицированное нуклеиновое основание) и/или по меньшей мере одну модифицированную межнуклеозидную связь).

А. Модифицированные нуклеозиды.

Модифицированные нуклеозиды содержат модифицированный сахарный компонент или модифицированное нуклеиновое основание или как модифицированный сахарный компонент, так и модифицированное нуклеиновое основание.

1. Модифицированные сахарные компоненты.

В определенных вариантах осуществления сахарные компоненты представляют собой небициклические модифицированные сахарные компоненты. В определенных вариантах осуществления модифицированные сахарные компоненты представляют собой бициклические или трициклические сахарные компоненты. В определенных вариантах осуществления модифицированные сахарные компоненты представляют собой имитаторы сахаров. Такие имитаторы сахаров могут содержать одно или несколько замещений, соответствующих замещениям в других типах модифицированных сахарных компонентов.

В определенных вариантах осуществления модифицированные сахарные компоненты представляют собой небициклические модифицированные фуранозильные сахарные компоненты, содержащие один или несколько ациклических заместителей, в том числе без ограничения заместителей в 2'-, 4'- и/или 5'положениях. В определенных вариантах осуществления фуранозильный сахарный компонент представляет собой рибозильный сахарный компонент. В определенных вариантах осуществления один или несколько ациклических заместителей в небициклических модифицированных сахарных компонентах являются разветвленными. Примеры 2'-замещающих групп, подходящих для небициклических модифицированных сахарных компонентов, включают без ограничения: 2'-F, 2'-ОСН3 ("ОМе" или "О-метил") и 2'-О(СН2)2ОСН3-("МОЕ"). В определенных вариантах осуществления 2'-замещающие группы выбраны из галогена, аллила, амино, азидо, SH, CN, OCN, CF $_3$, OCF $_3$, O-C $_1$ -С $_{10}$ -алкокси, замещенного $O-C_1-C_{10}$ -алкокси, $O-C_1-C_{10}$ -алкила, замещенного $O-C_1-C_{10}$ -алкил, S-алкила, $N(R_m)$ -алкила, O-алкенила, S-алкенила, $N(R_m)$ -алкенила, O-алкинила, S-алкинила, $N(R_m)$ -алкинила, O-алкиленил-O-алкила, алкинила, алкарила, о-алкарила, О-аралкила, $O(CH_2)_2SCH_3$, $O(CH_2)_2ON(R_m)(R^n)$ или $OCH_2C(=O)-N(R_m)(R_n)$, где каждый R_m и R_n независимо представляет собой H, защитную группу для аминогруппы или замещенный или незамещенный C_1 - C_{10} -алкил, и 2'-замещающих групп, описанных в Cook et al., U.S. 6531584; Cook et al., U.S. 5859221; и Cook et al., U.S. 6005087. В определенных вариантах осуществления такие 2'-замещающие группы могут быть дополнительно замещены одной или несколькими замещающими группами, независимо выбранными из гидроксила, амино, алкокси, карбокси, бензила, фенил, нитро (NO₂), тиола, тиоалкокси, тиоалкила, галогена, алкила, арила, алкенила и алкинила.

Примеры 4'-замещающих групп, подходящих для линейных небициклических модифицированных сахарных компонентов, включают без ограничения алкокси (например, метокси), алкил и группы, описанные в Manoharan et al., WO 2015/106128. Примеры 5'-замещающих групп, подходящих для небициклических модифицированных сахарных компонентов, включают без ограничения 5'-метил (R или S), 5'-винил и 5'-метокси. В определенных вариантах осуществления небициклические модифицированные сахара содержат более одного немостикового заместителя в сахаре, например, в случае с 2'-F-5'-метилмодифицированными сахарными компонентами, а также модифицированными сахарными компонентами и модифицированными нуклеозидами, описанными в Migawa et al., WO 2008/101157 и Rajeev et al., US 2013/0203836.

В определенных вариантах осуществления 2'-замещенный нуклеозид или небициклический 2'-модифицированный нуклеозид содержит сахарный компонент, содержащий линейную 2'-замещающую группу, выбранную из F, NH_2 , N_3 , OCF_3 , OCH_3 , $O(CH_2)_3NH_2$, $CH_2CH=CH_2$, $OCH_2CH=CH_2$, $OCH_2CH_2OCH_3$, $O(CH_2)_2SCH_3$, $O(CH_2)_2ON(R_m)(R_n)$, $O(CH_2)_2O(CH_2)_2N(CH_3)_2$ и N-замещенного ацетамида $OCH_2C(=O)-N(R_m)(R_n)$), где каждый R_m и R_n независимо представляет собой R_n насамещенный R_n и R_n незамещенный R_n и R_n

В определенных вариантах осуществления 2'-замещенный нуклеозид или небициклический 2'-модифицированный нуклеозид содержит сахарный компонент, содержащий линейную 2'-замещающую группу, выбранную из F, OCF_3 , OCH_3 , $OCH_2CH_2OCH_3$, $O(CH_2)_2SCH_3$, $O(CH_2)_2ON(CH_3)_2$, $O(CH_2)_2O(CH_2)_2O(CH_3)_2$ и $OCH_2C(=O)$ - OCH_3 ("NMA").

В определенных вариантах осуществления 2'-замещенный нуклеозид или небициклический 2'-модифицированный нуклеозид содержит сахарный компонент, содержащий линейную 2'-замещающую группу, выбранную из F, OCH_3 и $OCH_2CH_2OCH_3$.

Нуклеозиды, содержащие модифицированные сахарные компоненты, такие как небициклические модифицированные сахарные компоненты, обозначают по положению (положениям) замещения(замещений) в сахарном компоненте нуклеозида. Например, нуклеозиды, содержащие 2'-замещенные или 2'-модифицированные сахарные компоненты, называют 2'-замещенными нуклеозидами или 2'-модифицированными нуклеозидами.

Определенные модифицированные сахарные компоненты содержат мостиковый заместитель в сахаре, который образует второе кольцо, в результате чего образуется бициклический сахарный компонент. В определенных подобных вариантах осуществления бициклический сахарный компонент содержит мостик между 4'- и 2'-атомами фуранозного кольца. В некоторых таких вариантах осуществления фуранозное кольцо представляет собой рибозное кольцо. Примеры таких 4'-2'-мостиковых заместителей в сахаре включают без ограничения 4'-CH₂-2', 4'-(CH₂)₂-2', 4'-(CH₂)₃-2', 4'-CH₂-O-2' ("LNA"), 4'-CH₂-S-2', 4'-(CH₂)₂-O-2' ("ENA"), 4'-CH(CH₃)-O-2' (называемый "конформационно ограничивающим этилом" или "cEt" в S-конфигурации), 4'-CH₂-O-CH₂-2', 4'-CH₂-N(R)-2', 4'-CH(CH₂OCH₃)-O-2' ("конформационно ограничивающий MOE" или "cMOE") и его аналоги (см., например, Seth et al., U.S. 7399845, Bhat et al., U.S. 7569686, Swayze et al., U.S. 7741457, и Swayze et al., U.S. 8022193), 4'-C(CH₃)(CH₃)-O-2' и его аналоги (см., например, Seth et al., U.S. 8278283), 4'-CH₂-N(OCH₃)-2' и его аналоги (см., например, Prakash et al., U.S. 8278425), 4'-CH₂-O-N(CH₃)-2' (см., например, Allerson et al., U.S. 7696345 и Allerson et al., U.S. 8124745), 4'-CH₂-C(H)(CH₃)-2' (см., например, Zhou, et al., J. Org. Chem., 2009, 74, 118-134), 4'-CH₂-C(=CH₂)-2' и его аналоги (см., например, Seth et al., U.S. 8278426), 4'-C(R_aR_b)-N(R)-O-2', 4'- $C(R_aR_b)$ -O-N(R)-2', 4'- CH_2 -O-N(R)-2' и 4'- CH_2 -N(R)-O-2', где каждый R, R_a и R_b независимо представляет собой H, защитную группу или C1-C₁₂-алкил (см., например, Imanishi et al., U.S. 7427672).

В определенных вариантах осуществления такие 4'-2'-мостики независимо содержат от 1 до 4 связанных групп, независимо выбранных из $-[C(R_a)(R_b)]_n$ -, $-[C(R_a)(R_b)]_n$ -O-, $-C(R_a)=C(R_b)$ -, $-C(R_a)=N$ -, $-C(R_a)$ -,

х равняется 0, 1 или 2;

п равняется 1, 2, 3 или 4;

каждый R_a и R_b независимо представляет собой H, защитную группу, гидроксил, C_1 - C_{12} -алкил, замещенный C_1 - C_{12} -алкил, C_2 - C_{12} -алкил, C_2 - C_{12} -алкинил, замещенный C_2 - C_{12} -алкинил, C_3 - C_{20} -арил, замещенный C_5 - C_{20} -арил, гетероциклический радикал, замещенный гетероциклический радикал, гетероарил, замещенный гетероарил, алициклический C_5 - C_7 -радикал, замещенный алициклический C_5 - C_7 -радикал, галоген, OJ_1 , NJ_1J_2 , SJ_1 , N_3 , $COOJ_1$, ацил (C(=O)-H), замещенный ацил, CN, сульфонил ($S(=O)_2$ - J_1) или сульфоксил (S(=O)- J_1); и каждый J_1 и J_2 независимо представляет собой H, C_1 - C_{12} -алкил, замещенный C_1 - C_{12} -алкил, C_2 - C_{12} -алкенил, замещенный C_2 - C_{12} -алкинил, C_3 - C_{20} -арил, замещенный C_5 - C_{20} -арил, ацил (C(=O)-H), замещенный ацил, гетероциклический радикал, замещенный гетероциклический радикал, замещенный C_1 - C_{12} -аминоалкил, замещенный C_1 - C_1 2-аминоалкил или защитную группу.

Дополнительные бициклические сахарные компоненты известны из уровня техники, см., например: Freier *et al.*, *Nucleic Acids Research*, 1997, *25*(22), 4429-4443, Albaek *et al.*, *J*.

Org. Chem., 2006, 71, 7731-7740, Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Wahlestedt et al., Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 5633-5638; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; Srivastava et al., J. Am. Chem. Soc., 2007, 129, 8362-8379; Elayadi et al., Curr. Opinion Invens. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol., 2001, 8, 1-7; Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243; Wengel et al., U.S. 7053207, Imanishi et al., U.S. 6268490, Imanishi et al. U.S. 6770748, Imanishi et al., U.S. RE44779; Wengel et al., U.S. 6794499, Wengel et al., U.S. 6670461; Wengel et al., U.S. 7034133, Wengel et al., U.S. 8080644; Wengel et al., U.S. 8034909; Wengel et al., U.S. 8153365; Wengel et al., U.S. 7572582; μ Ramasamy et al., U.S. 6525191, Torsten et al., WO 2004/106356, Wengel et al., WO 1999/014226; Seth et al., WO 2007/134181; Seth et al., U.S. 7547684; Seth et al., U.S. 7666854; Seth et al., U.S. 8088746; Seth et al., U.S. 7750131; Seth et al., U.S. 8030467; Seth et al., U.S. 8268980; Seth et al., U.S. 8546556; Seth et al., U.S. 8530640; Migawa et al., U.S. 9012421; Seth et al., U.S. 8501805; Allerson et al., U.S2008/0039618; μ Migawa et al., US2015/0191727.

В определенных вариантах осуществления бициклические сахарные компоненты и нуклеозиды, в состав которых включены такие бициклические сахарные компоненты, дополнительно определяются изомерной конфигурацией. Например, нуклеозид LNA (описанный в данном документе) может находиться в конфигурации α -L или в конфигурации β -D.

LNA (β -D-конфигурация) мостик = 4'-CH₂-O-2'

 α -*L*-LNA (α -*L* -конфигурация) мостик = 4'-CH₂-O-2'

 α -L-метиленокси-модифицированные (4'-CH₂-O-2') или имеющие конфигурацию α -L-LNA бициклические нуклеозиды были включены в состав олигонуклеотидов, которые демонстрировали антисмысловую активность (Frieden et al., Nucleic Acids Research, 2003, 27, 6365-6372). В данном документе общее описание бициклических нуклеозидов включает обе изомерные конфигурации. Если положения конкретных бициклических нуклеозидов (например, LNA или cEt) идентифицированы в проиллюстрированных в данном документе на примерах вариантах осуществления, то они находятся в конфигурации β -D, если не указано иное.

В определенных вариантах осуществления модифицированные сахарные компоненты содержат один или несколько немостиковых заместителей в сахаре и один или несколько мостиковых заместителей в сахаре (например, в случае с 5'-замещенными и содержащими 4'-2'-мостик сахарами).

В определенных вариантах осуществления модифицированные сахарные компоненты представляют собой имитаторы сахаров. В определенных подобных вариантах осуществления атом кислорода в сахарном компоненте заменен, например, атомом серы, углерода или азота. В определенных подобных вариантах осуществления такие модифицированные сахарные компоненты также содержат мостиковые и/или немостиковые заместители, описанные в данном документе. Например, определенные имитаторы сахаров содержат 4'-атом серы и замещение в 2'-положении (см., например, Bhat et al., U.S. 7875733, и Bhat et al., U.S. 7939677) и/или в 5'-положении.

В определенных вариантах осуществления имитаторы сахаров содержат кольца с числом атомов, отличным от 5. Например, в определенных вариантах осуществления имитатор сахара содержит шестичленный тетрагидропиран ("THP"). Такие тетрагидропираны могут быть дополнительно модифицированными или замещенными. Нуклеозиды, содержащие такие модифицированные тетрагидропираны, включают без ограничения гексит-нуклеиновую кислоту ("HNA"), аннит-нуклеиновую кислоту ("ANA"), маннит-нуклеиновую кислоту ("MNA") (см., например, Leumann, C/J. Bioorg. & Med. Chem. 2002, 10, 841-854), фтор-HNA:

F-HNA

("F-HNA", см., например, Swayze et al., U.S. 8088904; Swayze et al., U.S. 8440803; и Swayze et al.,

U.S. 9005906, F-HNA также может обозначаться как F-THP или 3'-фтортетрагидропиран) и нуклеозиды, содержащие дополнительные модифицированные соединения THP следующей формулы:

где независимо для каждого указанного модифицированного ТНР-нуклеозида:

Вх представляет собой компонент, являющийся нуклеиновым основанием;

каждый из T_3 и T_4 независимо представляет собой межнуклеозидную связывающую группу, связывающую модифицированный ТНР-нуклеозид с остальной частью олигонуклеотида, или один из T_3 и T_4 представляет собой межнуклеозидную связывающую группу, связывающую модифицированный ТНР-нуклеозид с остальной частью олигонуклеотида, а другой из T_3 и T_4 представляет собой H, защитную группу для гидроксильной группы, связанную конъюгированную группу или 51- или 41-концевую группу;

каждый из q_1 , q_2 , q_3 , q_4 , q_5 , q_6 и q_7 независимо представляет собой H, C_1 - C_6 -алкил, замещенный C_1 - C_6 -алкил, C_2 - C_6 -алкинил, замещенный C_2 - C_6 -алкинил, C_2 - C_6 -алкинил или замещенный C_2 - C_6 -алкинил;

каждый из R_1 и R_2 независимо выбран из водорода, галогена, замещенного или незамещенного алкокси, NJ_1J_2 , SJ_1 , N_3 , $OC(=X)J_1$, $OC(=X)NJ_1J_2$, $NJ_3C(=X)NJ_1J_2$ и CN, где X представляет собой O, S или NJ_1 , а каждый из J_1 , J_2 , и J_3 независимо представляет собой H или C_1 - C_6 -алкил.

В определенных вариантах осуществления предусматрены модифицированные ТНР-нуклеозиды, где каждый из q_1 , q_2 , q_3 , q_4 , q_5 , q_6 и q_7 представляет собой H. В определенных вариантах осуществления по меньшей мере один из q_1 , q_2 , q_3 , q_4 , q_5 , q_6 и q_7 является отличным от H. В определенных вариантах осуществления по меньшей мере один из q_1 , q_2 , q_3 , q_4 , q_5 , q_6 и q_7 представляет собой метил. В определенных вариантах осуществления предусмотрены модифицированные ТНР-нуклеозиды, где один из R_1 и R_2 представляет собой F. В определенных вариантах осуществления R_1 представляет собой метокси, а R_2 представляет собой H, и в определенных вариантах осуществления R_1 представляет собой метокси, а R_2 представляет собой H, и в определенных вариантах осуществления R_1 представляет собой метоксиэтокси, а R_3 представляет собой H.

В определенных вариантах осуществления имитаторы сахаров содержат кольца, содержащие более 5 атомов и более одного гетероатома. Например, сообщалось о нуклеозидах, содержащих морфолиновые сахарные компоненты, и об их применении в олигонуклеотидах (см., например, Braasch et al., Biochemistry, 2002, 41, 4503-4510 и Summerton et al., U.S. 5698685; Summerton et al., U.S. 5166315; Summerton et al., U.S. 5185444; and Summerton et al., U.S. 5034506). Используемый в данном документе термин "морфолиновый компонент" означает имитатор сахара со следующей структурой:

В определенных вариантах осуществления морфолиновые компоненты могут быть модифицированы, например, путем добавления или изменения различных замещающих групп в приведенной выше структуре морфолинового компонента. Такие имитаторы сахаров в данном документе называются "модифицированными морфолиновыми компонентами".

В определенных вариантах осуществления имитаторы сахаров содержат ациклические компоненты. Примеры нуклеозидов и олигонуклеотидов, содержащих такие ациклические имитаторы сахаров, включают без ограничения пептидную нуклеиновую кислоту ("PNA"), ациклическую бутил-нуклеиновую кислоту (см., например, Kumar et al., Org. Biomol. Chem., 2013, 77, 5853-5865), а также нуклеозиды и олигонуклеотиды, описанные в Manoharan et al., US 2013/130378.

Из уровня техники известны многие другие бициклические и трициклические кольцевые системы сахаров и имитаторов сахаров, которые могут применяться в модифицированных нуклеозидах.

2. Модифицированные нуклеиновые основания.

Нуклеиновые основания (или основания) с модификациями или замещениями структурно отличаются от встречающихся в природе или синтетических немодифицированных нуклеиновых оснований, но являются функционально взаимозаменяемыми с ними. В образовании водородных связей могут принимать участие как природные, так и модифицированные нуклеиновые основания. Такие модификации нуклеиновых оснований могут придавать антисмысловым соединениям стабильность к действию нуклеаз, сродство связывания или некоторое другое благоприятное биологическое свойство.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат модифицированные олигонуклеотиды. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или несколько нуклеозидов, содержащих немодифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или несколько нуклеозидов, содержащих модифицированное нуклеиновое основание. В

определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или несколько нуклеозидов, которые не содержат нуклеиновое основание, называемых нуклеозидами с удаленными азотистыми основаниями.

В определенных вариантах осуществления модифицированные нуклеиновые основания выбраны из 5-замещенных пиримидинов, 6-азапиримидинов, алкил- или алкинилзамещенных пиримидинов, алкилзамещенных пуринов и N-2-, N-6- и О-6-замещенных пуринов. В определенных вариантах осуществления модифицированные нуклеиновые основания выбраны из 2-аминопропиладенина, 5-гидротксиметилциозина, 5-метилцитозина, ксантина, гипоксантина, 2-аминоаденина, 6-N-метилгуанина, 6-N-метиладенина, 2-пропиладенина, 2-тиоурацила, 2-тиотимина и 2-тиоцитозина, 5-пропинил(С≡С-СН₃)-урацила, 5-пропинилцитозина, 6-азоурацила, 6-азоцитозина, 6-азотимина, 5-рибозилурацила (псевдоурацила), 4-тиоурацила, 8-галогена, 8-амино, 8-тиола, 8-тиоалкила, 8-гидроксила, 8-аза и других 8-замещенных пуринов, 5-галогена, в частности 5-брома, 5-трифторметила, 5-галогенурацила и 5-галогенцитозина, 7-метилгуанина, 7-метиладенина, 2-F-аденина, 2-аминоаденина, 7-дезазагуанина, 7-дезазааденина, 3-дезазагуанина, 3-дезазааденина, 6-N-бензоиладенина, 2-N-изобутирилгуанина, 4-N-бензоилцитозина, 4-N-бензоилурацила, 5-метил-4-N-бензоилцитозина, 5-метил-4-N-бензоилурацила, универсальных оснований, гидрофобных оснований, оснований, обладающих способностью к неспецифическому спариванию, оснований с увеличенным размером и фторированных оснований. Дополнительные модифицированные нуклеиновые основания включают трициклические пиримидины, такие как 1,3-диазафеноксазин-2-он, 1,3-диазафенотиазин-2-он и 9-(2-аминоэтокси)-1,3-диазафеноксазин-2-он (G-образный зажим). Модифицированные нуклеиновые основания также могут включать нуклеиновые основания, в которых пуриновое или пиримидиновое основание заменено другими гетероциклами, например, 7-дезазааденином, 7-дезазагуанозином, 2-аминопиридином и 2-пиридоном. Дополнительные нуклеиновые основания включают в себя нуклеиновые основания, раскрытые в Merigan et al., U.S. 3687808, нуклеиновые основания, раскрытые в The Concise Encyclopedia Of Polymer Science And Engineering, Kroschwitz, J.I., Ed., John Wiley & Sons, 1990, 858-859; Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613; Sanghvi, Y.S., Chapter 15, Antisense Research and Applications, Crooke, S.T. and Lebleu, B., Eds., CRC Press, 1993, 273-288; и нуклеиновые основания, раскрытые в главах 6 и 15 Antisense Drug Technology, Crooke S.T., Ed., CRC Press, 2008, на страницах 163-166 и 442-443.

Публикации, в которых изложено получение некоторых из вышеупомянутых модифицированных нуклеиновых оснований, а также других модифицированных нуклеиновых оснований, включают без ограничения

Manoharan et al., US2003/0158403,

Manoharan et al., US2003/0175906; Dinh et al., U.S. 4845205; Spielvogel et al., U.S. 5130302; Rogers et al., U.S. 5134066; Bischofberger et al., U.S. 5175273; Urdea et al., U.S. 5367066; Benner et al., U.S. 5432272; Matteucci et al., U.S. 5434257; Gmeiner et al., U.S. 5457187; Cook et al., U.S. 5459255; Froehler et al., U.S. 5484908; Matteucci et al., U.S. 5502177; Hawkins et al., U.S. 5525711; Haralambidis et al., U.S. 5552540; Cook et al., U.S. 5587469; Froehler et al., U.S. 5594121; Switzer et al., U.S. 5596091; Cook et al., U.S. 5614617; Froehler et al., U.S. 5645985; Cook et al., U.S. 5681941; Cook et al., U.S. 5811534; Cook et al., U.S. 5750692; Cook et al., U.S. 5948903; Cook et al., U.S. 5587470; Cook et al., U.S. 5457191; Matteucci et al., U.S. 5763588; Froehler et al., U.S. 5830653; Cook et al., U.S. 5808027; Cook et al., U.S. 6166199; μ Matteucci et al., U.S. 6005096.

В определенных вариантах осуществления соединения, нацеленные на нуклеиновую кислоту PNPLA3, содержат одно или несколько модифицированных нуклеиновых оснований. В определенных вариантах осуществления модифицированное нуклеиновое основание представляет собой 5'-метилцитозин. В определенных вариантах осуществления каждый цитозин представляет собой 5-метилцитозин.

Модифицированные межнуклеозидные связи.

Естественная межнуклеозидная связь в РНК и ДНК представляет собой 3'-5'-фосфодиэфирную связь. В определенных вариантах осуществления соединения, описанные в данном документе, имеющие одну или несколько модифицированных, т.е. не встречающихся в природе, межнуклеозидных связей, зачастую предпочтительнее соединений со встречающимися в природе межнуклеозидными связями ввиду наличия у их требуемых свойств, таких как, например, повышенное поглощение клетками, повышенное сродство с нуклеиновыми кислотами-мишенями и увеличенная стабильность в присутствии нуклеаз.

Иллюстративные межнуклеозидные связи, имеющие хиральный центр, включают без ограничения алкилфосфонатные и фосфотиоатные связи. Модифицированные олигонуклеотиды, содержащие межнуклеозидные связи, имеющие хиральный центр, можно получить в виде совокупностей модифицированных олигонуклеотидов, содержащих стереослучайные межнуклеозидные связи, или в виде совокуп-

ностей модифицированных олигонуклеотидов, содержащих фосфотиоатные связи в конкретных стереохимических конфигурациях. В определенных вариантах осуществления совокупности модифицированных олигонуклеотидов содержат фосфотиоатные межнуклеозидные связи, где все из фосфотиоатных межнуклеозидных связей являются стереослучайными. Такие модифицированные олигонуклеотиды можно получать с применением таких способов синтеза, которые приводят к случайному выбору стереохимической конфигурации каждой фосфотиоатной связи. Тем не менее, как хорошо понятно специалистам в данной области техники, каждый отдельный фосфотиоат каждой отдельной молекулы олигонуклеотида характеризуется определенной стереоконфигурацией. В определенных вариантах осуществления совокупности модифицированных олигонуклеотидов обогащены модифицированными олигонуклеотидами, содержащими одну или несколько конкретных фосфотиоатных межнуклеозидных связей в конкретной, независимо выбранной стереохимической конфигурации. В определенных вариантах осуществления конкретная конфигурация конкретной фосфотиоатной связи присутствует по меньшей мере в 65% молекул в совокупности. В определенных вариантах осуществления конкретная конфигурация конкретной фосфотиоатной связи присутствует по меньшей мере в 70% молекул в совокупности. В определенных вариантах осуществления конкретная конфигурация конкретной фосфотиоатной связи присутствует по меньшей мере в 80% молекул в совокупности. В определенных вариантах осуществления конкретная конфигурация конкретной фосфотиоатной связи присутствует по меньшей мере в 90% молекул в совокупности. В определенных вариантах осуществления конкретная конфигурация конкретной фосфотиоатной связи присутствует по меньшей мере в 99% молекул в совокупности. Такие хирально обогащенные совокупности модифицированных олигонуклеотидов можно получить с применением способов синтеза, известных из уровня техники, например способов, описанных в Oka et al., JACS 125, 8307 (2003), Wan et al., Nuc. Acid. Res. 42, 13456 (2014) и WO 2017/015555. В определенных вариантах осуществления совокупность модифицированных олигонуклеотидов обогащена модифицированными олигонуклеотидами, имеющими по меньшей мере один указанный фосфотиоат в (Sp)-конфигурации. В определенных вариантах осуществления совокупность модифицированных олигонуклеотидов обогащена модифицированными олигонуклеотидами, имеющими по меньшей мере один фосфотиоат в (Rp)-конфигурации. В определенных вариантах осуществления модифицированные олигонуклеотиды, содержащие (Rp)- и/или (Sp)-фосфотиоаты, предусматривают одну или более из следующих формул соответственно, где "В" указывает на нуклеиновое основание:

$$O = \stackrel{\circ}{P} = SH$$

Если не указано иное, хиральные межнуклеозидные связи модифицированных олигонуклеотидов, описанных в данном документе, могут быть стереослучайными или находиться в конкретной стереохимической конфигурации.

В определенных вариантах осуществления соединения, нацеленные на нуклеиновую кислоту PNPLA3, содержат одну или несколько модифицированных межнуклеозидных связей. В определенных вариантах осуществления модифицированные межнуклеозидные связи представляют собой фосфотиоатные связи. В определенных вариантах осуществления каждая межнуклеозидная связь антисмыслового соединения представляет собой фосфотиоатную межнуклеозидную связь.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотиды. Олигонуклеотиды с модифицированными межнуклеозидными связями содержат межнуклеозидные связи, в которых сохраняется атом фосфора, а также межнуклеозидные связи, которые не имеют атома фосфора. Иллюстративные фосфорсодержащие межнуклеозидные связи включают без ограничения фосфодиэфирные, фосфотриэфирные, метилфосфонатные, фосфорамидатные и фосфотиоатные связи. Хорошо известны способы получения фосфорсодержащих и не содержащих фосфор связей.

В определенных вариантах осуществления нуклеозиды модифицированных олигонуклеотидов могут быть связаны друг с другом с помощью любой межнуклеозидной связи. Два основных класса межнуклеозидных связывающих групп определяются наличием или отсутствием атома фосфора. Иллюстративные фосфорсодержащие межнуклеозидные связи включают в себя без ограничений фосфатные связи, которые охватывают фосфодиэфирную связь ("P=O") (также называемые немодифицированными или встречающимися в природе связями), фосфотриэфирные, метилфосфонатные, фосфорамидатные, а также фосфотиоатные ("P=S") и дифосфотиоатные ("HS-P=S") связи. Иллюстративные не содержащие фосфор межнуклеозидные связывающие группы включают без ограничения метиленметилиминогруппу (-CH₂-N(CH₃)-O-CH₂), тиодиэфирную, тионокарбаматную (-O-C(=O)(NH)-S-); силоксановую (-O-SiH₂-O-) и N,N'-диметилгидразиновую (-CH₂-N(CH₃)-N(CH₃)-) группы. Модифицированные межнуклеозидные

связи, в отличие от встречающихся в природе фосфатных связей, можно использовать для изменения, как правило, увеличения, устойчивости олигонуклеотида к действию нуклеаз. В определенных вариантах осуществления межнуклеозидные связи, имеющие хиральный атом, можно получать в виде рацемической смеси или в виде отдельных энантиомеров. Иллюстративные хиральные межнуклеозидные связи включают без ограничения алкилфосфонатные и фосфотиоатные связи. Специалистам в данной области хорошо известны способы получения фосфоросодержащих и не содержащих фосфор межнуклеозидных связей.

Нейтральные межнуклеозидные связи включают без ограничения фосфотриэфирные, метилфосфонатные связи, ММІ (3'-CH₂-N(CH₃)-O-5'), 3-амидную (3'-CH₂-C(=O)-N(H)-5'), 4-амидную (3'-CH₂-N(H)-C(=O)-5'), формацетальную (3'-O-CH₂-O-5'), метоксипропильную и тиоформацетальную связи (3'-S-CH₂-O-5'). Дополнительные нейтральные межнуклеозидные связи включают неионные связи, включающие силоксановую (диалкилсилоксановую), карбоксилатную сложноэфирную, карбоксамидную, сульфидную, сульфонатную сложноэфирную и амидные связи (см., например, Carbohydrate Modifications in Antisense Research; Y.S. Sanghvi and P.D. Cook, Eds., ACS Symposium Series 580; Chapters 3 and 4, 40-65). Дополнительные нейтральные межнуклеозидные связи включают неионные связи, содержащие комбинацию составляющих частей N, O, S и CH₂.

В определенных вариантах осуществления олигонуклеотиды содержат модифицированные межнуклеозидные связи, расположенные вдоль олигонуклеотида или его области в виде определенного характерного участка или мотива из модифицированных межнуклеозидных связей. В определенных вариантах осуществления межнуклеозидные связи расположены в виде мотива, содержащего гэп. В таких вариантах осуществления межнуклеозидные связи в каждой из двух фланговых областей отличаются от межнуклеозидных связей в области гэпа. В определенных вариантах осуществления межнуклеозидные связи во фланговых областях являются фосфодиэфирными, а межнуклеозидные связи в гэпе являются фосфотиоатными. Нуклеозидный мотив выбирают независимо, так что такие олигонуклеотиды, имеющие мотив из межнуклеозидных связей, содержащий гэп, могут иметь или не иметь нуклеозидный мотив, содержащий гэп, и если они действительно имеют нуклеозидный мотив, содержащий гэп, то длина фланговых областей и гэпа может быть или не быть одинаковой.

В определенных вариантах осуществления олигонуклеотиды содержат область, имеющую чередующийся мотив из межнуклеозидных связей. В определенных вариантах осуществления олигонуклеотиды содержат область с однородно модифицированными межнуклеозидными связями. В определенных подобных вариантах осуществления олигонуклеотид содержит область, имеющую однородные связи, представляющие собой фосфотиоатные межнуклеозидные связи. В определенных вариантах осуществления олигонуклеотид имеет однородные фосфотиоатные связи. В определенных вариантах осуществления каждая межнуклеозидная связь олигонуклеотида выбрана из фосфодиэфирной и фосфотиоатной. В определенных вариантах осуществления каждая межнуклеозидная связь олигонуклеотида выбрана из фосфодиэфирной и фосфотиоатной, и по меньшей мере одна межнуклеозидная связь является фосфотиоатной.

В определенных вариантах осуществления олигонуклеотид содержит по меньшей мере 6 фосфотиоатных межнуклеозидных связей. В определенных вариантах осуществления олигонуклеотид содержит по
меньшей мере 8 фосфотиоатных межнуклеозидных связей. В определенных вариантах осуществления
олигонуклеотид содержит по меньшей мере 10 фосфотиоатных межнуклеозидных связей. В определенных вариантах осуществления олигонуклеотид содержит по меньшей мере один блок, состоящий по
меньшей мере из 6 последовательно расположенных фосфотиоатных межнуклеозидных связей. В определенных вариантах осуществления олигонуклеотид содержит по меньшей мере один блок, состоящий
по меньшей мере из 8 последовательно расположенных фосфотиоатных межнуклеозидных связей. В определенных вариантах осуществления олигонуклеотид содержит по меньшей мере один блок, состоящий
по меньшей мере из 10 последовательно расположенных фосфотиоатных межнуклеозидных связей. В
определенных вариантах осуществления олигонуклеотид содержит по меньшей мере один блок, состоящий по меньшей мере из 12 последовательно расположенных фосфотиоатных межнуклеозидных связей.
В определенных подобных вариантах осуществления по меньшей мере один такой блок расположен на
3'-конце олигонуклеотида. В определенных подобных вариантах осуществления по меньшей мере один такой блок расположен в пределах 3 нуклеозидов на 3'-конце олигонуклеотида.

В определенных вариантах осуществления олигонуклеотиды содержат одну или несколько метилфосфонатных связей. В определенных вариантах осуществления олигонуклеотиды, имеющие гэпмерный нуклеозидный мотив, предусматривают мотив связей, содержащий связи, все из которых являются фосфотиоатными, за исключением одной или двух метилфосфонатных связей. В определенных вариантах осуществления одна метилфосфонатная связь находится в центральном гэпе олигонуклеотида, имеющего гэпмерный нуклеозидный мотив.

В определенных вариантах осуществления желательно упорядочить количество фосфотиоатных межнуклеозидных связей и фосфодиэфирных межнуклеозидных связей для сохранения устойчивости к действию нуклеаз. В определенных вариантах осуществления желательно упорядочить количество и положение фосфотиоатных межнуклеозидных связей и количество и положение фосфодиэфирных межнук-

леозидных связей для сохранения устойчивости к действию нуклеаз. В определенных вариантах осуществления количество фосфотиоатных межнуклеозидных связей можно уменьшить, а количество фосфодиэфирных межнуклеозидных связей можно увеличить, при этом по-прежнему сохраняя устойчивость к действию нуклеаз. В определенных вариантах осуществления желательно уменьшить количество фосфотиоатных межнуклеозидных связей, при этом по-прежнему поддерживая устойчивость к действию нуклеаз. В определенных вариантах осуществления желательно увеличить количество фосфодиэфирных межнуклеозидных связей, при этом по-прежнему поддерживая устойчивость к действию нуклеаз.

3. Некоторые мотивы.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотиды. Олигонуклеотиды могут иметь мотив, например, характерный участок из немодифицированных и/или модифицированных сахарных компонентов, нуклеиновых оснований и/или межнуклеозидных связей. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или несколько модифицированных нуклеозидов, содержащих модифицированный сахар. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или несколько модифицированных нуклеозидов, содержащих модифицированное нуклеиновое основание. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат одну или несколько модифицированных межнуклеозидных связей. В таких вариантах осуществления характерный участок или мотив определяют модифицированные, немодифицированные и модифицированные разными способами сахарные компоненты, нуклеиновые основания и/или межнуклеозидные связи модифицированного олигонуклеотида. В определенных вариантах осуществления каждый характерный участок из сахарных компонентов, нуклеиновых оснований и межнуклеозидных связей является независимым от других. Таким образом, модифицированный олигонуклеотид можно описать с помощью его мотива из сахаров, мотива из нуклеиновых оснований и/или мотива из межнуклеозидных связей (как используется в данном документе, мотив из нуклеиновых оснований описывает модификации нуклеиновых оснований независимо от последовательности нуклеиновых оснований).

А. Некоторые мотивы из сахаров.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотиды. В определенных вариантах осуществления олигонуклеотиды содержат один или несколько типов модифицированных сахарных и/или немодифицированных сахарных компонентов, расположенных вдоль олигонуклеотида или его области в виде определенного характерного участка или мотива из сахаров. В некоторых случаях такие мотивы из сахаров включают без ограничения любые обсуждаемые в данном документе модификации сахаров.

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат область, имеющую гэпмерный мотив, которая содержит две внешние области, или "фланги", и центральную или внутреннюю область, или "гэп", или состоят из нее. Три области гэпмерного мотива (5'-фланг, гэп и 3'-фланг) образуют непрерывную последовательность нуклеозидов, в которой по меньшей мере некоторые сахарные компоненты нуклеозидов каждого из флангов отличаются от по меньшей мере некоторых сахарных компонентов нуклеозидов гэпа. В частности, по меньшей мере сахарные компоненты нуклеозидов каждого фланга, которые располагаются ближе всего к гэпу (самого крайнего 3'-концевого нуклеозида 5'-фланга и самого крайнего 5'-концевого нуклеозида 3'-фланга), отличаются от сахарных компонентов соседних нуклеозидов гэпа, что таким образом определяет границу между флангами и гэпом (т.е. точку сочленения фланга и гэпа). В определенных вариантах осуществления все сахарные компоненты в гэпе являются одинаковыми. В определенных вариантах осуществления гэп содержит один или несколько нуклеозидов, имеющих сахарный компонент, который отличается от сахарного компонента одного или нескольких других нуклеозидов гэпа. В определенных вариантах осуществления все сахарные мотивы двух флангов являются одинаковыми (симметричный гэпмер). В определенных вариантах осуществления сахарный мотив 5'-фланга отличается от сахарного мотива 3'-фланга (асимметричный гэпмер).

В определенных вариантах осуществления фланги гэпмера содержат 1-5 нуклеозидов. В определенных вариантах осуществления фланги гэпмера содержат 2-5 нуклеозидов. В определенных вариантах осуществления фланги гэпмера содержат 3-5 нуклеозидов. В определенных вариантах осуществления все нуклеозиды гэпмера являются модифицированными нуклеозидами.

В определенных вариантах осуществления гэп гэпмера содержит 7-12 нуклеозидов. В определенных вариантах осуществления гэп гэпмера содержит 7-10 нуклеозидов. В определенных вариантах осуществления гэп гэпмера содержит 8-10 нуклеозидов. В определенных вариантах осуществления гэп гэпмера содержит 10 нуклеозидов. В определенных вариантах осуществления каждый нуклеозид гэпа гэпмера является немодифицированным 2'-дезоксинуклеозидом.

В определенных вариантах осуществления гэпмер является дезоксигэпмером. В таких вариантах осуществления нуклеозиды со стороны гэпа от каждой точки сочленения фланга и гэпа являются немодифицированными 2'-дезоксинуклеозидами, а нуклеозиды со стороны фланга от каждой точки сочленения фланга и гэпа являются модифицированными нуклеозидами. В определенных подобных вариантах

осуществления каждый нуклеозид гэпа является немодифицированным 2'-дезоксинуклеозидом. В определенных подобных вариантах осуществления каждый нуклеозид каждого фланга является модифицированным нуклеозидом.

В определенных вариантах осуществления модифицированный олигонуклеотид имеет полностью модифицированный мотив из сахаров, при этом каждый нуклеозид модифицированного олигонуклеотида содержит модифицированный сахарный компонент. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат область, имеющую полностью модифицированный мотив из сахаров, или состоят из нее, при этом каждый нуклеозид области содержит модифицированный сахарный компонент. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат область, имеющую полностью модифицированный мотив из сахаров, или состоят из нее, при этом каждый нуклеозид в полностью модифицированной области содержит одинаковый модифицированный сахарный компонент, и такой участок называется в данном документе однородно модифицированным мотивом из сахаров. В определенных вариантах осуществления полностью модифицированный олигонуклеотид является однородно модифицированным олигонуклеотидом. В определенных вариантах осуществления каждый нуклеозид однородно модифицированного олигонуклеотида содержит одинаковую 2'-модификацию.

В. Некоторые мотивы из нуклеиновых оснований.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотиды. В определенных вариантах осуществления олигонуклеотиды содержат модифицированные и/или немодифицированные нуклеиновые основания, расположенные вдоль олигонуклеотида или его области в виде определенного характерного участка или мотива. В определенных вариантах осуществления каждое нуклеиновое основание является модифицированным. В определенных вариантах осуществления ни одно из нуклеиновых оснований не является модифицированным. В определенных вариантах осуществления каждый пурин или каждый пиримидин являются модифицированным. В определенных вариантах осуществления каждый гуанин является модифицированным. В определенных вариантах осуществления каждый тимин является модифицированным. В определенных вариантах осуществления каждый урацил является модифицированным. В определенных вариантах осуществления каждый цитозин является модифицированным. В определенных вариантах осуществления некоторые или все цитозиновые нуклеиновые основания в модифицированном олигонуклеотиде представляют собой 5-метилцитозин.

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат блок из модифицированных нуклеиновых оснований. В определенных подобных вариантах осуществления блок располагается на 3'-конце олигонуклеотида. В определенных вариантах осуществления блок расположен в пределах 3 нуклеозидов на 3'-конце олигонуклеотида. В определенных вариантах осуществления блок находится на 5'-конце олигонуклеотида. В определенных вариантах осуществления блок расположен в пределах 3 нуклеозидов на 5'-конце олигонуклеотида.

В определенных вариантах осуществления олигонуклеотиды, имеющие гэпмерный мотив, содержат нуклеозид, содержащий модифицированное нуклеиновое основание. В определенных подобных вариантах осуществления один нуклеозид, содержащий модифицированное нуклеиновое основание, находится в центральном гэпе олигонуклеотида, имеющего гэпмерный мотив. В определенных подобных вариантах осуществления сахарный компонент указанного нуклеозида представляет собой 2'-дезоксирибозильный компонент. В определенных вариантах осуществления модифицированное нуклеиновое основание выбрано из 2-тиопиримидина и 5-пропинпиримидина.

С. Некоторые мотивы из межнуклеозидных связей.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотиды. В определенных вариантах осуществления олигонуклеотиды содержат модифицированные и/или немодифицированные межнуклеозидные связи, расположенные вдоль олигонуклеотида или его области в виде определенного характерного участка или мотива. В определенных вариантах осуществления фактически каждая межнуклеозидная связывающая группа представляет собой фосфатную межнуклеозидную связь (Р=О). В определенных вариантах осуществления каждая межнуклеозидная связывающая группа модифицированного олигонуклеотида является фосфотиоатной (P=S). В определенных вариантах осуществления каждая межнуклеозидная связывающая группа модифицированного олигонуклеотида независимо выбрана из фосфотиоатной и фосфатной межнуклеозидных связей. В определенных вариантах осуществления мотив из сахаров модифицированного олигонуклеотида представляет собой гэпмер, а все межнуклеозидные связи в гэпе являются модифицированными. В определенных подобных вариантах осуществления некоторые или все межнуклеозидные связи во флангах являются немодифицированными фосфатными связями. В определенных вариантах осуществления концевые межнуклеозидные связи являются модифицированными. В определенных вариантах осуществления сахарный мотив модифицированного олигонуклеотида представляет собой гэпмер, а мотив из межнуклеозидных связей содержит по меньшей мере одну фосфодиэфирную межнуклеозидную связь в по меньшей мере одном фланге, где по меньшей мере одна фосфодиэфирная связь не является концевой межнуклеозидной связью, а остальные межнуклеозидные связи представляют собой фосфотиоатные межнуклеозидные связи. В некоторых таких вариантах осуществления все из фосфотиоатных связей являются стереослучайными. В определенных вариантах осуществления все из фосфотиоатных связей во флангах представляют собой (Sp)-фосфотиоаты, и гэп содержит по меньшей мере один мотив Sp, Sp, Rp. В определенных вариантах осуществления совокупности модифицированных олигонуклеотидов обогащены модифицированными олигонуклеотидами, содержащими такие мотивы из межнуклеозидных связей.

4. Некоторые модифицированные олигонуклеотиды.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат модифицированные олигонуклеотиды. В определенных вариантах осуществления вышеприведенные модификации (сахаров, нуклеиновых оснований, межнуклеозидных связей) включены в состав модифицированного олигонуклеотида. В определенных вариантах осуществления модифицированные олигонуклеотиды характеризуются по их модификации, мотивам и значениям общей длины. В определенных вариантах осуществления каждый из таких параметров является независимым от других. Таким образом, если не указано иное, каждая межнуклеозидная связь олигонуклеотида, имеющего гэпмерный мотив из сахаров, может быть модифицированной или немодифицированной и может соответствовать или не соответствовать гэпмерному характеру модификаций сахаров. Например, межнуклеозидные связи во фланговых областях гэпмера из сахаров могут быть одинаковыми или отличаться друг от друга и могут быть такими же, как межнуклеозидные связи в области гэпа мотива из сахаров, или отличными от них. Аналогичным образом, такие гэпмерные олигонуклеотиды могут содержать одно или несколько модифицированных нуклеиновых оснований независимо от гэпмерного характера модификаций сахаров. Кроме того, в некоторых случаях олигонуклеотид описывается общей длиной, или диапазоном длин, или длинами или диапазонами длин двух или более областей (например, областей из нуклеозидов, имеющих указанные модификации сахаров). При таких обстоятельствах может быть возможным выбрать для каждого диапазона такие количества, которые в результате обеспечивают олигонуклеотид, имеющий общую длину, выходящую за пределы указанного диапазона. При таких обстоятельствах должны быть удовлетворены требования к обоим элементам. Например, в определенных вариантах осуществления модифицированный олигонуклеотид состоит из 15-20 связанных нуклеозидов и имеет мотив из сахаров, состоящий из трех областей, А, В и С, где область А состоит из 2-6 связанных нуклеозидов, имеющих указанный мотив из сахаров, область В состоит из 6-10 связанных нуклеозидов, имеющих указанный мотив из сахаров, и область С состоит из 2-6 связанных нуклеозидов, имеющих указанный мотив из сахаров. Такие варианты осуществления не включают модифицированные олигонуклеотиды, в которых каждая из А и С состоит из 6 связанных нуклеозидов, а В состоит из 10 связанных нуклеозидов (несмотря на то, что эти количества нуклеозидов являются допустимыми согласно требованиям к А, В и С), поскольку общая длина такого олигонуклеотида будет составлять 22, что превышает верхний предел общей длины модифицированного олигонуклеотида (20). В данном документе, если в описании олигонуклеотида ничего не говорится относительно одного или нескольких параметров, то такой параметр не ограничен. Таким образом, модифицированный олигонуклеотид, описываемый только как имеющий гэпмерный мотив из сахаров без дополнительного описания, может иметь любую длину, любой мотив из межнуклеозидных связей и любой мотив из нуклеиновых оснований. Если не указано иное, все модификации являются независимыми от последовательности нуклеиновых оснований.

Некоторые конъюгированные соединения.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат олигонуклеотид (модифицированный или немодифицированный) и необязательно одну или несколько конъюгированных групп и/или концевых групп или состоят из них. Конъюгированные группы состоят из одного или нескольких конъюгированных компонентов и конъюгирующего линкера, который связывает конъюгированный компонент с олигонуклеотидом. Конъюгированные группы могут быть присоединены к любому одному или обоим концам олигонуклеотида и/или в любом внутреннем положении. В определенных вариантах осуществления конъюгированные группы присоединены к нуклеозиду модифицированного олигонуклеотида в 2'-положении. В определенных вариантах осуществления конъюгированные группы, присоединенные к любому одному или обоим концам олигонуклеотида, являются концевыми группами. В определенных подобных вариантах осуществления конъюгированные группы или концевые группы присоединены на 3'- и/или 5'-конце олигонуклеотидов. В определенных подобных вариантах осуществления конъюгированные группы (или концевые группы) присоединены на 3'-конце олигонуклеотидов. В определенных вариантах осуществления конъюгированные группы присоединены возле 3'конца олигонуклеотидов. В определенных вариантах осуществления конъюгированные группы (или концевые группы) присоединены на 5'-конце олигонуклеотидов. В определенных вариантах осуществления конъюгированные группы присоединены возле 5'-конца олигонуклеотидов.

В определенных вариантах осуществления олигонуклеотид является модифицированным. В определенных вариантах осуществления олигонуклеотид соединения имеет последовательность нуклеиновых оснований, которая комплементарна нуклеиновой кислоте-мишени. В определенных вариантах осуществления олигонуклеотиды являются комплементарными матричной РНК (mRNA). В определенных вариантах осуществления олигонуклеотиды являются комплементарными пре-mRNA. В определенных вариантах осуществления олигонуклеотиды являются комплементарными смысловому транскрипту.

Примеры концевых групп включают без ограничения конъюгированные группы, кэп-группы, фосфатные компоненты, защитные группы, модифицированные или немодифицированные нуклеозиды и два или более нуклеозидов, которые независимо являются модифицированными или немодифицированными.

А. Некоторые конъюгированные группы.

В определенных вариантах осуществления к олигонуклеотидам ковалентно присоединены одна или несколько конъюгированных групп. В определенных вариантах осуществления конъюгированные группы модифицируют одно или несколько свойств присоединенного олигонуклеотида, в том числе без ограничения фармакодинамику, фармакокинетику, стабильность, связывание, абсорбцию, распределение в тканях, распределение в клетках, поглощение клетками, заряд и клиренс. В определенных вариантах осуществления конъюгированные группы придают новое свойство присоединенному олигонуклеотиду, например, флуорофоры или репортерные группы, которые делают возможной детекцию олигонуклеотида.

Некоторые конъюгированные группы и конъюгированные компоненты были описаны ранее, например холестериновый компонент (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), холевая кислота (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4, 1053-1060), простой тиоэфир, например гексил-S-тритилтиол (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Lett, 1993, 3, 2765-2770), тиохолестерин (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), алифатическая цепь, например додекандиоловые или ундециловые остатки (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), фософлипид, например, дигексадецил-рац-глицерин или 1,2-ди-Огексадецил-рац-глицеро-3-H-фосфонат триэтиламмония (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), полиамин или цепь полиэтиленгликоля (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973) или адамантануксусная кислота, пальмитиловый компонент (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), октадециламиновый или гексиламинокарбонилоксихолестериновый компонент (Crooke et al., J. Pharmacol. Exp. Ther., 1996, i, 923-937), токоферольная группа (Nishina et al., Molecular Therapy Nucleic Acids, 2015, 4, e220; doi:10.1038/mtna.2014.72 и Nishina et al., Molecular Therapy, 2008, 16, 734-740) или кластер GalNAc (например, WO 2014/179620).

1. Конъюгированные компоненты/

Конъюгированные компоненты включают без ограничения интеркаляторы, репортерные молекулы, полиамины, полиамиды, пептиды, углеводы (например, GalNAc), витаминные компоненты, полиэтиленгликоли, тиоэфиры, полиэфиры, холестерины, тиохолестерины, компоненты, представляющие собой холевую кислоту, фолат, липиды, фосфолипиды, биотин, феназин, фенантридин, антрахинон, адамантан, акридин, флуоресцеины, родамины, кумарины, флуорофоры и красители.

В определенных вариантах осуществления конъюгированный компонент предусматривает действующее лекарственное вещество, например аспирин, варфарин, фенилбутазон, ибупрофен, супрофен, фенбуфен, кетопрофен, (S)-(+)-пранопрофен, карпрофен, дансилсаркозин, 2,3,5-трийодбензойную кислоту, финголимод, флуфенаминовую кислоту, фолиновую кислоту, бензотиадиазид, хлортиазид, диазепин, индометицин, барбитурат, цефалоспорин, сульфамидное лекарственное средство, антидиабетическое средство, антибактериальное средство или антибиотик.

2. Конъюгирующие линкеры.

Конъюгированные компоненты присоединены к олигонуклеотидам с помощью конъюгирующих линкеров. В определенных вариантах осуществления конъюгированная группа предусматривает одинарную химическую связь (т.е. конъюгируемый компонент присоединен к олигонуклеотиду с помощью конъюгирующего линкера посредством одинарной связи). В определенных вариантах осуществления конъюгирующий линкер содержит цепочечную структуру, такую как гидрокарбильная цепь, или олигомер из повторяющихся звеньев, таких как этиленгликолевые, нуклеозидные или аминокислотные звенья.

В определенных вариантах осуществления конъюгирующий линкер содержит одну или несколько групп, выбранных из алкильной, амино, оксо, амидной, дисульфидной, полиэтиленгликолевой, эфирной, тиоэфирной и гидроксиламино. В определенных подобных вариантах осуществления конъюгирующий линкер содержит группы, выбранные из алкильной, амино-, оксо-, амидной и эфирной групп. В определенных вариантах осуществления конъюгирующий линкер содержит группы, выбранные из алкильной и амидной групп. В определенных вариантах осуществления конъюгирующий линкер содержит по меньшей мере один фосфоросодержащий компонент. В определенных вариантах осуществления конъюгирующий линкер содержит по меньшей мере одну фосфатную группу. В определенных вариантах осуществления конъюгирующий линкер содержит по меньшей мере одну фосфатную группу.

В определенных вариантах осуществления конъюгирующие линкеры, в том числе описанные выше конъюгирующие линкеры, представляют собой бифункциональные связывающие компоненты, например, известные из уровня техники как применимые для присоединения конъюгированных групп к исход-

ным соединениям, таким как олигонуклеотиды, предусмотренные в данном документе. Как правило, бифункциональный связывающий компонент содержит по меньшей мере две функциональные группы. Одна из функциональных групп выбрана для связывания с конкретным сайтом в соединении, а другая выбрана для связывания с конъюгированной группой. Примеры функциональных групп, используемых в бифункциональном связывающем компоненте, включают без ограничения электрофилы для вступления в реакцию с нуклеофильными группами и нуклеофилы для вступления в реакцию с электрофильными группами. В определенных вариантах осуществления бифункциональные связывающие компоненты содержат одну или несколько групп, выбранных из амино, гидроксила, карбоновой кислоты, тиола, алкила, алкенила и алкинила.

Примеры конъюгирующих линкеров включают без ограничения пирролидин, 8-амино-3,6-диоксаоктановую кислоту (ADO), сукцинимидил-4-(N-малеимидометил)циклогексан-1-карбоксилат (SMCC) и 6-аминогексановую кислоту (AHEX или AHA). Другие конъюгирующие линкеры включают без ограничения замещенный или незамещенный C_1 - C_{10} -алкил, замещенный или незамещенный C_2 - C_{10} -алкинил, где неограничивающий перечень предпочтительных замещающих групп включает гидроксил, амино, алкокси, карбокси, бензил, фенил, нитро, тиол, тиоалкокси, галоген, алкил, арил, алкенил и алкинил.

В определенных вариантах осуществления конъюгирующие линкеры содержат 1-10 линкерных нуклеозидов. В определенных вариантах осуществления такие линкерные нуклеозиды являются модифицированными нуклеозидами. В определенных вариантах осуществления такие линкерные нуклеозиды содержат модифицированный сахарный компонент. В определенных вариантах осуществления линкерные нуклеозиды являются немодифицированными. В определенных вариантах осуществления линкерные нуклеозиды содержат необязательно защищенное гетероциклическое основание, выбранное из пурина, замещенного пурина, пиримидина или замещенного пиримидина. В определенных вариантах осуществления расщепляемый компонент представляет собой нуклеозид, выбранный из урацила, тимина, цитозина, 4-N-бензоилцитозина, 5-метилцитозина, 4-N-бензоил-5-метилцитозина, аденина, 6-N-бензоиладенина, гуанина и 2-N-изобутирилгуанина. Как правило, желательно, чтобы линкерные нуклеозиды отщеплялись от соединения после того, как оно достигнет ткани-мишени. Соответственно, линкерные нуклеозиды, как правило, связаны друг с другом и с остальной частью соединения посредством расщепляемых связей. В определенных вариантах осуществления такие расшепляемые связи представляют собой фосфодиэфирные связи.

В данном документе линкерные нуклеозиды не считаются частью олигонуклеотида. Соответственно, в вариантах осуществления, в которых соединение содержит олигонуклеотид, состоящий из связанных нуклеозидов в указанном количестве или диапазоне количеств и/или характеризующийся указанным процентом комплементарности по отношению к эталонной нуклеиновой кислоте, и соединение также содержит конъюгированную группу, содержащую конъюгирующий линкер, содержащий линкерные нуклеозиды, эти линкерные нуклеозиды не учитываются при определении длины олигонуклеотида и не используются при определении процента комплементарности олигонуклеотида по отношению к эталонной нуклеиновой кислоте. Например, соединение может содержать (1) модифицированный олигонуклеотид, состоящий из 8-30 нуклеозидов, и (2) конъюгированную группу, содержащую 1-10 линкерных нуклеозидов, смежных с нуклеозидами модифицированного олигонуклеотида. Общее количество смежных связанных нуклеозидов в таком соединении превышает 30. В качестве альтернативы, соединение может содержать модифицированный олигонуклеотид, состоящий из 8-30 нуклеозидов, и не содержать конъюгированную группу. Общее количество смежных связанных нуклеозидов в таком соединении не превышает 30. Если не указано иное, конъюгирующие линкеры содержат не более 10 линкерных нуклеозидов. В определенных вариантах осуществления конъюгирующие линкеры содержат не более 5 линкерных нуклеозидов. В определенных вариантах осуществления конъюгирующие линкеры содержат не более 3 линкерных нуклеозидов. В определенных вариантах осуществления конъюгирующие линкеры содержат не более 2 линкерных нуклеозидов. В определенных вариантах осуществления конъюгирующие линкеры содержат не более 1 линкерного нуклеозида.

В определенных вариантах осуществления желательно, чтобы конъюгированная группа отщеплялась от олигонуклеотида. Например, при определенных обстоятельствах соединения, содержащие конкретный конъюгируемый компонент, лучше поглощаются клетками конкретного типа, однако после поглощения соединения желательно, чтобы конъюгированная группа расщеплялась с высвобождением неконъюгированного или исходного олигонуклеотида. Таким образом, определенные конъюгирующего линкера. В определенных вариантах осуществления расщепляемый компонент представляет собой расщепляемую связь. В определенных вариантах осуществления расщепляемый компонент представляет собой группу атомов, содержащую по меньшей мере одну расщепляемую связь. В определенных вариантах осуществления расшепляемый компонент содержит группу атомов, имеющую одну, две, три, четыре или более четырех расщепляемых связей. В определенных вариантах осуществления расщепляемый компонент избирательно расщепляемый компонент избирательно расщепляется внутри клеточного или субклеточного компартмента, такого как лизосома. В определенных вариантах осуществления расщепляемый компонент избирательно расщепля-

ется эндогенными ферментами, такими как нуклеазы.

В определенных вариантах осуществления расщепляемая связь выбрана из амидной, сложноэфирной, эфирной, одной или обеих сложноэфирных в фосфодиэфирной связи, фосфоэфирной, карбаматной или дисульфидной. В определенных вариантах осуществления расщепляемая связь является одной или обеими из сложноэфирных в фосфодиэфирной связи. В определенных вариантах осуществления расшепляемый компонент содержит фосфат или фосфодиэфир. В определенных вариантах осуществления расшепляемый компонент представляет собой фосфатную связь между олигонуклеотидом и конъюгированным компонентом или конъюгированной группой.

В определенных вариантах осуществления расщепляемый компонент содержит один или несколько линкерных нуклеозидов или состоит из них. В определенных подобных вариантах осуществления один или несколько линкерных нуклеозидов связаны друг с другом и/или с остальной частью соединения посредством расщепляемых связей. В определенных вариантах осуществления такие расщепляемые связи представляют собой немодифицированные фосфодиэфирные связи. В определенных вариантах осуществления расщепляемый компонент представляет собой 2'-дезоксинуклеозид, который присоединен к 3'-либо к 5'-концевому нуклеозиду олигонуклеотида посредством фосфатной межнуклеозидной связи и ковалентно присоединен к остальной части конъюгирующего линкера или конъюгированному компоненту посредством фосфатной или фосфотиоатной связи. В определенных подобных вариантах осуществления расщепляемый компонент представляет собой 2'-дезоксиаденозин.

3. Некоторые конъюгированные компоненты, нацеливающие на клетку В определенных вариантах осуществления конъюгированная группа содержит конъюгированный компонент, нацеливающий на клетку. В определенных вариантах осуществления конъюгированная группа имеет общую формулу:

где п равняется от 1 до приблизительно 3,

m равняется 0, если n равняется 1, m равняется 1, если n равняется 2 или более,

ј равняется 1 или 0,

k равняется 1 или 0.

В определенных вариантах осуществления п равняется 1, ј равняется 1, и k равняется 0. В определенных вариантах осуществления п равняется 1, ј равняется 0 и k равняется 1. В определенных вариантах осуществления п равняется 1 и k равняется 1 и k равняется 2. ј равняется 2 и k равняется 1 и k равняется

В определенных вариантах осуществления конъюгированные группы содержат компоненты, нацеливающие на клетку, которые имеют по меньшей мере один связанный лиганд. В определенных вариантах осуществления компоненты, нацеливающие на клетку, содержат два связанных лиганда, ковалентно присоединенных к разветвляющейся группе. В определенных вариантах осуществления компоненты, нацеливающие на клетку, содержат три связанных лиганда, ковалентно присоединенных к разветвляющейся группе.

В определенных вариантах осуществления компонент, нацеливающий на клетку, содержит разветвляющуюся группу, содержащую одну или несколько групп, выбранных из алкильной, амино, оксо, амидной, дисульфидной, полиэтиленгликолевой, эфирной, тиоэфирной и гидроксиламиногруппы. В определенных вариантах осуществления разветвляющаяся группа содержит разветвленную алифатическую группу, содержащую группы, выбранные из алкильной, амино, оксо, амидной, дисульфидной, полиэтиленгликолевой, эфирной, тиоэфирной и гидроксиламиногруппы. В определенных подобных вариантах осуществления разветвленная алифатическая группа содержит группы, выбранные из алкильной, амино, оксо, амидной и эфирной группы. В определенных подобных вариантах осуществления разветвленная алифатическая группа содержит группы, выбранные из алкильной и эфирной группы. В определенных вариантах осуществления разветвляющаяся группа содержит моно- или полициклическую кольцевую систему.

В определенных вариантах осуществления каждый связывающий элемент компонента, нацеливающего на клетку, содержит одну или несколько групп, выбранных из алкильной, замещенной алкильной, эфирной, тиоэфирной, дисульфидной, амино, оксо, амидной, фосфодиэфирной и полиэтиленгликолевой в любой комбинации. В определенных вариантах осуществления каждый связывающий элемент представляет собой линейную алифатическую группу, содержащую одну или несколько групп, выбранных из

алкильной, эфирной, тиоэфирной, дисульфидной, амино, оксо, амидной и полиэтиленгликолевой в любой комбинации. В определенных вариантах осуществления каждый связывающий элемент представляет собой линейную алифатическую группу, содержащую одну или несколько групп, выбранных из алкильной, фосфодиэфирной, эфирной, амино, оксо и амидной в любой комбинации. В определенных вариантах осуществления каждый связывающий элемент представляет собой линейную алифатическую группу, содержащую одну или несколько групп, выбранных из алкильной, эфирной, амино, оксо и амидной, в любой комбинации. В определенных вариантах осуществления каждый связывающий элемент представляет собой линейную алифатическую группу, содержащую одну или несколько групп, выбранных из алкильной, амино и оксо в любой комбинации. В определенных вариантах осуществления каждый связывающий элемент представляет собой линейную алифатическую группу, содержащую одну или несколько групп, выбранных из алкильной и оксо в любой комбинации. В определенных вариантах осуществления каждый связывающий элемент представляет собой линейную алифатическую группу, содержащую одну или несколько групп, выбранных из алкильной и фосфодиэфирной в любой комбинации. В определенных вариантах осуществления каждый связывающий элемент содержит по меньшей мере одну фосфорсодержащую связывающую группу или нейтральную связывающую группу. В определенных вариантах осуществления каждый связывающий элемент содержит цепь длиной от приблизительно 6 до приблизительно 20 атомов. В определенных вариантах осуществления каждый связывающий элемент содержит цепь длиной от приблизительно 10 до приблизительно 18 атомов. В определенных вариантах осуществления каждый связывающий элемент содержит цепь длиной приблизительно 10 атомов,

В определенных вариантах осуществления каждый лиганд компонента, нацеливающего на клетку, характеризуется сродством к рецепторам по меньшей мере одного типа на клетке-мишени. В определенных вариантах осуществления каждый лиганд характеризуется сродством к рецепторам по меньшей мере одного типа на поверхности клетки печени млекопитающего. В определенных вариантах осуществления каждый лиганд характеризуется сродством к асиалогликопротеиновому рецептору печени (ASGP-R). В определенных вариантах осуществления каждый лиганд представляет собой углевод. В определенных вариантах осуществления каждый лиганд независимо выбран из галактозы, N-ацетилгалактозамина (GalNAc), маннозы, глюкозы, глюкозамина и фукозы. В определенных вариантах осуществления каждый лиганд представляет собой N-ацетилгалактозамин (GalNAc). В определенных вариантах осуществления компонент, нацеливающий на клетку, содержит 3 GalNAc-лиганда. В определенных вариантах осуществления компонент, нацеливающий на клетку, содержит 2 GalNAc-лиганда. В определенных вариантах осуществления компонент, нацеливающий на клетку, содержит 1 GalNAc-лиганда.

В определенных вариантах осуществления каждый лиганд компонента, нацеливающего на клетку, представляет собой углевод, производное углевода, модифицированный углевод, полисахарид, модифицированный полисахарид или производное полисахарида. В определенных подобных вариантах осуществления конъюгированная группа содержит углеводный кластер (см., например, Maier et al., "Synthesis of Antisense Oligonucleotides Conjugated to a Multivalent Carbohydrate Cluster for Cellular Targeting", Bioconjugate Chemistry, 2003, 14, 18-29, или Rensen et al., "Design and Synthesis of Novel N-Acetylgalactosamine-Terminated Glycolipids for Targeting of Lipoproteins to the Hepatic Asiaglycoprotein Receptor", J. Med. Chem. 2004, 47, 5798-5808, которые включены в данный документ посредством ссылки во всей своей полноте). В определенных подобных вариантах осуществления каждый лиганд представляет собой аминосахар или тиосахар. Например, аминосахара могут быть выбраны из любого количества соединений, известных из уровня техники, таких как сиаловая кислота, с-D-галактозамин, β-мурамовая 2-дезокси-2-метиламино-L-глюкопираноза, 4,6-дидезокси-4-формамидо-2,3-ди-О-метил-Dманнопираноза, 2-дезокси-2-сульфоамино-D-глюкопираноза, и N-сульфо-D-глюкозамин, и N-гликолоилα-нейраминовая кислота. Например, тиосахара могут быть выбраны из 5-тио-β-D-глюкопиранозы, метил-2,3,4-три-О-ацетил-1-тио-6-О-тритил- α -D-глюкопиранозида, 4-тио- β -D-галактопиранозы и этил-3,4,6,7-тетра-О-ацетил-2-дезокси-1,5-дитио- α -D-глюкогептопиранозида.

В определенных вариантах осуществления конъюгированные группы содержат компонент, нацеливающий на клетку, характеризующийся следующей формулой:

В определенных вариантах осуществления конъюгированные группы содержат компонент, нацеливающий на клетку, характеризующийся следующей формулой:

В определенных вариантах осуществления конъюгированные группы содержат компонент, нацеливающий на клетку, характеризующийся следующей формулой:

$$\begin{array}{c} \text{HOOH} \\ \text{HO AcHN} \\ \text{OO } \\ \text{OO } \\ \text{OO } \\ \text{OO } \\ \text{HOOH} \\ \text{HOOH} \\ \text{OO } \\ \text{AcHN} \\ \text{HOOH} \\ \text{OO } \\ \text{AcHN} \\ \text{HOOH} \\ \text{OO } \\ \text{O$$

В определенных вариантах осуществления соединения, описанные в данном документе, содержат конъюгированную группу, описанную в данном документе как "LICA-1". LICA-1 показана ниже без необязательного расщепляемого компонента на конце конъюгирующего линкера:

В определенных вариантах осуществления соединения, описанные в данном документе, содержат LICA-1 и расщепляемый компонент в составе конъюгирующего линкера и имеют следующую формулу:

где "олиго" означает олигонуклеотид.

Иллюстративные публикации, в которых изложено получение некоторых из вышеупомянутых конъюгированных групп и соединений, содержащих конъюгированные группы, связывающие элементы, конъюгирующие линкеры, разветвляющиеся группы, лиганды, расщепляемые компоненты, а также другие модификации, включают без ограничения US 5994517, US 6300319, US 6660720, US 6906182, US 7262177, US 7491805, US 8106022, US 7723509, US 9127276, US 2006/0148740, US 2011/0123520, WO 2013/033230 и WO 2012/037254, Biessen et al., J. Med. Chem. 1995, 38, 1846-1852, Lee et al., Bioorganic & Medicinal Chemistry, 2011, 19, 2494-2500, Rensen et al., J. Biol Chem. 2001, 276, 37577-37584, Rensen et al., J. Med. Chem. 2004, 47, 5798-5808, Sliedregt et al., J. Med. Chem. 1999, 42, 609-618, и Valentijn et al., Теtrаhedron, 1997, 53, 759-770, каждая из которых включена в данный документ посредством ссылки во всей своей полноте.

В определенных вариантах осуществления соединения, описанные в данном документе, содержат модифицированные олигонуклеотиды, содержащие гэпмерный или полностью модифицированный мотив, и конъюгированную группу, содержащую по меньшей мере один, два или три GalNAc-лиганда. В определенных вариантах осуществления соединения, описанные в данном документе, содержат конъю-

гированную группу, которую можно найти в любом из следующих литературных источников:

Lee,

Carbohydr Res, 1978, 67, 509-514; Connolly et al., J Biol Chem, 1982, 257, 939-945; Pavia et al., Int J Pep Protein Res, 1983, 22, 539-548; Lee et al., Biochem, 1984, 23, 4255-4261; Lee et al., Glycoconjugate J, 1987, 4, 317-328; Toyokuni et al., Tetrahedron Lett, 1990, 31, 2673-2676; Biessen et al., J Med Chem, 1995, 38, 1538-1546; Valentijn et al., Tetrahedron, 1997, 53, 759-770; Kim et al., Tetrahedron Lett, 1997, 38, 3487-3490; Lee et al., Bioconjug Chem, 1997, 8, 762-765; Kato et al., Glycobiol, 2001, 11, 821-829; Rensen et al., J Biol Chem, 2001, 276, 37577-37584; Lee et al., Methods Enzymol, 2003, 362, 38-43; Westerlind et al., Glycoconj J, 2004, 21, 227-241; Lee et al., Bioorg Med Chem Lett, 2006, 16(19), 5132-5135; Maierhofer et al., Bioorg Med Chem, 2007, 15, 7661-7676; Khorev et al., Bioorg Med Chem, 2008, 16, 5216-5231; Lee et al., Bioorg Med Chem, 2011, 19, 2494-2500; Kornilova et al., Analyt Biochem, 2012, 425, 43-46; Pujol et al., Angew Chemie Int Ed Engl, 2012, 51, 7445-7448; Biessen et al., J Med Chem, 1995, 38, 1846-1852; Sliedregt et al., *J Med Chem*, 1999, 42, 609-618; Rensen et al., *J Med Chem*, 2004, 47, 5798-5808; Rensen et al., Arterioscler Thromb Vasc Biol, 2006, 26, 169-175; van Rossenberg et al., Gene Ther, 2004, 11, 457-464; Sato et al., J Am Chem Soc, 2004, 126, 14013-14022; Lee et al., J Org Chem, 2012, 77, 7564-7571; Biessen et al., FASEB J, 2000, 14, 1784-1792; Rajur et al., Bioconjug Chem, 1997, 8, 935-940; Duff et al., Methods Enzymol, 2000, 313, 297-321; Maier et al., Bioconjug Chem, 2003, 14, 18-29; Jayaprakash et al., Org Lett, 2010, 12, 5410-5413; Manoharan, Antisense Nucleic Acid Drug Dev, 2002, 12, 103-128; Merwin et al., Bioconjug Chem, 1994, 5, 612-620; Tomiya et al., Bioorg Med Chem, 2013, 21, 5275-5281; международных публикациях WO1998/013381; WO2011/038356; WO1997/046098; WO2008/098788; WO2004/101619; WO2012/037254; WO2011/120053; WO2011/100131; WO2011/163121; WO2012/177947; WO2013/033230; WO2013/075035; WO2012/083185; WO2012/083046; WO2009/082607; WO2009/134487; WO2010/144740; WO2010/148013; WO1997/020563; WO2010/088537; WO2002/043771; WO2010/129709; WO2012/068187; WO2009/126933; WO2004/024757; WO2010/054406; WO2012/089352; WO2012/089602; WO2013/166121; WO2013/165816; патентах США 4751219; 8552163; 6908903; 7262177; 5994517; 6300319; 8106022; 7491805; 7491805; 7582744; 8137695; 6383812; 6525031; $6660720; \ 7723509; \ 8541548; \ 8344125; \ 8313772; \ 8349308; \ 8450467; \ 8501930; \ 8158601;$ 7262177; 6906182; 6620916; 8435491; 8404862; 7851615; публикациях заявок на патент США US2011/0097264; US2011/0097265; US2013/0004427; US2005/0164235: $US2006/0148740; \ US2008/0281044; \ US2010/0240730; \ US2003/0119724; \ US2006/0183886;$ US2008/0206869; US2011/0269814; US2009/0286973; US2011/0207799; US2012/0136042; US2012/0165393; US2008/0281041; US2009/0203135; US2012/0035115; US2012/0095075; US2012/0101148; US2012/0128760; US2012/0157509; US2012/0230938; US2013/0109817; US2013/0121954; US2013/0178512; US2013/0236968; US2011/0123520; US2003/0077829; US2008/0108801 и US2009/0203132;

каждый из которых включен посредством ссылки во всей своей полноте.

Композиции и способы составления фармацевтических композиций Соединения, описанные в данном документе, можно смешивать с фармацевтически приемлемыми активными или инертными веществами для получения фармацевтических композиций или составов. Композиции и способы составления фармацевтических композиций зависят от ряда критериев, в том числе без ограничения от пути введения, степени заболевания или подлежащей введению дозы.

В определенных вариантах осуществления предусмотрены фармацевтические композиции, содержащие одно или несколько соединений или их соль. В определенных вариантах осуществления соединения представляют собой антисмысловые соединения или олигомерные соединения. В определенных вариантах осуществления соединения содержат модифицированный олигонуклеотид или состоят из него. В определенных подобных вариантах осуществления фармацевтическая композиция содержит подходящий фармацевтически приемлемые разбавитель или носитель. В определенных вариантах осуществления фармацевтическая композиция содержит стерильный солевой раствор и одно или несколько соединений. В определенных вариантах осуществления такая фармацевтическая композиция состоит из стерильного солевого раствора и одного или нескольких соединений. В определенных вариантах осуществления стерильный солевой раствор представляет собой солевой раствор фармацевтической степени чистоты. В

определенных вариантах осуществления фармацевтическая композиция содержит одно или несколько соединений и стерильную воду. В определенных вариантах осуществления фармацевтическая композиция состоит из одного соединения и стерильной воды. В определенных вариантах осуществления стерильная вода представляет собой воду фармацевтической степени чистоты. В определенных вариантах осуществления а фармацевтическая композиция содержит одно или несколько соединений и фосфатносолевой буферный раствор (PBS). В определенных вариантах осуществления фармацевтическая композиция состоит из одного соединения и стерильного PBS. В определенных вариантах осуществления стерильный PBS представляет собой PBS фармацевтической степени чистоты. Композиции и способы составления фармацевтических композиций зависят от ряда критериев, в том числе без ограничения от пути введения, степени заболевания или подлежащей введению дозы.

Соединение, описанное в данном документе, нацеленное на нуклеиновую кислоту PNPLA3, можно применять в фармацевтических композициях путем объединения соединения с подходящим фармацевтически приемлемым разбавителем или носителем. В определенных вариантах осуществления фармацевтически приемлемый разбавитель представляет собой воду, такую как стерильная вода, подходящая для инъекций. Соответственно, в одном варианте осуществления в описанных в данном документе способах применяют фармацевтическую композицию, содержащую соединение, нацеленное на нуклеиновую кислоту PNPLA3, и фармацевтически приемлемый разбавитель. В определенных вариантах осуществления фармацевтически приемлемый разбавитель представляет собой воду. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид, предусмотренный в данном документе, или состоит из него.

Фармацевтические композиции, содержащие соединения, предусмотренные в данном документе, охватывают любые фармацевтически приемлемые соли, сложные эфиры или соли таких сложных эфиров или любой другой олигонуклеотид, которые при введении животному, в том числе человеку, способны предоставить ему (непосредственно или опосредованно) их биологически активный метаболит или остаток. В определенных вариантах осуществления соединения представляют собой антисмысловые соединения или олигомерные соединения. В определенных вариантах осуществления соединение содержит модифицированный олигонуклеотид или состоит из него. Соответственно, например, настоящее изобретение также охватывает фармацевтически приемлемые соли соединений, пролекарства, фармацевтически приемлемые соли таких пролекарств и другие биоэквиваленты. Подходящие фармацевтически приемлемые соли включают без ограничения натриевые и калиевые соли.

Пролекарство может предусматривать включение дополнительных нуклеозидов на одном или обоих концах соединения, которые отщепляются под действием эндогенных нуклеаз в организме с образованием активного соединения.

В определенных вариантах осуществления соединения или композиции дополнительно содержат фармацевтически приемлемый носитель или разбавитель.

Некоторые отобранные соединения.

Для примерно 2384 новых сконструированных соединений с различными длиной, химическими структурами и мотивами тестировали их эффект в отношении mRNA PNPLA3 человека in vitro в нескольких типах клеток (пример 1). Из 2384 соединений, тестируемых в отношении эффективности в однократной дозе in vitro, свыше 400 отобранных соединения тестировали в отношении дозозависимого подавления в клетках A431 (пример 2). Соединения из совокупности свыше 400 соединений, тестируемых в анализах зависимости ответа от дозы, дополнительно подвергали скринингу в отношении переносимости высокой дозы в модели на мышах BALB/с, и 87 олигонуклеотидов были отобраны для исследования эффективности in vivo в модели на мышах, трансгенных по PNPLA3.

Из 87 олигонуклеотидов, протестированных в модели на трансгенных мышах, 23 олигонуклеотида были отобраны для дополнительного тестирования в отношении переносимости в доклинических моделях на грызунах. В моделях переносимости in vivo на грызунах измеряли значения массы тела и массы органов, маркеры функции печени (такие как аланинтрансаминаза, аспартаттрансаминаза и билирубин) и маркеры функции почек (такие как BUN и креатинин). Было обнаружено, что в модели на мышах CD1 и в модели на крысах Спрег-Доули ION 975591, 975605, 975612, 975613, 975616, 975617, 975735, 975736, 994282 и 994284 являлись переносимыми (примеры 5 и 6).

Такие соединений дополнительно тестировали в отношении эффективности в модели на мышах, трансгенных по PNPLA3, в ходе многодозовых анализов (пример 7).

IONs 994284, 97605, 975616, 994282, 975613, 975617, 975735, 975736, и 975612 тестировали на макаках-крабоедах в отношении переносимости (пример 8). Обработка соединениями хорошо переносилась обезьянами.

Соответственно, в данном документе предусмотрены соединения с любыми одним или несколькими улучшенными свойствами. В определенных вариантах осуществления соединения, описанные в данном документе, являются эффективными и переносимыми.

Примеры идентификаций соединений по изобретению и родственных соединений

В приведенных ниже примерах описан способ скрининга для выявления лидерных соединений, нацеленных на PNPLA3. ION 994284, 97605, 975616, 994282, 975613, 975617, 975735, 975736 и 975612 продемонстрировали высокую активность и переносимость.

Неограничивающее раскрытие и включение посредством ссылки.

Несмотря на то, что в перечне последовательностей, прилагаемом к данной подаваемой заявке, каждая последовательность в соответствии с установленными требованиями идентифицирована как "РНК" либо как "ДНК", в действительности эти последовательности могут быть модифицированы с помощью любой комбинации химических модификаций. Специалист в данной области легко поймет, что такое обозначение, как "РНК" или "ДНК", для описания модифицированных олигонуклеотидов, в некоторых случаях является произвольным. Например, олигонуклеотид, содержащий нуклеозид, содержащий 2'-ОН-сахарный компонент и тиминовое основание, может быть описан как ДНК, имеющая модифицированный сахар (2'-ОН вместо природного 2'-Н в ДНК), или как РНК, имеющая модифицированное основание (тимин (метилированный урацил) вместо природного урацила в РНК).

Соответственно, предложенные в данном документе последовательности нуклеиновых кислот, в том числе без ограничения приведенные в перечне последовательностей, охватывают нуклеиновые кислоты, содержащие любую комбинацию из природных или модифицированных РНК и/или ДНК, включая без ограничения такие нуклеиновые кислоты с модифицированными нуклеиновыми основаниями. В качестве дополнительного примера и без ограничения, олигонуклеотид, имеющий последовательность нуклеиновых оснований "ATCGATCG" охватывает любые олигонуклеотиды, имеющие такую последовательность нуклеиновых оснований, независимо от того, являются ли они модифицированными или немодифицированными, в том числе без ограничения такие соединения, которые содержат основания РНК, такие как соединения, имеющие последовательность "AUCGAUCG", и соединения, имеющие несколько оснований ДНК и несколько оснований РНК, такие как "AUCGATCG", а также соединения, имеющие другие модифицированные нуклеиновые основания, такие как "AT"CGAUCG", где "С указывает на цитозиновое основание, содержащее метильную группу в 5-положении.

Некоторые соединения, описанные в данном документе (например, модифицированные олигонуклеотиды), имеют один или несколько асимметричных центров и, могут таким образом образовывать энантиомеры, диастереомеры и другие стереоизомерные конфигурации, которые могут быть определены с точки зрения абсолютной стереохимии как (R) или (S), как α или β, например, в случае аномеров сахаров или как (D) или (L), например, в случае аминокислот и т.д. Соединения, представленные в данном документе, которые изображены или описаны как имеющие определенные стереоизомерные конфигурации, включают только указанные соединения. Представленные в данном документе соединения, которые изображены или описаны как имеющие неопределенную стереохимию, включают все такие возможные изомеры, в том числе их стереослучайные и оптически чистые формы. Подобным образом включены все таутомерные формы соединений, представленных в данном документе, если не указано иное. Если не указано иное, подразумевается, что олигомерные соединения и модифицированные олигонуклеотиды, описанные в данном документе, включают соответствующие солевые формы.

Соединения, описанные в данном документе, включают вариации, в которых один или несколько атомов заменены нерадиоактивным изотопом или радиоактивным изотопом указанного элемента. Например, соединения согласно данному документу, которые содержат атомы водорода, охватывают все возможные замещения дейтерием каждого из атомов водорода 1 Н. Изотопные замещения, охватываемые соединениями согласно данному документу, включают без ограничения: 2 Н или 3 Н вместо 1 Н, 13 С или 14 С вместо 12 С, 15 N вместо 14 N, 17 О или 18 О вместо 16 О, а также 33 S, 34 S, 35 S или 36 S вместо 32 S.

Хотя некоторые описанные в данном документе соединения, композиции и способы были конкретно описаны в соответствии с некоторыми вариантами осуществления, нижеследующие примеры служат только для иллюстрации соединений, описанных в данном документе, и не подразумевают их ограничение. Каждая из ссылок, упомянутая в настоящем документе, включена в данный документ посредством ссылки во всей своей полноте.

Пример 1. Антисмысловое подавление PNPLA3 человека в клетках A431/

Антисмысловые олигонуклеотиды разрабатывали для нацеливания на нуклеиновую кислоту PNPLA3 и тестировали их эффекты в отношении mRNA PNPLA3 in vitro. Антисмысловые олигонуклеотиды тестировали в серии экспериментов, в которых были сходные условия культивирования. Результаты каждого эксперимента представлены в показанных ниже отдельных таблицах.

Новые разработанные химерные антисмысловые олигонуклеотиды в приведенных ниже таблицах обозначены как сЕt-гэпмеры 3-10-3. Гэпмеры имеют длину 16 нуклеозидов, при этом центральный гэпсегмент содержит десять 2'-дезоксинуклеозидов и фланкирован фланговыми сегментами в 5'-направлении и в 3'-направлении, каждый из которых содержит по три нуклеозида. Каждый нуклеозид в 5'-концевом фланговом сегменте и каждый нуклеозид в 3'-концевом фланговом сегменте имеет сЕt-модификацию сахара. Все межнуклеозидные связи в каждом гэпмере являются фосфотиоатными (P=S) связями. Все цитозиновые остатки в каждом гэпмере представляют собой 5-метилцитозин.

"Стартовый сайт" указывает на самый крайний 5'-концевой нуклеозид, на который нацеливается гэпмер, в последовательности гена человека. "Стоп-сайт" указывает на самый крайний 3'-концевой нуклеозид, на который нацеливается гэпмер, в последовательности гена человека. Каждый из гэпмеров, перечисленных в приведенных ниже таблицах, нацелен либо на mRNA PNPLA3 человека, обозначенную в

данном документе как SEQ ID NO: 1 (№ доступа в GENBANK NM_025225.2), либо на геномную последовательность PNPLA3 человека, обозначенную в данном документе как SEQ ID NO: 2 (№ доступа в GENBANK NC_000022.11 с усечением нуклеотидов от 43921001 до 43954500). "n/a" указывает на то, что антисмысловой олигонуклеотид не нацеливается на такую конкретную последовательность гена со 100% комплементарностью.

Исследование 1.

Культивируемые клетки A431 при плотности 20000 клеток на лунку трансфицировали путем свободного поглощения с помощью 4000 нМ антисмыслового олигонуклеотида. После периода обработки, составлявшего примерно 24 ч, РНК выделяли из клеток и измеряли уровни mRNA PNPLA3 с помощью количественной ПНР в реальном времени. Набор праймеров и зондов для человека RTS36070 (прямая последовательность CCTTGGTATGTTCCTGCTTCA обозначенная в данном документе как SEQ ID NO: 11; обратная последовательность GTTGTCACTCACTCCTCCATC обозначенная в данном документе как SEQ ID NO: 12; последовательность зонда TGGCCTTATCCCTCCTTCCTTCFGA обозначенная в данном документе как SEQ ID NO: 13) применяли для измерения уровней mRNA. Уровни mRNA PNPLA3 корректировали в соответствии с общим содержанием PHK, измеренным с помощью RIBOGREEN®. Результаты представлены в виде процента подавления PNPLA3 относительно необработанных контрольных клеток.

Таблица 1 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, напеливающихся на SEO ID NO: 1 и 2

Номер	SEQ ID	SEQ ID	SEQ ID	SEQ ID		%	SEO
	NO: 1,	NO: 1,	NO: 2,	NO: 2,	П (5! 2!)	подавле-	SEQ ID
соеди-	старто-	стоп-	старто-	стоп-	Последовательность (5'-3')	ния	
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
912709	27	42	2765	2780	GGCATTCCCAGCGCGA	0	17
912710	95	110	2833	2848	TCCTGATCCGCAGCAG	15	18
912711	103	118	2841	2856	GGCTCGGGTCCTGATC	0	19
912712	131	146	2869	2884	GTTAGGATCTGGGTCG	91	20
912713	164	179	2902	2917	GTACATGGCGGCGGCG	0	21
912714	183	198	2921	2936	TCCAGCCGCGCTCTGC	23	22
912715	196	211	2934	2949	GCGAAGGACAAGCTCC	60	23
912716	197	212	2935	2950	CGCGAAGGACAAGCTC	0	24
912717	272	287	3010	3025	GCGGAGGAGGTGCGGG	0	25
912718	273	288	3011	3026	CGCGGAGGAGGTGCGG	0	26
912719	274	289	3012	3027	TCGCGGAGGAGGTGCG	19	27
912720	290	305	3028	3043	GAACAACATGCGCGCG	0	28
912721	291	306	3029	3044	CGAACAACATGCGCGC	7	29
912722	292	307	3030	3045	CCGAACAACATGCGCG	21	30
912723	293	308	3031	3046	GCCGAACAACATGCGC	0	31
912724	294	309	3032	3047	CGCCGAACAACATGCG	0	32
912725	323	338	3061	3076	GCCGACGCAGTGCAAC	0	33
912726	324	339	3062	3077	CGCCGACGCAGTGCAA	0	34
912727	340	355	3078	3093	GGGATACCGGAGAGGA	43	35
912728	370	385	5944	5959	TCTGAGAGGACCTGCA	53	36
912729	375	390	5949	5964	CAAGATCTGAGAGGAC	64	37

912730	404	419	5978	5993	GCCAATGTTCCGACTC	71	38
912731	410	425	5984	5999	GAAGATGCCAATGTTC	51	39
912732	429	444	6003	6018	TTAAGTTGAAGGATGG	96	40
912733	432	447	6006	6021	TGCTTAAGTTGAAGGA	90	41
912734	478	493	6052	6067	TGGACATTGGCCGGGA	85	42
912735	479	494	6053	6068	GTGGACATTGGCCGGG	50	43
912736	484	499	6058	6073	AGCTGGTGGACATTGG	64	44
912737	528	543	6102	6117	CATCAGACACTCTGGT	5	45
912738	531	546	6105	6120	CCCCATCAGACACTCT	73	46
912739	552	567	6126	6141	AGTCAGACACCAGAAC	54	47
912755	693	708	11911	11926	TGGCATCAATGAAGGG	74	48
912756	698	713	11916	11931	TGTTTTGGCATCAATG	91	49
912757	746	761	11964	11979	TTTAGGGCAGATGTCG	89	50
912758	747	762	11965	11980	CTTTAGGGCAGATGTC	90	51
912759	795	810	12013	12028	GTAGACTGAGCTTGGT	98	52
912760	820	835	12038	12053	AGGTAGAGGTTCCCTG	0	53
912761	841	856	12059	12074	GGGACAAAAGCTCTCG	20	54
912762	873	888	13609	13624	GGCATATCTCTCCCAG	0	55
912763	874	889	13610	13625	AGGCATATCTCTCCCA	0	56
912764	886	901	13622	13637	AAATATCCTCGAAGGC	57	57
912765	888	903	13624	13639	CCAAATATCCTCGAAG	30	58
912766	889	904	13625	13640	TCCAAATATCCTCGAA	38	59
912767	894	909	13630	13645	ATGCATCCAAATATCC	58	60
912768	925	940	N/A	N/A	TTGCAGATGCCCTTCT	15	61
912769	968	983	16088	16103	ATCCATCCCTTCTGAG	34	62
912770	986	1001	16106	16121	GGGCATGGCGACCTCA	0	63
912771	1004	1019	16124	16139	ACTCATGTTTGCCCAG	67	64
912772	1068	1083	16188	16203	GGTCTAGCAGCTCATC	89	65
912773	1075	1090	16195	16210	CGCAGGTGGTCTAGCA	0	66
912774	1076	1091	16196	16211	ACGCAGGTGGTCTAGC	25	67
912775	1080	1095	16200	16215	TGAGACGCAGGTGGTC	50	68
912776	1086	1101	16206	16221	GGATGCTGAGACGCAG	67	69
912777	1172	1187	19012	19027	GTATCCACCTTTGTCT	78	70
912778	1178	1193	19018	19033	GCTCATGTATCCACCT	79	71
912779	1187	1202	19027	19042	GCAAATCTTGCTCATG	3	72
912780	1188	1203	19028	19043	TGCAAATCTTGCTCAT	13	73
912781	1189	1204	19029	19044	TTGCAAATCTTGCTCA	0	74
912782	1195	1210	19035	19050	AGCAAGTTGCAAATCT	77	75
912783	1199	1214	19039	19054	GGGTAGCAAGTTGCAA	74	76
912784	1205	1220	19045	19060	CCTAATGGGTAGCAAG	62	77
912785	1206	1221	19046	19061	TCCTAATGGGTAGCAA	79	78

Таблица 2 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер	SEQ ID	SEQ ID	SEQ ID	SEQ ID	-	%	SEQ
соеди-	NO: 1, старто- вый сайт	NO: 1, стоп- сайт	NO: 2, старто- вый сайт	NO: 2, стоп- сайт	Последовательность (5'-3')	подавле- ния PNPLA3	ID NO
912786	1207	1222	19047	19062	ATCCTAATGGGTAGCA	81	79
912787	1211	1226	19051	19066	CATTATCCTAATGGGT	46	80
912788	1212	1227	19052	19067	ACATTATCCTAATGGG	0	81
912789	1213	1228	19053	19068	GACATTATCCTAATGG	70	82
912790	1220	1235	19060	19075	TACATAAGACATTATC	34	83
912791	1224	1239	19064	19079	GCATTACATAAGACAT	86	84
912792	1245	1260	19085	19100	CCACAGGCAGGGTACA	76	85
912793	1246	1261	19086	19101	TCCACAGGCAGGGTAC	28	86
912794	1253	1268	19093	19108	GGCAGATTCCACAGGC	75	87
912795	1259	1274	19099	19114	CGCAATGGCAGATTCC	92	88
912796	1265	1280	19105	19120	GACAATCGCAATGGCA	64	89
912797	1266	1281	19106	19121	GGACAATCGCAATGGC	75	90
912798	1267	1282	19107	19122	TGGACAATCGCAATGG	73	91
912799	1285	1300	23690	23705	AGCCATGTCACCAGTC	67	92
912800	1289	1304	23694	23709	TGGAAGCCATGTCACC	24	93
912801	1290	1305	23695	23710	CTGGAAGCCATGTCAC	72	94
912802	1297	1312	23702	23717	GGCATATCTGGAAGCC	0	95

912803	1298	1313	23703	23718	GGGCATATCTGGAAGC	0	96
912804	1351	1366	23756	23771	AGCACTCGAGTGAACA	0	97
912805	1386	1401	N/A	N/A	GCATTTGGGACCTGGA	77	98
912806	1387	1402	N/A	N/A	GGCATTTGGGACCTGG	60	99
912807	1388	1403	25151	25166	TGGCATTTGGGACCTG	41	100
912808	1394	1409	25157	25172	GCTCACTGGCATTTGG	44	101
912809	1523	1538	25286	25301	GTTCAGGCTGGACCTG	49	102
912810	1547	1562	25310	25325	AGGTACTTTATTGCCC	11	103
912811	1550	1565	25313	25328	AGCAGGTACTTTATTG	64	104
912812	1653	1668	25416	25431	AACTTTAGCACCTCTG	91	105
912813	1655	1670	25418	25433	GAAACTTTAGCACCTC	88	106
912814	1656	1671	25419	25434	GGAAACTTTAGCACCT	53	107
912815	1669	1684	25432	25447	CTGCACAAAGATGGGA	80	108
912816	1671	1686	25434	25449	AGCTGCACAAAGATGG	45	109
912817	1685	1700	25448	25463	AGCAATGCGGAGGTAG	15	110
912818	1740	1755	25503	25518	ACCAACTCAGCTCAGA	85	111
912819	1741	1756	25504	25519	AACCAACTCAGCTCAG	79	112
912820	1757	1772	25520	25535	TCCTAGCTTTTCATAA	23	113
912821	1788	1803	25551	25566	TGCTGGACCGCTGCAC	0	114
912822	1796	1811	25559	25574	GAGTTAAGTGCTGGAC	93	115
912823	1802	1817	25565	25580	GTATTAGAGTTAAGTG	92	116
912824	1803	1818	25566	25581	TGTATTAGAGTTAAGT	79	117
912825	1806	1821	25569	25584	TGATGTATTAGAGTTA	92	118
912826	1808	1823	25571	25586	GCTGATGTATTAGAGT	80	119
912827	1821	1836	25584	25599	TGAATTAACGCATGCT	83	120
912828	1822	1837	25585	25600	CTGAATTAACGCATGC	78	121
912829	1870	1885	25633	25648	AGTAAGGGACCCTCTG	17	122
912830	1871	1886	25634	25649	CAGTAAGGGACCCTCT	28	123
912831	1872	1887	25635	25650	TCAGTAAGGGACCCTC	77	124
912832	1874	1889	25637	25652	AGTCAGTAAGGGACCC	51	125
912833	1893	1908	25656	25671	ATTAATAGGGCCACGA	80	126
912834	1895	1910	25658	25673	CCATTAATAGGGCCAC	90	127
912835	1896	1911	25659	25674	ACCATTAATAGGGCCA	81	128

912836							
312000	1906	1921	25669	25684	GAACAGTCTGACCATT	82	129
912837	1908	1923	25671	25686	TGGAACAGTCTGACCA	31	130
912838	1909	1924	25672	25687	CTGGAACAGTCTGACC	83	131
912839	1911	1926	25674	25689	TGCTGGAACAGTCTGA	72	132
912840	1916	1931	25679	25694	CCTCATGCTGGAACAG	83	133
912841	1928	1943	25691	25706	TCATTCTAAGAACCTC	96	134
912842	1945	1960	25708	25723	ACCCATCCAAACACCT	16	135
912843	1982	1997	25745	25760	ACACATGGGCCAGCCT	70	136
912844	1989	2004	25752	25767	CAAGATCACACATGGG	70	137
912845	2057	2072	25820	25835	GGGACGAACTGCACCC	0	138
912846	2098	2113	25861	25876	TATCATCTTTGCAGAC	81	139
912847	2116	2131	25879	25894	GTTTTTAGTAGTCAAG	91	140
912848	2117	2132	25880	25895	CGTTTTTAGTAGTCAA	91	141
912849	2145	2160	25908	25923	TATCATCTTGTTACCC	85	142
912850	2148	2163	25911	25926	GATTATCATCTTGTTA	70	143
912851	2150	2165	25913	25928	TAGATTATCATCTTGT	53	144
912852	2151	2166	25914	25929	GTAGATTATCATCTTG	80	145
912853	2152	2167	25915	25930	AGTAGATTATCATCTT	84	146
912854	2175	2190	25938	25953	GTGAAAAAGGTGTTCT	77	147
912855	2182	2197	25945	25960	TAGTTAGGTGAAAAAG	92	148
912856	2188	2203	25951	25966	TTATTTTAGTTAGGTG	88	149
912857	2190	2205	25953	25968	CATTATTTTAGTTAGG	86	150
912858	2273	2288	26036	26051	CTACTAACATCTCACT	55	151
912859	2274	2289	26037	26052	TCTACTAACATCTCAC	89	152
912860	2278	2293	26041	26056	TTATTCTACTAACATC	27	153
912861	2280	2295	26043	26058	GCTTATTCTACTAACA	79	154
912862	2281	2296	26044	26059	GGCTTATTCTACTAAC	81	155
912863	2632	2647	26395	26410	GGTGAATGCCCTGCAC	41	156

Таблица 3 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения NO: 1, стартовый сайт NO: 2, стартовый сайт NO: 2, стартовый сайт Последовательность (5'-3') подавления иния РNPLA3 Последовательность (5'-3') подавления иния РNPLA3 Последовательность (5'-3') Последовательность (5'-3') Подавления иния РNPLA3 Последовательность (5'-3') Последовательность (5'-3')	Ц омо	SEQ ID	SEQ ID	SEQ ID	SEQ ID		%	SEQ
вения стартовый сайт стартосайт сайт раза раз	Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последователь ность (5! 3!)	подавле-	`
		старто-	стоп-	старто-	стоп-	последовательность (5-3)	ния	
912865 2755 2770 26518 26533 GGGAGAAACTCACTGA 37 158 912866 N/A N/A 4416 4431 TGCTACTTGCCCCAGC 2 159 912867 N/A N/A 4421 4436 CACAATGCTACTTGCC 87 160 912868 N/A N/A 4584 4599 CCCAATGGCAGGGCTT 58 161 912870 N/A N/A 4592 4607 TGCTCCTACCCAATGG 46 162 912870 N/A N/A 4766 4781 GACTTTATTGTTGTCT 95 163 912871 N/A N/A 4883 4898 TTCTATACCAGAGTGA 89 164 912872 N/A N/A 4884 4899 TTTCTATACCAGAGTG 89 165 912877 N/A N/A 6155 6170 TACATCCACGACTTC 94 167 912877 N/A N/A 6606 6621 GGAACATTCAGGGTTT 13 169	пения	вый сайт	сайт	вый сайт	сайт		PNPLA3	110
912866 N/A N/A 4416 4431 TGCTACTTGCCCAGC 2 159 912867 N/A N/A 4421 4436 CACAATGCTACTTGCC 87 160 912868 N/A N/A 4584 4599 CCCAATGGCAGGGCTT 58 161 912869 N/A N/A 4584 4599 CCCAATGGCAGGGCTT 58 161 912870 N/A N/A 4766 4781 GACTTTATTGTTGCT 95 163 912871 N/A N/A 4883 4898 TTCTATACCAGAGTG 89 164 912872 N/A N/A 4884 4899 TTTCTATACCAGAGTG 89 165 912873 N/A N/A 5405 5420 GTAGATGGCCTTAATG 83 166 912876 N/A N/A 6155 6170 TACATCCACGACTTC 94 167 912877 N/A N/A 6156 6171 TTACATCACAGACTTC 94 167	912864	2703	2718	26466	26481	TTCAAGTTGTGTGCTC	90	157
912867 N/A N/A 4421 4436 CACAATGCTACTTGCC 87 160 912868 N/A N/A 4584 4599 CCCAATGGCAGGGCTT 58 161 912869 N/A N/A 4592 4607 TGCTCCTACCCAATGG 46 162 912870 N/A N/A 4766 4781 GACTITIATTGTTGCT 95 163 912871 N/A N/A 4883 4898 TTCTATACCAGAGTG 89 164 912872 N/A N/A 4884 4899 TTTCTATACCAGAGTG 89 165 912873 N/A N/A 5405 5420 GTAGATGGCCTTAATG 83 166 912876 N/A N/A 6155 6170 TACATCCACGACTTC 94 167 912880 N/A N/A 6156 6171 TTACATCACGACTTC 76 168 912881 N/A N/A 6834 6849 ATTACTTGGGTGCAGG 55 170 <tr< td=""><td>912865</td><td>2755</td><td>2770</td><td>26518</td><td>26533</td><td>GGGAGAAACTCACTGA</td><td>37</td><td>158</td></tr<>	912865	2755	2770	26518	26533	GGGAGAAACTCACTGA	37	158
912868 N/A N/A 4584 4599 CCCAATGGCAGGGCTT 58 161 912869 N/A N/A 4592 4607 TGCTCCTACCCAATGG 46 162 912870 N/A N/A 4766 4781 GACTITIATIGTGCT 95 163 912871 N/A N/A 4883 4898 TTCTATACCAGAGTGA 89 164 912872 N/A N/A 4884 4899 TTTCTATACCAGAGTG 89 165 912873 N/A N/A 5405 5420 GTAGATGGCCTTAATG 83 166 912876 N/A N/A 6155 6170 TACATCCACGACTTCC 94 167 912877 N/A N/A 6606 6621 GGAACATTCAGGGTTT 13 169 912881 N/A N/A 6834 6849 ATTACTTGGGTGCAGG 55 170 912884 N/A N/A 6838 6853 GCAGATTACTTGGGTG 45 171 <	912866	N/A	N/A	4416	4431	TGCTACTTGCCCCAGC	2	159
912869 N/A N/A 4592 4607 TGCTCCTACCCAATGG 46 162 912870 N/A N/A 4766 4781 GACTTTATTGTTGCT 95 163 912871 N/A N/A 4883 4898 TTCTATACCAGAGTGA 89 164 912872 N/A N/A 4884 4899 TTTCTATACCAGAGTG 89 165 912873 N/A N/A 5405 5420 GTAGATGGCCTTAATG 83 166 912876 N/A N/A 6155 6170 TACATCCACGACTTC 94 167 912877 N/A N/A 6156 6171 TTACATCCACGACTTC 76 168 912880 N/A N/A 6606 6621 GGAACATTCAGGGTTT 13 169 912881 N/A N/A 6834 6849 ATTACTTGGGTGCAGG 55 170 912888 N/A N/A 16946 TGCAGGACAGGTTCCT 30 172 912888	912867	N/A	N/A	4421	4436	CACAATGCTACTTGCC	87	160
912870 N/A N/A 4766 4781 GACTITTATTGTTGCT 95 163 912871 N/A N/A 4883 4898 TTCTATACCAGAGTGA 89 164 912872 N/A N/A 4884 4899 TTTCTATACCAGAGTG 89 165 912873 N/A N/A 5405 5420 GTAGATGGCCTTAATG 83 166 912876 N/A N/A 6155 6170 TACATCCACGACTTC 94 167 912877 N/A N/A 6156 6171 TTACATCCACGACTTC 76 168 912880 N/A N/A 6606 6621 GGAACATTCAGGGTTT 13 169 912881 N/A N/A 6834 6849 ATTACTTGGGTGAGG 55 170 912884 N/A N/A 6931 6946 TGCAGGACAGGTTCCT 30 172 912888 N/A N/A 7552 7567 AGTCACACTGGGTCACC 55 173 <	912868	N/A	N/A	4584	4599	CCCAATGGCAGGGCTT	58	161
912871 N/A N/A 4883 4898 TTCTATACCAGAGTGA 89 164 912872 N/A N/A 4884 4899 TTTCTATACCAGAGTG 89 165 912873 N/A N/A 5405 5420 GTAGATGGCCTTAATG 83 166 912876 N/A N/A 6155 6170 TACATCCACGACTTC 94 167 912877 N/A N/A 6156 6171 TTACATCCACGACTTC 76 168 912880 N/A N/A 6606 6621 GGAACATTCAGGGTTT 13 169 912881 N/A N/A 6834 6849 ATTACTTGGGTGCAGG 55 170 912884 N/A N/A 6838 6853 GCAGATTACTTGGGTG 45 171 912885 N/A N/A 7549 7564 CACACTGGGTCACCAC 55 173 912889 N/A N/A 12273 12288 GGTATATGTTCCAGG 87 175	912869	N/A	N/A	4592	4607	TGCTCCTACCCAATGG	46	162
912872 N/A N/A 4884 4899 TTTCTATACCAGAGTG 89 165 912873 N/A N/A 5405 5420 GTAGATGGCCTTAATG 83 166 912876 N/A N/A 6155 6170 TACATCCACGACTTCG 94 167 912877 N/A N/A 6156 6171 TTACATCCACGACTTC 76 168 912880 N/A N/A 6606 6621 GGAACATTCAGGGTTT 13 169 912881 N/A N/A 6834 6849 ATTACTTGGGTGCAGG 55 170 912884 N/A N/A 6838 6853 GCAGATTACTTGGGTG 45 171 912885 N/A N/A 6931 6946 TGCAGGACAGGTTCCT 30 172 912888 N/A N/A 7559 7567 AGTCACACTGGGTCACC 61 174 912928 N/A N/A 12273 12288 GGTATATGTTCCCAGG 87 175	912870	N/A	N/A	4766	4781	GACTTTTATTGTTGCT	95	163
912873 N/A N/A 5405 5420 GTAGATGGCCTTAATG 83 166 912876 N/A N/A 6155 6170 TACATCCACGACTTC 94 167 912877 N/A N/A 6156 6171 TTACATCCACGACTTC 76 168 912880 N/A N/A 6606 6621 GGAACATTCAGGGTTT 13 169 912881 N/A N/A 6834 6849 ATTACTTGGGTGCAGG 55 170 912884 N/A N/A 6838 6853 GCAGATTACTTGGGTG 45 171 912885 N/A N/A 6931 6946 TGCAGGACAGGTTCCT 30 172 912888 N/A N/A 7549 7564 CACACTGGGTCACCAC 55 173 912928 N/A N/A 12273 12288 GGTATATGTTCCCAGG 87 175 912932 N/A N/A 12314 12329 TATAACCACAGCCTGG 29 176	912871	N/A	N/A	4883	4898	TTCTATACCAGAGTGA	89	164
912876 N/A N/A 6155 6170 TACATCCACGACTTCG 94 167 912877 N/A N/A 6156 6171 TTACATCCACGACTTC 76 168 912880 N/A N/A 6606 6621 GGAACATTCAGGGTTT 13 169 912881 N/A N/A 6834 6849 ATTACTTGGGTGCAGG 55 170 912884 N/A N/A 6838 6853 GCAGATTACTTGGGTG 45 171 912885 N/A N/A 6931 6946 TGCAGGACAGGTTCCT 30 172 912888 N/A N/A 7549 7564 CACACTGGGTCACCAC 55 173 912889 N/A N/A 7552 7567 AGTCACACTGGGTCAC 61 174 912928 N/A N/A 12273 12288 GGTATATGTTCCCAGG 87 175 912929 N/A N/A 12314 12329 TATAACCACAGCCTGG 29 176	912872	N/A	N/A	4884	4899	TTTCTATACCAGAGTG	89	165
912877 N/A N/A 6156 6171 TTACATCCACGACTTC 76 168 912880 N/A N/A 6606 6621 GGAACATTCAGGGTTT 13 169 912881 N/A N/A 6834 6849 ATTACTTGGGTGCAGG 55 170 912884 N/A N/A 6838 6853 GCAGATTACTTGGGTG 45 171 912885 N/A N/A 6931 6946 TGCAGGACAGGTTCCT 30 172 912888 N/A N/A 7549 7564 CACACTGGGTCACCAC 55 173 912889 N/A N/A 7552 7567 AGTCACACTGGGTCAC 61 174 912928 N/A N/A 12273 12288 GGTATATGTTCCCAGG 87 175 912929 N/A N/A 12314 12329 TATAACCACAGCCTGG 29 176 912932 N/A N/A 12321 12336 CTGACTATATAACCAC 81 177 <td>912873</td> <td>N/A</td> <td>N/A</td> <td>5405</td> <td>5420</td> <td>GTAGATGGCCTTAATG</td> <td>83</td> <td>166</td>	912873	N/A	N/A	5405	5420	GTAGATGGCCTTAATG	83	166
912880 N/A N/A 6606 6621 GGAACATTCAGGGTTT 13 169 912881 N/A N/A 6834 6849 ATTACTTGGGTGCAGG 55 170 912884 N/A N/A 6838 6853 GCAGATTACTTGGGTG 45 171 912885 N/A N/A 6931 6946 TGCAGGACAGGTTCCT 30 172 912888 N/A N/A 7549 7564 CACACTGGGTCACCAC 55 173 912889 N/A N/A 7552 7567 AGTCACACTGGGTCAC 61 174 912928 N/A N/A 12273 12288 GGTATATGTTCCCAGG 87 175 912929 N/A N/A 12314 12329 TATAACCACAGCCTGG 29 176 912932 N/A N/A 12321 12336 CTGACTATATAACCAC 81 177 912933 N/A N/A 12767 12782 CTTACTATGGTAGAGT 88 179 </td <td>912876</td> <td>N/A</td> <td>N/A</td> <td>6155</td> <td>6170</td> <td>TACATCCACGACTTCG</td> <td>94</td> <td>167</td>	912876	N/A	N/A	6155	6170	TACATCCACGACTTCG	94	167
912881 N/A N/A 6834 6849 ATTACTTGGGTGCAGG 55 170 912884 N/A N/A 6838 6853 GCAGATTACTTGGGTG 45 171 912885 N/A N/A 6931 6946 TGCAGGACAGGTTCCT 30 172 912888 N/A N/A 7549 7564 CACACTGGGTCACCAC 55 173 912889 N/A N/A 7552 7567 AGTCACACTGGGTCAC 61 174 912928 N/A N/A 12273 12288 GGTATATGTTCCCAGG 87 175 912929 N/A N/A 12314 12329 TATAACCACAGCCTGG 29 176 912932 N/A N/A 12321 12336 CTGACTATATAACCAC 81 177 912933 N/A N/A 122666 12681 ATCTTAGTGGCTGGGT 91 178 912936 N/A N/A 12767 12782 CTTACTATGGTAGAGT 88 179	912877	N/A	N/A	6156	6171	TTACATCCACGACTTC	76	168
912884 N/A N/A 6838 6853 GCAGATTACTTGGGTG 45 171 912885 N/A N/A 6931 6946 TGCAGGACAGGTTCCT 30 172 912888 N/A N/A 7549 7564 CACACTGGGTCACCAC 55 173 912889 N/A N/A 7552 7567 AGTCACACTGGGTCAC 61 174 912928 N/A N/A 12273 12288 GGTATATGTTCCCAGG 87 175 912929 N/A N/A 12314 12329 TATAACCACAGCCTGG 29 176 912932 N/A N/A 12321 12336 CTGACTATATAACCAC 81 177 912933 N/A N/A 12666 12681 ATCTTAGTGGCTGGGT 91 178 912936 N/A N/A 12767 12782 CTTACTATGGTAGAGT 88 179 912937 N/A N/A 12768 12783 TCTTACTATGCATAGCCTT 97 181	912880	N/A	N/A	6606	6621	GGAACATTCAGGGTTT	13	169
912885 N/A N/A 6931 6946 TGCAGGACAGGTTCCT 30 172 912888 N/A N/A 7549 7564 CACACTGGGTCACCAC 55 173 912889 N/A N/A 7552 7567 AGTCACACTGGGTCAC 61 174 912928 N/A N/A 12273 12288 GGTATATGTTCCCAGG 87 175 912929 N/A N/A 12314 12329 TATAACCACAGCCTGG 29 176 912932 N/A N/A 12321 12336 CTGACTATATAACCAC 81 177 912933 N/A N/A 12666 12681 ATCTTAGTGGCTGGGT 91 178 912936 N/A N/A 12767 12782 CTTACTATGGTAGAGT 88 179 912937 N/A N/A 12768 12783 TCTTACTATGGTAGAGT 74 180 912940 N/A N/A 12835 12850 TGCATTGCATAGCCTT 97 181	912881	N/A	N/A	6834	6849	ATTACTTGGGTGCAGG	55	170
912888 N/A N/A 7549 7564 CACACTGGGTCACCAC 55 173 912889 N/A N/A 7552 7567 AGTCACACTGGGTCAC 61 174 912928 N/A N/A 12273 12288 GGTATATGTTCCCAGG 87 175 912929 N/A N/A 12314 12329 TATAACCACAGCCTGG 29 176 912932 N/A N/A 12321 12336 CTGACTATATAACCAC 81 177 912933 N/A N/A 12666 12681 ATCTTAGTGGCTGGGT 91 178 912936 N/A N/A 12767 12782 CTTACTATGGTAGAGT 88 179 912937 N/A N/A 12768 12783 TCTTACTATGGTAGAG 74 180 912940 N/A N/A 12835 12850 TGCATTGCATAGCCTT 97 181 912941 N/A N/A 12907 12922 TGCTTATAAAGCACAC 61 183 <td>912884</td> <td>N/A</td> <td>N/A</td> <td>6838</td> <td>6853</td> <td>GCAGATTACTTGGGTG</td> <td>45</td> <td>171</td>	912884	N/A	N/A	6838	6853	GCAGATTACTTGGGTG	45	171
912889 N/A N/A 7552 7567 AGTCACACTGGGTCAC 61 174 912928 N/A N/A 12273 12288 GGTATATGTTCCCAGG 87 175 912929 N/A N/A 12314 12329 TATAACCACAGCCTGG 29 176 912932 N/A N/A 12321 12336 CTGACTATATAACCAC 81 177 912933 N/A N/A 12666 12681 ATCTTAGTGGCTGGGT 91 178 912936 N/A N/A 12767 12782 CTTACTATGGTAGAGT 88 179 912937 N/A N/A 12768 12783 TCTTACTATGGTAGAG 74 180 912940 N/A N/A 12835 12850 TGCATTGCATAGCCTT 97 181 912941 N/A N/A 12907 12922 TGCTTATAAAGCACAC 61 183 912944 N/A N/A 12988 13003 GGAATAAGCCTCCACC 14 184 </td <td>912885</td> <td>N/A</td> <td>N/A</td> <td>6931</td> <td>6946</td> <td>TGCAGGACAGGTTCCT</td> <td>30</td> <td>172</td>	912885	N/A	N/A	6931	6946	TGCAGGACAGGTTCCT	30	172
912928 N/A N/A 12273 12288 GGTATATGTTCCCAGG 87 175 912929 N/A N/A 12314 12329 TATAACCACAGCCTGG 29 176 912932 N/A N/A 12321 12336 CTGACTATATAACCAC 81 177 912933 N/A N/A 12666 12681 ATCTTAGTGGCTGGGT 91 178 912936 N/A N/A 12767 12782 CTTACTATGGTAGAGT 88 179 912937 N/A N/A 12768 12783 TCTTACTATGGTAGAG 74 180 912940 N/A N/A 12835 12850 TGCATTGCATAGCCTT 97 181 912941 N/A N/A 12907 12922 TGCTTATAAAGCACAC 61 183 912944 N/A N/A 12988 13003 GGAATAAGCCTCCACC 14 184 912945 N/A N/A 14055 14070 GAAATCTGATTGCTTC 59 185	912888	N/A	N/A	7549	7564	CACACTGGGTCACCAC	55	173
912929 N/A N/A 12314 12329 TATAACCACAGCCTGG 29 176 912932 N/A N/A 12321 12336 CTGACTATATAACCAC 81 177 912933 N/A N/A 12666 12681 ATCTTAGTGGCTGGGT 91 178 912936 N/A N/A 12767 12782 CTTACTATGGTAGAGT 88 179 912937 N/A N/A 12768 12783 TCTTACTATGGTAGAG 74 180 912940 N/A N/A 12835 12850 TGCATTGCATAGCCTT 97 181 912941 N/A N/A 12836 12851 TTGCATTGCATAGCCT 96 182 912944 N/A N/A 12907 12922 TGCTTATAAAGCACAC 61 183 912945 N/A N/A 14055 14070 GAAATCTGATTGCTTC 59 185	912889	N/A	N/A	7552	7567	AGTCACACTGGGTCAC	61	174
912932 N/A N/A 12321 12336 CTGACTATATAACCAC 81 177 912933 N/A N/A 12666 12681 ATCTTAGTGGCTGGGT 91 178 912936 N/A N/A 12767 12782 CTTACTATGGTAGAGT 88 179 912937 N/A N/A 12768 12783 TCTTACTATGGTAGAG 74 180 912940 N/A N/A 12835 12850 TGCATTGCATAGCCTT 97 181 912941 N/A N/A 12836 12851 TTGCATTGCATAGCCT 96 182 912944 N/A N/A 12907 12922 TGCTTATAAAGCACAC 61 183 912945 N/A N/A 12988 13003 GGAATAAGCCTCCACC 14 184 912948 N/A N/A 14055 14070 GAAATCTGATTGCTTC 59 185	912928	N/A	N/A	12273	12288	GGTATATGTTCCCAGG	87	175
912933 N/A N/A 12666 12681 ATCTTAGTGGCTGGGT 91 178 912936 N/A N/A 12767 12782 CTTACTATGGTAGAGT 88 179 912937 N/A N/A 12768 12783 TCTTACTATGGTAGAG 74 180 912940 N/A N/A 12835 12850 TGCATTGCATAGCCTT 97 181 912941 N/A N/A 12836 12851 TTGCATTGCATAGCCT 96 182 912944 N/A N/A 12907 12922 TGCTTATAAAGCACAC 61 183 912945 N/A N/A 12988 13003 GGAATAAGCCTCCACC 14 184 912948 N/A N/A 14055 14070 GAAATCTGATTGCTTC 59 185	912929	N/A	N/A	12314	12329	TATAACCACAGCCTGG	29	176
912936 N/A N/A 12767 12782 CTTACTATGGTAGAGT 88 179 912937 N/A N/A 12768 12783 TCTTACTATGGTAGAG 74 180 912940 N/A N/A 12835 12850 TGCATTGCATAGCCTT 97 181 912941 N/A N/A 12836 12851 TTGCATTGCATAGCCT 96 182 912944 N/A N/A 12907 12922 TGCTTATAAAGCACAC 61 183 912945 N/A N/A 14055 14070 GAAATCTGATTGCTTC 59 185	912932	N/A	N/A	12321	12336	CTGACTATATAACCAC	81	177
912937 N/A N/A 12768 12783 TCTTACTATGGTAGAG 74 180 912940 N/A N/A 12835 12850 TGCATTGCATAGCCTT 97 181 912941 N/A N/A 12836 12851 TTGCATTGCATAGCCT 96 182 912944 N/A N/A 12907 12922 TGCTTATAAAGCACAC 61 183 912945 N/A N/A 12988 13003 GGAATAAGCCTCCACC 14 184 912948 N/A N/A 14055 14070 GAAATCTGATTGCTTC 59 185	912933	N/A	N/A	12666	12681	ATCTTAGTGGCTGGGT	91	178
912940 N/A N/A 12835 12850 TGCATTGCATAGCCTT 97 181 912941 N/A N/A 12836 12851 TTGCATTGCATAGCCT 96 182 912944 N/A N/A 12907 12922 TGCTTATAAAGCACAC 61 183 912945 N/A N/A 12988 13003 GGAATAAGCCTCCACC 14 184 912948 N/A N/A 14055 14070 GAAATCTGATTGCTTC 59 185	912936	N/A	N/A	12767	12782	CTTACTATGGTAGAGT	88	179
912941 N/A N/A 12836 12851 TTGCATTGCATAGCCT 96 182 912944 N/A N/A 12907 12922 TGCTTATAAAGCACAC 61 183 912945 N/A N/A 12988 13003 GGAATAAGCCTCCACC 14 184 912948 N/A N/A 14055 14070 GAAATCTGATTGCTTC 59 185	912937	N/A	N/A	12768	12783	TCTTACTATGGTAGAG	74	180
912944 N/A N/A 12907 12922 TGCTTATAAAGCACAC 61 183 912945 N/A N/A 12988 13003 GGAATAAGCCTCCACC 14 184 912948 N/A N/A 14055 14070 GAAATCTGATTGCTTC 59 185	912940	N/A	N/A	12835	12850	TGCATTGCATAGCCTT	97	181
912945 N/A N/A 12988 13003 GGAATAAGCCTCCACC 14 184 912948 N/A N/A 14055 14070 GAAATCTGATTGCTTC 59 185	912941	N/A	N/A	12836	12851	TTGCATTGCATAGCCT	96	182
912948 N/A N/A 14055 14070 GAAATCTGATTGCTTC 59 185	912944	N/A	N/A	12907	12922	TGCTTATAAAGCACAC	61	183
	912945	N/A	N/A	12988	13003	GGAATAAGCCTCCACC	14	184
912949 N/A N/A 14393 14408 TACTTATCTGCTCACT 66 186	912948	N/A	N/A	14055	14070	GAAATCTGATTGCTTC	59	185
	912949	N/A	N/A	14393	14408	TACTTATCTGCTCACT	66	186

			14673	14688			
912952	N/A	N/A	14707	14722	TCTCTTAGTGTCCCCA	90	187
			14674	14689			
912953	N/A	N/A	14708	14723	ATCTCTTAGTGTCCCC	92	188
912956	N/A	N/A	15284	15299	TCACATTCATGCTTGC	82	189
912957	N/A	N/A	15291	15306	GATAACCTCACATTCA	0	190
912960	N/A	N/A	15712	15727	GAGCTAGGTGCTTCAC	6	191
912961	N/A	N/A	15753	15768	ATAACAACTGAACCAC	85	192
912964	N/A	N/A	15937	15952	GTTATTAGCCAAATGC	92	193
912965	N/A	N/A	16468	16483	GGAGACTTGGCAAGGT	87	194
912968	N/A	N/A	16960	16975	ATTCATGACAGCCCTT	46	195
912969	N/A	N/A	17128	17143	ATCGATTTTTCAGAGT	9	196
912972	N/A	N/A	17134	17149	ACAAACATCGATTTTT	52	197
912973	N/A	N/A	17769	17784	CTCTTTAATGACCTCG	90	198
912976	N/A	N/A	18865	18880	GTCAGAGGCACTCACA	25	199
912977	N/A	N/A	18959	18974	AGCTATTATCTCCCAC	0	200
912980	N/A	N/A	19315	19330	AGTTTCTGGGCTTGCA	90	201
912981	N/A	N/A	19382	19397	GGCAATCACAAGAGAC	73	202
912984	N/A	N/A	20286	20301	AGAGGAAGCCCAATCA	79	203
912904	IN/A	IN/A	20316	20331	AUAUUAAUCCCAATCA	/9	203
912985	N/A	N/A	20287	20302	CAGAGGAAGCCCAATC	93	204
912963	IN/A	IN/A	20317	20332	CAGAGGAAGCCCAATC	93	204
912988	N/A	N/A	20658	20673	TAGAAATTGCAGTGCC	92	205
912989	N/A	N/A	20731	20746	TCCTATCCATATATTG	55	206
912992	N/A	N/A	21408	21423	GCAATTCTAGACATGG	88	207
912993	N/A	N/A	21558	21573	AGGACTTACACCAAGA	86	208
912996	N/A	N/A	21936	21951	TTCCTAATAAGAGCCC	24	209
912997	N/A	N/A	21946	21961	GTCAAACATCTTCCTA	66	210
913000	N/A	N/A	22077	22092	AAAACTGTAGGATAGG	47	211
913001	N/A	N/A	22162	22177	GTTACATCCATAAAAC	0	212
913004	N/A	N/A	22169	22184	AGAGAATGTTACATCC	62	213
913008	N/A	N/A	23083	23098	AAAGATTAATCAGGGC	61	214
913012	N/A	N/A	23788	23803	GTATTTACCTGGAGGC	0	215
913016	N/A	N/A	24426	24441	GGCCTATGATTTTCAG	0	216

Таблица 4 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID	SEQ ID	SEQ ID	a SEQ ID NO. 1 и 2	%	
Номер соеди-	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность (5'-3')	подавле-	SEQ ID
нения	старто-	стоп-	старто-	стоп-		ния	NO
	вый сайт	сайт	вый сайт			PNPLA3	
912874	N/A	N/A	5869	5884	ATACTTTTGGCAAGGC	96	217
912875	N/A	N/A	5870	5885	AATACTTTTGGCAAGG	91	218
912878	N/A	N/A	6159	6174	TGCTTACATCCACGAC	12	219
912879	N/A	N/A	6296	6311	CATCATGTTGGTCTCG	54	220
912882	N/A	N/A	6835	6850	GATTACTTGGGTGCAG	39	221
912883	N/A	N/A	6837	6852	CAGATTACTTGGGTGC	69	222
912886	N/A	N/A	7083	7098	TTTAATGGTGTTTTGG	87	223
912887	N/A	N/A	7478	7493	TCAAATGCCGGTATTC	52	224
912890	N/A	N/A	7587	7602	GTGAACTTCAACTTCC	56	225
912930	N/A	N/A	12317	12332	CTATATAACCACAGCC	77	226
912931	N/A	N/A	12319	12334	GACTATATAACCACAG	92	227
912934	N/A	N/A	12670	12685	AATCATCTTAGTGGCT	91	228
912935	N/A	N/A	12765	12780	TACTATGGTAGAGTGG	80	229
912938	N/A	N/A	12786	12801	GTACATGGTCTGCAAA	84	230
912939	N/A	N/A	12787	12802	TGTACATGGTCTGCAA	57	231
912942	N/A	N/A	12843	12858	GCATGCATTGCATTGC	16	232
912943	N/A	N/A	12885	12900	ACCAATCCTGTTAGAC	93	233
912946	N/A	N/A	13557	13572	GGAGACACCAAGCACC	42	234
912947	N/A	N/A	13751	13766	GCACTAAGTGTTAGAA	79	235
912950	N/A	N/A	14396	14411	GCTTACTTATCTGCTC	0	236
912951	N/A	N/A	14501	14516	GGAGATCCATCCTGCA	0	237
912954	N/A	N/A	14675	14690	CATCTCTTAGTGTCCC	92	238
712754	17/73	11/71	14709	14724	Carreterradionece		230
912955	N/A	N/A	15122	15137	TCCTAATGTCCTCAAC	9	239

912958	N/A	N/A	15293	15308	AAGATAACCTCACATT	33	240
912959	N/A	N/A	15294	15309	CAAGATAACCTCACAT	22	241
912962	N/A	N/A	15754	15769	TATAACAACTGAACCA	82	242
912963	N/A	N/A	15856	15871	GCTTTAAAGCAGGACA	8	243
912966	N/A	N/A	16774	16789	AAAATTGTGGGTTTAG	68	244
912967	N/A	N/A	16850	16865	ATCATTTGGACCATAG	81	245
912970	N/A	N/A	17130	17145	ACATCGATTTTTCAGA	83	246
912971	N/A	N/A	17133	17148	CAAACATCGATTTTTC	62	247
912974	N/A	N/A	17843	17858	GCTTTACAAGCTGGTC	0	248
912975	N/A	N/A	17879	17894	ATCTATGTTCTCCTAG	0	249
912978	N/A	N/A	19125	19140	ACCTAAAATGCTCACC	0	250
912979	N/A	N/A	19198	19213	CCAGACTACATGCCAC	79	251
912982	N/A	N/A	19446	19461	TCTACTAGGCATCTCT	63	252
912983	N/A	N/A	19447	19462	TTCTACTAGGCATCTC	42	253
912986	N/A	N/A	20288	20303	TCAGAGGAAGCCCAAT	92	254
912960	11/21	11/74	20318	20333	TCAGAGGAAGCCCAAT	92	234
912987	N/A	N/A	20656	20671	GAAATTGCAGTGCCCT	92	255
912990	N/A	N/A	21393	21408	GCCAACCTATCACTGA	60	256
912991	N/A	N/A	21400	21415	AGACATGGCCAACCTA	32	257
912994	N/A	N/A	21565	21580	TGAAATAAGGACTTAC	67	258
912995	N/A	N/A	21934	21949	CCTAATAAGAGCCCCA	31	259
912998	N/A	N/A	22041	22056	GAAATCTGTCAGAGCA	33	260
912999	N/A	N/A	22072	22087	TGTAGGATAGGACTAG	0	261
913002	N/A	N/A	22166	22181	GAATGTTACATCCATA	53	262
913003	N/A	N/A	22168	22183	GAGAATGTTACATCCA	80	263
913005	N/A	N/A	22605	22620	GTGATAAATCTGCAAG	70	264
913006	N/A	N/A	23081	23096	AGATTAATCAGGGCCA	8	265
913007	N/A	N/A	23082	23097	AAGATTAATCAGGGCC	30	266
913009	N/A	N/A	23325	23340	GGTCACATGTGAGCCC	0	267
913010	N/A	N/A	23496	23511	CACTTCTGGTTCAAGA	13	268
913011	N/A	N/A	23580	23595	CCAATCTGATGACTTC	80	269
913013	N/A	N/A	23790	23805	AAGTATTTACCTGGAG	0	270
913014	N/A	N/A	24028	24043	CACTCAAAGAGACTCA	65	271
913015	N/A	N/A	24425	24440	GCCTATGATTTTCAGG	0	272
913017	N/A	N/A	24633	24648	CACTACTGCCCTCTTC	50	273
913018	N/A	N/A	24983	24998	TGCTGGGCTGATGTCA	0	274
913019	N/A	N/A	25150	25165	GGCATTTGGGACCTGA	67	275

Таблица 5 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	CEO IE				a SEQ ID NO. 1 ii 2	0/	
Номер соеди-	SEQ ID NO: 1,	SEQ ID NO: 1,	SEQ ID NO: 2,	SEQ ID NO: 2,	Последовательность (5'-3')	% подавле-	SEQ ID
	старто-	стоп-	старто-	стоп-	последовательность (3-3)	ния	
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
915343	1	16	2739	2754	GCCCCCCTCGGACCAT	0	276
915363	45	60	2783	2798	CCTCAGTGTCTCGGCC	0	277
915383	107	122	2845	2860	AATCGGCTCGGGTCCT	29	278
915403	190	205	2928	2943	GACAAGCTCCAGCCGC	64	279
915423	249	264	2987	3002	CGCTCAGGCAGCGGGT	0	280
915443	347	362	N/A	N/A	CTCCAGCGGGATACCG	6	281
915463	386	401	5960	5975	GGCCTTCCGCACAAGA	0	282
915483	416	431	5990	6005	TGGATGGAAGATGCCA	28	283
915503	452	467	6026	6041	GAGACCCTGTCGGAGG	45	284
915523	488	503	6062	6077	GATGAGCTGGTGGACA	70	285
915543	510	525	6084	6099	GAGAGATGCCTATTTT	92	286
915563	559	574	6133	6148	GACCGAAAGTCAGACA	7	287
915603	697	712	11915	11930	GTTTTGGCATCAATGA	94	288
915623	754	769	11972	11987	GACTTGACTTTAGGGC	98	289
915643	827	842	12045	12060	CGAGAGAAGGTAGAGG	97	290
915663	879	894	13615	13630	CTCGAAGGCATATCTC	66	291
915683	932	947	16052	16067	GGGCCTGTTGCAGATG	0	292
915703	985	1000	16105	16120	GGCATGGCGACCTCAG	6	293
915723	1037	1052	16157	16172	AGCCAAGGCAGCCGAC	0	294
915743	1132	1147	16252	16267	GCGAGCCTGGGCGAGA	0	295
915763	1177	1192	19017	19032	CTCATGTATCCACCTT	88	296

915783	1229	1244	19069	19084	GGGCAGCATTACATAA	73	297
915803	1286	1301	23691	23706	AAGCCATGTCACCAGT	34	298
915823	1348	1363	23753	23768	ACTCGAGTGAACACCT	12	299
915843	1405	1420	25168	25183	GCCTGTTGGCTGCTCA	1	300
915863	1473	1488	25236	25251	CTGCTGGACAGCCCTT	0	301
915883	1542	1557	25305	25320	CTTTATTGCCCAAGAA	72	302
915903	1601	1616	25364	25379	CAGACTCTTCTCTAGT	49	303
915923	1633	1648	25396	25411	AATCTGCTAGACTCGC	88	304
915943	1686	1701	25449	25464	CAGCAATGCGGAGGTA	80	305
915963	1768	1783	25531	25546	GAAAGGTTGCTTCCTA	84	306
915983	1789	1804	25552	25567	GTGCTGGACCGCTGCA	11	307
916003	1815	1830	25578	25593	AACGCATGCTGATGTA	69	308
916023	1848	1863	25611	25626	GCTTCCTGGTGTCATT	81	309
916043	1884	1899	25647	25662	GCCACGAAACAGTCAG	67	310
916063	1913	1928	25676	25691	CATGCTGGAACAGTCT	20	311
916083	1954	1969	25717	25732	AAGGCCCCCACCCATC	0	312
916103	1977	1992	25740	25755	TGGGCCAGCCTACCCC	0	313
916123	2026	2041	25789	25804	GGAAGTGGGATCATGC	55	314
916142	2100	2115	25863	25878	GTTATCATCTTTGCAG	57	315
916162	2139	2154	25902	25917	CTTGTTACCCCCGCCA	84	316
916182	2264	2279	26027	26042	TCTCACTGATTCACAT	83	317
916202	2624	2639	26387	26402	CCCTGCACACTAGATT	55	318
916222	2677	2692	26440	26455	GAGGCGGAAGCTCCTG	0	319
916242	2707	2722	26470	26485	CAGGTTCAAGTTGTGT	83	320
916282	N/A	N/A	4225	4240	AAATGTACGGAATCTC	79	321
916302	N/A	N/A	4822	4837	GTGTAAACATTTGTCC	74	322
916322	N/A	N/A	5414	5429	AGCTTTGGTGTAGATG	49	323
916342	N/A	N/A	5801	5816	TACTATGGGAGCCACA	42	324
916362	N/A	N/A	6866	6881	TGAAATTGTAACTGCC	70	325
916382	N/A	N/A	7492	7507	TAGATCGGTGCTGTTC	27	326
916402	N/A	N/A	7785	7800	GTTATAGGCGAGAGCA	0	327
916562	N/A	N/A	12316	12331	TATATAACCACAGCCT	58	328
916582	N/A	N/A	12932	12947	ATAAGAGCTGTCTCCT	94	329
916602	N/A	N/A	13703	13718	CTAGTAAATGCTTGTC	96	330
916622	N/A	N/A	14177	14192	CTAATATTTCTACAGC	0	331
916642	N/A	N/A	14672	14687	CTCTTAGTGTCCCCAT	95	332
916662	N/A	N/A	15542	15557	TTCCATCACAAGGCCT	50	333
916682	N/A	N/A	16317	16332	TCCATAATGCACAAGA	71	334
916702	N/A	N/A	17223	17238	TGTAGCTGGTTTGTGG	88	335
916722	N/A	N/A	18223	18238	AACAGCTACATCAGGC	44	336
916742	N/A	N/A	19249	19264	GGCATTGCACATAGAC	74	337
916761	N/A	N/A	20410	20425	GTAAGCAATGCAGCCA	88	338
916781	N/A	N/A	20659	20674	TTAGAAATTGCAGTGC	91	339
916801	N/A	N/A	20989	21004	AGGTATTAAACTGCCA	25	340
916821	N/A	N/A	21506	21521	GTCCTAAGAGCACTCA	57	341
916841	N/A	N/A	22603	22618	GATAAATCTGCAAGAG	49	342
916861	N/A	N/A	23472	23487	GGGACTTACACTGAAA	66	343
916881	N/A	N/A	24314	24329	GTCAACGCAGACTGCT	33	344
			<u> </u>			I.	

Таблица 6 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID	SEQ ID	SEQ ID	a seq id no. i и z	%	
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,		подавле-	SEQ
соеди-	старто-	стоп-	старто-	стоп-	Последовательность (5'-3')	ния	ID
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
915344	2	17	2740	2755	CGCCCCCCTCGGACCA	0	345
915364	46	61	2784	2799	GCCTCAGTGTCTCGGC	0	346
915384	108	123	2846	2861	GAATCGGCTCGGGTCC	49	347
915404	191	206	2929	2944	GGACAAGCTCCAGCCG	9	348
915424	250	265	2988	3003	TCGCTCAGGCAGCGGG	0	349
915444	348	363	N/A	N/A	GCTCCAGCGGGATACC	0	350
915464	387	402	5961	5976	TGGCCTTCCGCACAAG	0	351
915484	428	443	6002	6017	TAAGTTGAAGGATGGA	96	352
915504	453	468	6027	6042	AGAGACCCTGTCGGAG	80	353
915524	489	504	6063	6078	AGATGAGCTGGTGGAC	81	354
915544	512	527	6086	6101	AAGAGAGATGCCTATT	77	355
915564	560	575	6134	6149	GGACCGAAAGTCAGAC	0	356
915604	700	715	11918	11933	GTTGTTTTGGCATCAA	91	357
915624	755	770	11973	11988	GGACTTGACTTTAGGG	81	358
915644	828	843	12046	12061	TCGAGAGAAGGTAGAG	24	359
915664	880	895	13616	13631	CCTCGAAGGCATATCT	41	360
915684	952	967	16072	16087	GATGACTTCAGGCCTG	0	361
915704	987	1002	16107	16122	TGGGCATGGCGACCTC	0	362
915724	1038	1053	16158	16173	CAGCCAAGGCAGCCGA	0	363
915744	1133	1148	16253	16268	AGCGAGCCTGGGCGAG	0	364
915764	1179	1194	19019	19034	TGCTCATGTATCCACC	56	365
915784	1230	1245	19070	19085	AGGGCAGCATTACATA	69	366
915804	1293	1308	23698	23713	TATCTGGAAGCCATGT	6	367
915824	1349	1364	23754	23769	CACTCGAGTGAACACC	0	368
915844	1406	1421	25169	25184	GGCCTGTTGGCTGCTC	0	369
915864	1477	1492	25240	25255	GTCTCTGCTGGACAGC	0	370
915884	1545	1560	25308	25323	GTACTTTATTGCCCAA	73	371
915904	1607	1622	25370	25385	GACTCACAGACTCTTC	92	372
915924	1634	1649	25397	25412	GAATCTGCTAGACTCG	65	373
915944	1687	1702	25450	25465	ACAGCAATGCGGAGGT	83	374
915964	1769	1784	25532	25547	CGAAAGGTTGCTTCCT	79	375
915984	1790	1805	25553	25568	AGTGCTGGACCGCTGC	38	376
916004	1816	1831	25579	25594	TAACGCATGCTGATGT	79	377
916024	1849	1864	25612	25627	GGCTTCCTGGTGTCAT	73	378
916044	1885	1900	25648	25663	GGCCACGAAACAGTCA	40	379
916064	1914	1929	25677	25692	TCATGCTGGAACAGTC	80	380
916084	1958	1973	25721	25736	TCACAAGGCCCCCACC	35	381
916104	1978	1993	25741	25756	ATGGGCCAGCCTACCC	0	382
916124	2053	2068	25816	25831	CGAACTGCACCCCTTC	38	383
916143	2101	2116	25864	25879	GGTTATCATCTTTGCA	81	384
916163	2140	2155	25903	25918	TCTTGTTACCCCCGCC	84	385
916183	2265	2280	26028	26043	ATCTCACTGATTCACA	86	386
916203	2625	2640	26388	26403	GCCCTGCACACTAGAT	65	387

916223	2678	2693	26441	26456	GGAGGCGGAAGCTCCT	0	388
916243	2709	2724	26472	26487	GCCAGGTTCAAGTTGT	62	389
916283	N/A	N/A	4226	4241	CAAATGTACGGAATCT	52	390
916303	N/A	N/A	4864	4879	TACTTTAGGCTCCTGG	90	391
916323	N/A	N/A	5422	5437	AGCATTAGAGCTTTGG	75	392
916343	N/A	N/A	5803	5818	TCTACTATGGGAGCCA	89	393
916363	N/A	N/A	6927	6942	GGACAGGTTCCTTGGA	0	394
916383	N/A	N/A	7493	7508	CTAGATCGGTGCTGTT	14	395
916403	N/A	N/A	7786	7801	AGTTATAGGCGAGAGC	0	396
916563	N/A	N/A	12318	12333	ACTATATAACCACAGC	90	397
916583	N/A	N/A	12936	12951	GACAATAAGAGCTGTC	0	398
916603	N/A	N/A	13704	13719	GCTAGTAAATGCTTGT	73	399
916623	N/A	N/A	14231	14246	CCAACTTTTAGTATTA	92	400
916643	N/A	N/A	14678	14693	AGCCATCTCTTAGTGT	50	401
916663	N/A	N/A	15566	15581	TCTGATGTCGAAGAGG	68	402
916683	N/A	N/A	16341	16356	TCCCATGTGGCAGTAC	0	403
916703	N/A	N/A	17239	17254	TCCAAATGCCCAACTC	37	404
916723	N/A	N/A	18241	18256	GCAAATAATGTGCACA	22	405
916743	N/A	N/A	19250	19265	GGGCATTGCACATAGA	59	406
916762	N/A	N/A	20413	20428	GTAGTAAGCAATGCAG	69	407
916782	N/A	N/A	20660	20675	CTTAGAAATTGCAGTG	91	408
916802	N/A	N/A	21002	21017	ATTTTAACAGCTCAGG	95	409
916822	N/A	N/A	21540	21555	TATGACATTTCAGAGT	88	410
916842	N/A	N/A	22629	22644	AGTACAAGCGCAGCCT	14	411
916862	N/A	N/A	23538	23553	ACAAGGACAAGCCCAC	37	412
916882	N/A	N/A	24339	24354	GAAGTAGCGGCATCCC	68	413

Таблица 7 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер	SEQ ID	SEQ ID	SEQ ID	SEQ ID		%	SEQ
соеди-	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность (5'-3')	подавле-	ID
нения	старто-	стоп-	старто-	стоп-		ния	NO

	вый сайт	сайт	вый сайт	сайт		PNPLA3	
915345	3	18	2741	2756	CCGCCCCCCTCGGACC	0	414
915365	47	62	2785	2800	TGCCTCAGTGTCTCGG	0	415
915385	109	124	2847	2862	GGAATCGGCTCGGGTC	72	416
915405	193	208	2931	2946	AAGGACAAGCTCCAGC	41	417
915425	251	266	2989	3004	CTCGCTCAGGCAGCGG	0	418
915445	349	364	N/A	N/A	TGCTCCAGCGGGATAC	0	419
915465	388	403	5962	5977	CTGGCCTTCCGCACAA	16	420
915485	430	445	6004	6019	CTTAAGTTGAAGGATG	27	421
915505	454	469	6028	6043	CAGAGACCCTGTCGGA	72	422
915525	492	507	6066	6081	CGGAGATGAGCTGGTG	92	423
915545	513	528	6087	6102	TAAGAGAGATGCCTAT	57	424
915565	561	576	6135	6150	TGGACCGAAAGTCAGA	0	425
915605	701	716	11919	11934	GGTTGTTTTGGCATCA	97	426
915625	756	771	11974	11989	TGGACTTGACTTTAGG	93	427
915645	829	844	12047	12062	CTCGAGAGAAGGTAGA	0	428
915665	881	896	13617	13632	TCCTCGAAGGCATATC	0	429
915685	953	968	16073	16088	GGATGACTTCAGGCCT	0	430
915705	988	1003	16108	16123	CTGGGCATGGCGACCT	0	431
915725	1039	1054	16159	16174	ACAGCCAAGGCAGCCG	0	432
915745	1134	1149	16254	16269	TAGCGAGCCTGGGCGA	0	433
915765	1193	1208	19033	19048	CAAGTTGCAAATCTTG	0	434
915785	1231	1246	19071	19086	CAGGGCAGCATTACAT	74	435
915805	1300	1315	23705	23720	TCGGGCATATCTGGAA	21	436
915825	1350	1365	23755	23770	GCACTCGAGTGAACAC	0	437
915845	1407	1422	25170	25185	AGGCCTGTTGGCTGCT	0	438
915865	1480	1495	25243	25258	TTGGTCTCTGCTGGAC	21	439
915885	1546	1561	25309	25324	GGTACTTTATTGCCCA	62	440
915905	1609	1624	25372	25387	GTGACTCACAGACTCT	81	441
915925	1635	1650	25398	25413	AGAATCTGCTAGACTC	74	442
915945	1688	1703	25451	25466	CACAGCAATGCGGAGG	56	443
915965	1770	1785	25533	25548	GCGAAAGGTTGCTTCC	66	444
915985	1791	1806	25554	25569	AAGTGCTGGACCGCTG	71	445

916005	1817	1832	25580	25595	TTAACGCATGCTGATG	69	446
916025	1850	1865	25613	25628	GGGCTTCCTGGTGTCA	58	447
916045	1886	1901	25649	25664	GGGCCACGAAACAGTC	9	448
916065	1915	1930	25678	25693	CTCATGCTGGAACAGT	86	449
916085	1959	1974	25722	25737	ATCACAAGGCCCCCAC	82	450
916105	1979	1994	25742	25757	CATGGGCCAGCCTACC	0	451
916125	2054	2069	25817	25832	ACGAACTGCACCCCTT	84	452
916144	2102	2117	25865	25880	AGGTTATCATCTTTGC	90	453
916164	2141	2156	25904	25919	ATCTTGTTACCCCCGC	88	454
916184	2266	2281	26029	26044	CATCTCACTGATTCAC	91	455
916204	2626	2641	26389	26404	TGCCCTGCACACTAGA	47	456
916224	2680	2695	26443	26458	GAGGAGGCGGAAGCTC	0	457
916244	2710	2725	26473	26488	AGCCAGGTTCAAGTTG	71	458
916284	N/A	N/A	4227	4242	TCAAATGTACGGAATC	40	459
916304	N/A	N/A	4865	4880	GTACTTTAGGCTCCTG	89	460
916324	N/A	N/A	5429	5444	ACATATCAGCATTAGA	87	461
916344	N/A	N/A	5804	5819	GTCTACTATGGGAGCC	90	462
916364	N/A	N/A	6966	6981	GAAGATGCATAGAGGA	0	463
916384	N/A	N/A	7550	7565	TCACACTGGGTCACCA	43	464
916544	N/A	N/A	12135	12150	GGCAATCAGGGAGGCA	32	465
916564	N/A	N/A	12320	12335	TGACTATATAACCACA	92	466
916584	N/A	N/A	12951	12966	CCCAATTGCCACTAGG	83	467
916604	N/A	N/A	13718	13733	TCTTTACCAAGACCGC	92	468
916624	N/A	N/A	14245	14260	GACAAATTCATCAACC	87	469
916644	N/A	N/A	14778	14793	CTGTATCCAAAAGGCC	0	470
916664	N/A	N/A	15597	15612	ATACATAGCAGAGCCA	44	471
916684	N/A	N/A	16352	16367	CACCCTATCGCTCCCA	43	472
916704	N/A	N/A	17267	17282	AGTTATGTCTGACTCA	72	473
916724	N/A	N/A	18254	18269	AATATACCCCACAGCA	40	474
916744	N/A	N/A	19288	19303	GTGCATGTGTGGCTTG	82	475
916763	N/A	N/A	20414	20429	TGTAGTAAGCAATGCA	85	476
916783	N/A	N/A	20724	20739	CATATATTGCGGATGA	24	477
916803	N/A	N/A	21005	21020	GTTATTTTAACAGCTC	95	478
916823	N/A	N/A	21561	21576	ATAAGGACTTACACCA	83	479
916843	N/A	N/A	22679	22694	CAGCATGCAACCACCC	8	480
916863	N/A	N/A	23550	23565	TGGGATGCTAGGACAA	72	481
916883	N/A	N/A	24340	24355	GGAAGTAGCGGCATCC	0	482

Таблица 8 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID	SEQ ID	SEQ ID	a 5LQ 1D 110. 1 u 2	%	
Номер соеди-	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность (5'-3')	подавле-	SEQ ID
нения	старто-	стоп-	старто-	стоп-		ния	NO
пения	вый сайт	сайт	вый сайт	сайт		PNPLA3	110
915346	25	40	2763	2778	CATTCCCAGCGCGACG	0	483
915366	52	67	2790	2805	TACCCTGCCTCAGTGT	0	484
915386	112	127	2850	2865	TCGGGAATCGGCTCGG	26	485
915406	195	210	2933	2948	CGAAGGACAAGCTCCA	69	486
915426	252	267	2990	3005	GCTCGCTCAGGCAGCG	0	487
915446	350	365	N/A	N/A	CTGCTCCAGCGGGATA	0	488
915466	389	404	5963	5978	CCTGGCCTTCCGCACA	40	489
915486	431	446	6005	6020	GCTTAAGTTGAAGGAT	88	490
915506	455	470	6029	6044	GCAGAGACCCTGTCGG	32	491
915526	493	508	6067	6082	CCGGAGATGAGCTGGT	4	492
915546	514	529	6088	6103	GTAAGAGAGATGCCTA	94	493
915566	562	577	6136	6151	TTGGACCGAAAGTCAG	56	494
915606	702	717	11920	11935	TGGTTGTTTTGGCATC	99	495
915626	757	772	11975	11990	GTGGACTTGACTTTAG	89	496
915646	830	845	12048	12063	TCTCGAGAGAAGGTAG	0	497
915666	882	897	13618	13633	ATCCTCGAAGGCATAT	0	498
915686	956	971	16076	16091	TGAGGATGACTTCAGG	10	499
915706	989	1004	16109	16124	GCTGGGCATGGCGACC	10	500
915726	1064	1079	16184	16199	TAGCAGCTCATCTCCC	67	501
915746	1135	1150	16255	16270	GTAGCGAGCCTGGGCG	0	502
915766	1196	1211	19036	19051	TAGCAAGTTGCAAATC	78	503

915806 1302 1317 23707 23722 CGTCGGGCATATCTGG 53 505 915826 1352 1367 23757 23772 CAGCACTCGAGTGAAC 24 506 915846 1408 1423 25171 25186 GAGGCCTGTGGACC 24 506 915866 1508 1523 25271 25286 GAGGATGGACCGGGG 0 508 915886 1549 1564 25312 25327 GCAGGTCTATATTGC 0 509 915906 1610 1625 25373 25388 AGTGACTCACAGACTC 35 510 915906 1610 1625 25373 25388 AGTGACTCACAGACTC 35 510 915906 1689 1704 25452 25467 ACACAGCAATGCGAG 69 512 915906 1771 1786 25534 25549 GGCGAAATGCTGAGC 69 512 915906 1771 1786 25554 25549 GGCGAAAGGTTGCTTC 58 513 915986 1772 1807 25555 25570 TAAGTGCTGGACCGT 70 514 916006 1818 1883 25581 25596 ATTAACGCATGCTGAT 73 515 916006 1887 1902 25650 25665 AGGGCCACGAAACAGT 61 517 916006 1887 1902 25650 25665 AGGGCCACGAAACAGT 61 517 916006 1917 1932 25680 25695 ACCTCATGCTGGACCA 81 518 916106 1980 1995 25743 25738 CATCACAAGGCCCCCA 48 519 916106 1980 1995 25743 25738 CATCACAAGGCCCCCA 48 519 916126 2055 2070 25818 25833 GAGGAACTGCACCCCT 77 521 916145 2105 2120 25868 25883 TCAAGGTATCATCTT 89 522 916185 2270 2285 26033 26048 CTAACATCTCACTGT 66 524 916225 2681 2696 26444 26459 AGAGGAGCCGGAAGCT 2 526 916225 2681 2696 26444 26459 AGAGGAGCCGGAAGCT 2 526 916235 N/A N/A 4240 4255 ATTAGGACAGAGTC 2 525 916245 2711 2726 26474 26489 AGACGGAGCCGAAGCT 3 528 916355 N/A N/A 4240 4255 ATTAGGACAGAGTC 3 528 916355 N/A N/A 12938 1233 ACCATACTCACACCG 2 525 916355 N/A N/A 12957 12972 GCCTACCCAACCG 3 537 916665 N/A N/A 1238 12333 ACCATACTCACACCG 23 537 916675 N/A N/A 1238 12333 ACCAATACTCACACCG 58 540 916865 N/A N/A 12959 19	915786	1232	1247	19072	19087	ACAGGGCAGCATTACA	87	504
915846	915806	1302	1317	23707	23722	CGTCGGGCATATCTGG	53	505
915866 1508 1523 25271 25286 GAGGATGGACCGCGGG 0 508 915886 1549 1564 25312 25327 GCAGGTACTTTATTGC 0 509 915906 1610 1625 25373 25388 AGTGACTCACAGACTC 35 510 915926 1636 1651 25399 25414 AAGAATCTGCTAGACT 69 511 915946 1689 1704 25452 25467 ACACAGCAATGCGGAG 69 512 915966 1771 1786 25534 25549 GGCGAAAGGTTGCTTC 58 513 915986 1792 1807 25555 25570 TAAGTGCTGACCGT 70 514 916006 1818 1833 25581 25596 ATTAACGCATGCTGAT 73 515 916026 1887 1866 25614 25629 TGGCTTCCTGGTGT 71 516 916046 1887 1992 25650 25665 ACCTCATGCTGAACA 81 518 916086 1917 1932 25680 25695 ACCTCATGCTGGACAC 81 518 916086 1960 1975 25723 25738 CATCACAAGGCCCCCA 48 519 916106 1980 1995 25743 25758 ACATGGCCAGCCACCCAAC 48 519 916106 1980 1995 25868 25883 TCAAGGTACACCCT 77 521 916145 2105 2120 25868 25883 TCAAGGTACACCCT 77 521 916165 2142 2157 25905 25920 CATCTTGTTACCCCCG 89 523 916185 2270 2285 26033 26048 CTAACATCCACACTTA 66 524 916205 2627 2642 26390 26405 ATGCCCTGCACACTAG 62 525 916225 2681 2696 26444 26459 AAGGCAGGTACACTTA 67 521 916235 N/A N/A 4240 4255 ATTAGGACAGAGTT 83 527 916235 N/A N/A 4240 4255 ATTAGGACAGAGTTCA 75 528 916305 N/A N/A 4866 4881 TGTACTTTAGGCTCCT 93 529 916325 N/A N/A 4240 4255 ATTAGGACAGAGTTCA 75 528 916345 N/A N/A 4240 4255 ATTAGGACAGAGTTCA 75 528 916345 N/A N/A 4380 5445 AACATATCAGCATTAG 85 530 916345 N/A N/A 13719 13734 4360	915826	1352	1367	23757	23772	CAGCACTCGAGTGAAC	24	506
915886	915846	1408	1423	25171	25186	GAGGCCTGTTGGCTGC	0	507
915906	915866	1508	1523	25271	25286	GAGGATGGACCGCGGG	0	508
915926	915886	1549	1564	25312	25327	GCAGGTACTTTATTGC	0	509
915946 1689 1704 25452 25467 ACACAGCAATGCGGAG 69 512 915966 1771 1786 25534 25549 GGCGAAAGGTTGCTTC 58 513 915986 1792 1807 25555 25570 TAAGTGCTGGACCGCT 70 514 916906 1818 1833 25581 25596 ATTAACGCATGCTGAT 73 515 916026 1851 1866 25614 25629 TGGGCTTCCTGGTGTC 71 516 916046 1887 1902 25650 25665 AGGCCACGAAACAGT 61 517 916046 1887 1902 25650 25665 ACCTCATGCTGGACA 81 518 916086 1960 1975 25723 25738 CATCACAAGGCCCCCA 48 519 916106 1980 1995 25743 25758 ACATGGCCACCACC 54 520 916126 2055 2070 25818 25833 GACGAACTGCACCCCT 77 521 916145 2105 2120 25868 25883 TCAAGGTTACATCTT 89 522 916145 2142 2157 25905 25920 CATCTTGTTACCCCGG 89 523 91625 2627 2642 26390 26405 ATGCCTGCACACTAG 62 525 916225 2681 2696 26444 26459 AGAGGAGCGGAAGCT 25 526 916245 2711 2726 26474 26489 AGACGAGGTCAAGTT 83 527 916325 N/A N/A 4240 4255 ATTAGGACAGATTCAT 79 529 916325 N/A N/A 4386 4881 TGTACTTTAGGCTCCT 93 529 916335 N/A N/A 4386 4881 TGTACTTTAGGCTCCT 93 539 916345 N/A N/A 4866 4881 TGTACTTTAGGCTCCT 93 539 916355 N/A N/A 4240 4255 ATTAGGACAGATTCA 75 528 916365 N/A N/A 4366 46881 TGTACTTTAGGCTCCT 93 539 916345 N/A N/A 4240 4255 ATTAGGACAGATTCA 75 528 916355 N/A N/A 4240 4255 ATTAGGACAGATTCA 75 528 916365 N/A N/A 4240 4255 ATTAGGACAGATTCA 75 528 916365 N/A N/A 4240 4255 ATTAGGACAGATTCA 75 528 916365 N/A N/A 42648 AGAGTAGCACCCC 79 535 916365 N/A N/A 12151 12166 GTAACTGTGACCCC 79 535 916365 N/A N/A 12151 12166 GTAACTGTGACCCC 79 535 916655 N/A N/A 12151 12166 GTAACTGTGACCCCC 79 535 916665 N/A N/A 12257 12972 GCCTATCCCAATCTGA 68 5	915906	1610	1625	25373	25388	AGTGACTCACAGACTC	35	510
915966 1771 1786 25534 25549 GGCGAAAGGTTGCTTC 58 513 915986 1792 1807 25555 25570 TAAGTGCTGGACCGCT 70 514 916006 1818 1833 25581 25596 ATTAACGCATGCTGAT 73 515 916026 1851 1866 25614 25629 TGGGCTTCCTGGTGTC 71 516 916046 1887 1902 25650 25665 AGGGCCACGAAACAGT 61 517 916066 1917 1932 25680 25695 ACCTCATGCTGGACA 81 518 916086 1960 1975 25723 25738 CATCACAAGGCCCCCA 44 519 916106 1980 1995 25743 25758 ACATGGGCCAGCCTAC 54 520 916126 2055 2070 25818 25833 GACGAACTGCACCCCT 77 521 916145 2105 2120 25868 25883 TCAAGGTTATCATCTT 89 522 916165 2142 2157 25905 25920 CATCTTGTTACCCCG 89 523 916185 2270 2285 26033 26048 CTAACATCACTGACTCC 25 25 916225 2681 2696 26444 26459 AGGCCAGGCAGCTAC 62 525 916245 2711 2726 26474 26489 AAGCCAGGTTCAGTT 67 528 916305 N/A N/A 4240 4255 ATTAGGACAGGTCCT 73 528 916325 N/A N/A 4866 4881 TGTACTTAGGCTCCT 93 529 916325 N/A N/A 5430 5445 AACATATCAGCATTAG 85 530 916345 N/A N/A 5430 5445 AACATATCAGCATTAG 85 530 916345 N/A N/A 5430 5445 AACATATCAGCATTAG 85 530 916345 N/A N/A 6974 6989 TCATTATGGACACTAG 0 532 916355 N/A N/A 6974 6989 TCATTATGGACACTAG 0 532 916545 N/A N/A 12151 12166 GTAACATCAGCACCA 84 531 916545 N/A N/A 13719 13734 GTCTTACCAGACCCC 79 535 916585 N/A N/A 14248 14263 AACGACACACCACCA 84 538 916645 N/A N/A 14248 14263 AACGACACCACTAG 62 532 916545 N/A N/A 13719 13734 GTCTTACCAGACCG 23 537 916545 N/A N/A 13719 13734 GTCTTACCAGACCG 23 537 916545 N/A N/A 14248 14263 AACGACACCACTAC 64 544 916745 N/A N/A 14248 14263 AACGACACCACTAC 68 540 916645 N/A N/A 14248 14263 AACGACACCACTA	915926	1636	1651	25399	25414	AAGAATCTGCTAGACT	69	511
915986 1792 1807 25555 25570 TAAGTGCTGGACCGCT 70 514 916006 1818 1833 25581 25596 ATTAACGCATGCTGAT 73 515 916026 1851 1866 25614 25629 TGGGCTTCCTGGTGTC 71 516 916046 1887 1902 25650 25665 AGGGCCACGAAACAGT 61 517 916066 1917 1932 25680 25695 ACCTCATGGTGACA 81 518 916086 1960 1975 25723 25738 CATCACAAGGCCCCCA 48 519 916106 1980 1995 25723 25738 CATCACAAGGCCCCCA 48 519 916106 1980 1995 25723 25738 CATCACAAGGCCCCCA 54 520 916126 2055 2070 25818 25833 GACGAACTGCACCCCT 77 521 916145 2105 2120 25868 25883 TCAAGGTTATCATCTT 89 522 916185 2270 2285 26603 26048 CTAACATCACTGAT 66 524 916205 2627 2642 26390 26405 ATGCCTGCACACAG 62 525 916225 2681 2696 26444 26459 AGGCAGGTCAGTCAG 62 525 916225 2681 2696 26444 26459 AGGCAGGTTCAGTT 83 527 916305 N/A N/A 4240 4255 ATTAGGACAAGATTCA 75 528 916305 N/A N/A 4866 4881 TGTACTTAGGCTCCT 93 529 916325 N/A N/A 5430 5445 AACCATATCACCACA 84 531 916345 N/A N/A 5430 5445 AACCATATCACCACAC 84 531 916345 N/A N/A 5430 5445 AACCATATCACCACAC 84 531 91635 N/A N/A 6974 6989 TCATTATGGACACACA 84 531 916365 N/A N/A 12151 12166 GTAACATCACCACAC 84 531 916545 N/A N/A 12338 12353 ACCCATACTGCACC 79 535 916585 N/A N/A 12151 12166 GTAACATCACCACAC 84 538 916645 N/A N/A 13719 13734 GTCTTTACCAGACCG 23 537 916545 N/A N/A 13719 13734 GTCTTTACCAGACCG 23 537 916655 N/A N/A 13719 13734 GTCTTTACCAGACCG 23 537 916665 N/A N/A 13295 12972 GCCTATCCCAATTGCC 70 536 916665 N/A N/A 13719 13734 GTCTTTACCAGACCG 23 537 916675 N/A N/A 13719 13734 GTCTTTACCAGACCC 68 540 916745 N/A N/A 12955 12970 GAATATACCCC	915946	1689	1704	25452	25467	ACACAGCAATGCGGAG	69	512
916006	915966	1771	1786	25534	25549	GGCGAAAGGTTGCTTC	58	513
916026 1851 1866 25614 25629 TGGGCTTCCTGGTGTC 71 516 916046 1887 1902 25650 25665 AGGGCCAGAAACAGT 61 517 916066 1917 1932 25680 25695 ACCTCATGCTGGAACA 81 518 916086 1960 1975 25723 25738 CATCACAAGGCCCCCA 48 519 916106 1980 1995 25743 25758 ACATGGGCCAGCCTAC 54 520 916126 2055 2070 25818 25833 GACGAACTGCACCCCT 77 521 916145 2105 2120 25868 25883 TCAAGGTATCATCTT 89 522 916165 2142 2157 25905 25920 CATCTTGTTACCCCCG 89 523 916185 2270 2285 26033 26048 CTAACATCTCACTGAT 66 524 916205 2627 2642 26390 26405 ATGCCCTGCACACTAG 62 325 916225 2681 2696 26444 26459 AGAGGAGGCGGAAGCT 25 326 916245 2711 2726 26474 26489 AAGCCAGGTTCAAGTT 83 327 916305 N/A N/A 4866 4881 TGTACTTTAGGCTCCT 93 329 916325 N/A N/A 5430 5445 AACATATCAGCATTAG 85 330 916345 N/A N/A 5839 5854 CAAGGATGCACCACAC 84 531 916365 N/A N/A 6974 6989 TCATTATGGAGATGC 0 532 916385 N/A N/A 12151 12166 GTAACAGCTGTCCCT 93 354 916365 N/A N/A 12151 12166 GTAACAGCCTGTCAG 1 533 916545 N/A N/A 12338 12353 ACCCATACTGACCCC 79 355 916685 N/A N/A 12338 12353 ACCCATACTGACCCC 79 354 916665 N/A N/A 14248 14263 AACGACAAATTCATCA 48 538 916665 N/A N/A 14788 14803 TGCAATCCCCTGTAT 17 539 916665 N/A N/A 14788 14803 TGCAATCCCCTGTAT 17 539 916665 N/A N/A 14788 14803 TGCAATCACCCTGTAT 17 539 916665 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916665 N/A N/A 14788 14803 TGCAATCAGCACCC 58 540 916685 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538 916665 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916665 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916665 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538 916665 N/A N/A 14248 14	915986	1792	1807	25555	25570	TAAGTGCTGGACCGCT	70	514
916046 1887 1902 25650 25665 AGGGCCACGAAACAGT 61 517 916066 1917 1932 25680 25695 ACCTCATGCTGGAACA 81 518 916086 1960 1975 25723 25738 CATCACAAGGCCCCCA 48 519 916106 1980 1995 25743 25758 ACATGGGCCAGCCTAC 54 520 916126 2055 2070 25818 25833 GACGAACTGCACCCCT 77 521 916145 2105 2120 25868 25883 TCAAGGTATCATCTT 89 522 916165 2142 2157 25905 25920 CATCTTGTACCCCCG 89 523 916185 2270 2285 26033 26048 CTAACATCTCACTGAT 66 524 51625 2681 2696 26444 26459 AGAGGAGGCGAAGCT 25 326 252 2681 2696 26444 26459 AGAGGAGGCGGAAGCT 25 326 252 2681 2696 26444 26459 AGAGGAGGCGGAAGCT 25 326 252 326	916006	1818	1833	25581	25596	ATTAACGCATGCTGAT	73	515
916066 1917 1932 25680 25695 ACCTCATGCTGGAACA 81 518 916086 1960 1975 25723 25738 CATCACAAGGCCCCCA 48 519 916106 1980 1995 25743 25758 ACATGGGCAGCCTAC 54 520 916126 2055 2070 25818 25833 GACGAACTGCACCCCT 77 521 916145 2105 2120 25868 25883 TCAAGGTTATCATCTT 89 522 916165 2142 2157 25905 25920 CATCTTGTTACCCCG 89 523 916185 2270 2285 26033 26048 CTAACATCTCACTGAT 66 524 916205 2627 2642 26390 26405 ATGCCCTGCACACTAG 62 525 916225 2681 2696 26444 26459 AGAGGAGGCGGAAGCT 25 526 916225 2681 2696 26444 26459 AGAGGAGCGGAAGCT 25 526 916245 2711 2726 26474 26489 AAGCCAGGTTCAAGTT 83 527 916305 N/A N/A 4240 4255 ATTAGGACAAGATTCA 75 528 916305 N/A N/A 4386 4881 TGTACTTTAGGCTCCT 93 329 916325 N/A N/A 5430 5445 AACATATCAGCATTAG 85 330 916345 N/A N/A 5430 5445 AACATATCAGCATCAG 45 31 916365 N/A N/A 5430 5445 AACATATCAGCATCAG 45 31 916365 N/A N/A 6974 6989 TCATTATGGAAGATC 0 532 916385 N/A N/A 12151 12166 GTAACTGGTAGCTCCT 93 534 916565 N/A N/A 12338 12353 ACCCATACTGCACCCC 79 535 916585 N/A N/A 14248 14263 AACGATATCAACCCCTGTAT 17 539 916605 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916665 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916665 N/A N/A 17273 17288 ATAAGGAGTTAGTCCC 58 540 916665 N/A N/A 19295 19310 GTAACAGGAGCC 68 540 916685 N/A N/A 19295 19310 GTAACAGGTGCACCA 69 545 916784 N/A N/A 19295 19310 GTAACAGGTGCACCAGC 58 543 916644 N/A N/A 20435 20450 AGGCAAATTCCTCA 69 545 916784 N/A N/A 20435 20450 AGGCAAATTCCTCA 69 545 916784 N/A N/A 21046 21061 AGGAATCTGAACCCACGC 58 543 916804 N/A N/A 20435 20450 AGGCATCTGAACCCACCACC 59 548 916804 N/A N/A 20435	916026	1851	1866	25614	25629	TGGGCTTCCTGGTGTC	71	516
916086 1960 1975 25723 25738 CATCACAAGGCCCCCA 48 519 916106 1980 1995 25743 25758 ACATGGGCCAGCCTAC 54 520 916126 2055 2070 25818 25833 GACGAACTGCACCCCT 77 521 916145 2105 2120 25868 25883 TCAAGGTTATCATCTT 89 522 916165 2142 2157 25905 25920 CATCTTGTTACCCCCG 89 523 916185 2270 2285 26033 26048 CTAACATCTCACTGAT 66 524 916205 2627 2642 26390 26405 ATGCCCTGCACACTAG 62 525 916225 2681 2696 26444 26459 AGAGGAGGCGGAAGCT 25 526 916245 2711 2726 26474 26489 AAGCCAGGTTCAAGTT 83 527 916305 N/A N/A 4240 4255 ATTAGGACAGAATTCA 75 528 916335 N/A N/A 4866 4881 TGTACTTTAGGCTCCT 93 529 916325 N/A N/A 5430 5445 AACATATCAGCATTAG 85 530 916345 N/A N/A 5839 5854 CAAGGATGCCACCAAC 84 531 916365 N/A N/A 6974 6989 TCATTATGGAAGATCC 0 532 916385 N/A N/A 12151 12166 GTAACTGGATGCCCC 79 535 916545 N/A N/A 12338 12353 ACCCATACTGACCCC 79 535 916565 N/A N/A 13719 13734 GTCTTTACCAAGACCC 23 537 916605 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538 916645 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538 916665 N/A N/A 17273 17288 ATAAGGAGTGCCCC 70 541 916705 N/A N/A 14255 18270 GAATATACCCCCTGTAT 77 520 916784 N/A N/A 14255 18270 GAATATACCCCAGCC 58 543 916784 N/A N/A 20435 20450 AGTCATCTGAGCCC 59 545 916844 N/A N/A 20435 20450 AGTCATCTGAGCCC 59 545 916844 N/A N/A 21046 21061 AGGAATCTGAGCCC 29 548 916844 N/A N/A 21046 21061 AGGAATCTGAGCCCC 53 550 916864 N/A N/A 21640 21655 GATAATTCCT	916046	1887	1902	25650	25665	AGGGCCACGAAACAGT	61	517
916106 1980 1995 25743 25758 ACATGGGCCAGCCTAC 54 520 916126 2055 2070 25818 25833 GACGAACTGCACCCCT 77 521 916145 2105 2120 25868 25883 TCAAGGTTATCATCTT 89 522 916165 2142 2157 25905 25920 CATCTTGTTACCCCG 89 523 916185 2270 2285 26033 26048 CTAACATCTCACTGAT 66 524 916205 2627 2642 26390 26405 ATGCCCTGCACACTAG 62 525 916225 2681 2696 26444 26459 AGAGGAGGCGGAAGCT 25 526 916245 2711 2726 26474 26489 AAGCCAGGTTCAAGTT 83 527 916285 N/A N/A 4240 4255 ATTAGGACAAGATTCA 75 528 916305 N/A N/A 4866 4881 TGTACTTTAGGCTCCT 93 529 916325 N/A N/A 5430 5445 AACATATCAGCATTAG 85 530 916345 N/A N/A 6974 6989 TCATTATGGAAGATC 0 532 916385 N/A N/A 7602 7617 TTAACAACCCTGTCAG 1 533 916545 N/A N/A 12151 12166 GTAACTGGACCCC 79 535 916585 N/A N/A 12257 12972 GCCTATCCCAATTGCC 70 536 916665 N/A N/A 13719 13734 GTCTTTACCAGAGCC 23 537 916665 N/A N/A 14248 14263 AACACACCTGTATC 84 538 916645 N/A N/A 14248 14263 AACGACACATTCACCA 84 538 916665 N/A N/A 14248 14263 AACGACACATTCACCA 84 538 916665 N/A N/A 14248 14263 AACGACACATTCACCA 84 538 916665 N/A N/A 14248 14263 AACGACACATTCACCA 68 540 916685 N/A N/A 14248 14263 AACGACACATTCACCA 68 540 916665 N/A N/A 14248 14263 AACGACACATTCACCA 68 540 916665 N/A N/A 14258 14803 TGCAATCCCCTGTAT 17 539 196665 N/A N/A 14258 14803 TGCAATCCCCCTGTAT 17 539 196665 N/A N/A 14258 14803 TGCAATCCCCCTGTAT 17 539 196665 N/A N/A 14248 14263 AACGACACACTCACACC 68 540 916725 N/A N/A 14248 14263 AACGACACCACTGAC 68 540 916725 N/A N/A 14248 14263 AACGACCACTGTAT 70 541 916705 N/A N/A 14248 14263 AACGACCCACTGAC 69 545 916645 N/A N/A 12255 18270 GAATAT	916066	1917	1932	25680	25695	ACCTCATGCTGGAACA	81	518
916126 2055 2070 25818 25833 GACGAACTGCACCCCT 77 521 916145 2105 2120 25868 25883 TCAAGGTTATCATCTT 89 522 916165 2142 2157 25905 25920 CATCTTGTTACCCCG 89 523 916185 2270 2285 26033 26048 CTAACATCTCACTGAT 66 524 916205 2627 2642 26390 26405 ATGCCCTGCACACTAG 62 525 916225 2681 2696 26444 26459 AGAGGAGGCGGAAGCT 25 526 916245 2711 2726 26474 26489 AAGCCAGGTTCAAGTT 83 527 916285 N/A N/A 4240 4255 ATTAGGACAAGATTCA 75 528 916305 N/A N/A 4866 4881 TGTACTTTAGGCTCCT 93 529 916325 N/A N/A 5430 5445 AACATATCAGCATTAG 85 530 916345 N/A N/A 5839 5854 CAAGGATGCCACCAAC 84 531 916365 N/A N/A 6974 6989 TCATTATGGAAGATGC 0 532 916385 N/A N/A 7602 7617 TTAACAACCCTGTCAG 1 533 916545 N/A N/A 12151 12166 GTAACTGGTACCCCC 79 535 916555 N/A N/A 12957 12972 GCCTATCCCAATTGCC 70 536 916605 N/A N/A 14788 14803 TGCAATCCCCTGTAT 17 539 916605 N/A N/A 14788 14803 TGCAATCCCCTGTAT 17 539 916605 N/A N/A 13598 15613 AATACATAGCAGACC 68 540 916605 N/A N/A 13598 15613 AATACATAGCAGACC 58 543 916754 N/A N/A 18255 18270 GAATATACCCAGACC 58 543 916754 N/A N/A 18255 18270 GAATATACCCCAGAC 58 543 916754 N/A N/A 19295 19310 GTTACAGGTGCACC 69 545 916804 N/A N/A 20435 20450 AGTCATCTGAGTCCC 69 545 916804 N/A N/A 21640 21655 GATAATTCCTAGCCC 29 548 916804 N/A N/A 21640 21655 GATAATTCCTAGCCCC 59 548 916804 N/A N/A 22699 22714 GAAATAAGTGACCCC 59 548 916804 N/A N/A 22699 22714 GAAATAAGTGACCCC 59 548 916804 N/A N/A 23582 23597 CTCCAATCTGAGCCC 59 548 916804 N/A N/A 23582 23597 CTCCAATCTGATGACC 53 550	916086	1960	1975	25723	25738	CATCACAAGGCCCCCA	48	519
9 6145 2105 2120 25868 25883 TCAAGGTTATCATCTT 89 522 9 6165 2142 2157 25905 25920 CATCTTGTTACCCCCG 89 523 9 6185 2270 2285 26033 26048 CTAACATCTCACTGAT 66 524 9 6205 2627 2642 26390 26405 ATGCCCTGCACACTAG 62 525 9 6225 2681 2696 26444 26459 AGAGGAGGCGGAAGCT 25 526 9 6245 2711 2726 26474 26489 AAGCCAGGTTCAAGTT 83 527 9 6285 N/A N/A 4240 4255 ATTAGGACAAGATTCA 75 528 9 6305 N/A N/A 4866 4881 TGTACTTTAGGCTCCT 93 529 9 6325 N/A N/A 5430 5445 AACATATCAGCATTAG 85 530 9 6345 N/A N/A 6974 6989 TCATTATGGAAGATGC 0 532 9 6385 N/A N/A 6974 6989 TCATTATGGAAGATGC 0 532 9 6385 N/A N/A 12151 12166 GTAACTGGTAGCTCT 93 534 9 6545 N/A N/A 12957 12972 GCCTATCCCAATTGCC 70 536 9 6605 N/A N/A 14248 14263 AACGACAATTCATCA 84 538 9 6645 N/A N/A 14788 14803 TGCAATCCCCTGTAT 17 539 9 6665 N/A N/A 14788 14803 TGCAATCCCCTGTAT 17 539 9 6665 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 9 6665 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 9 6665 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 9 6665 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 9 6665 N/A N/A 14385 18270 GAATATACCCCAGGC 58 540 9 6685 N/A N/A 18255 18270 GAATATACCCCAGGC 58 543 9 6745 N/A N/A 18255 18270 GAATATACCCCACAGC 58 543 9 6745 N/A N/A 19295 19310 GTTACAGGTGCATGTG 75 544 9 6764 N/A N/A 20435 20450 AGTCATCTGGAGCCC 29 548 9 6844 N/A N/A 20435 20450 AGTCATCTGAGCTCA 20 547 9 6824 N/A N/A 21640 21655 GATAATTTCCTAGAGC 29 548 9 6844 N/A N/A 22699 22714 GAAATAAGTGCTCAGG 73 549 9 6864 N/A N/A 23582 23597 CTCCAATCTGAGCT 53 550	916106	1980	1995	25743	25758	ACATGGGCCAGCCTAC	54	520
916165	916126	2055	2070	25818	25833	GACGAACTGCACCCCT	77	521
916185 2270 2285 26033 26048 CTAACATCTCACTGAT 66 524 916205 2627 2642 26390 26405 ATGCCCTGCACACTAG 62 525 916225 2681 2696 26444 26459 AGAGGAGGCGAAGCT 25 526 916245 2711 2726 26474 26489 AAGCCAGGTTCAAGTT 83 527 916285 N/A	916145	2105	2120	25868	25883	TCAAGGTTATCATCTT	89	522
916205 2627 2642 26390 26405 ATGCCCTGCACACTAG 62 525 916225 2681 2696 26444 26459 AGAGGAGGCGAAGCT 25 526 916245 2711 2726 26474 26489 AAGCCAGGTTCAAGTT 83 527 916285 N/A	916165	2142	2157	25905	25920	CATCTTGTTACCCCCG	89	523
916225 2681 2696 26444 26459 AGAGGAGGCGGAAGCT 25 526 916245 2711 2726 26474 26489 AAGCCAGGTTCAAGTT 83 527 916285 N/A	916185	2270	2285	26033	26048	CTAACATCTCACTGAT	66	524
916245 2711 2726 26474 26489 AAGCCAGGTTCAAGTT 83 527 916285 N/A N/A 4240 4255 ATTAGGACAAGATTCA 75 528 916305 N/A N/A 4866 4881 TGTACTTTAGGCTCCT 93 529 916325 N/A N/A 5430 5445 AACATATCAGCATTAG 85 530 916345 N/A N/A 5839 5854 CAAGGATGCCACCACA 84 531 916365 N/A N/A 6974 6989 TCATTATGGAAGATGC 0 532 916385 N/A N/A 7602 7617 TTAACAACCCTGTCAG 1 533 916545 N/A N/A 12151 12166 GTAACTGGTAGCTCCT 93 534 916585 N/A N/A 12957 12972 GCCTATCCCAATTGCC 70 536 916605 N/A N/A 13719 13734 GTCTTTACCAAGACCG 23 537 </td <td>916205</td> <td>2627</td> <td>2642</td> <td>26390</td> <td>26405</td> <td>ATGCCCTGCACACTAG</td> <td>62</td> <td>525</td>	916205	2627	2642	26390	26405	ATGCCCTGCACACTAG	62	525
916285 N/A N/A 4240 4255 ATTAGGACAAGATTCA 75 528 916305 N/A N/A 4866 4881 TGTACTTTAGGCTCCT 93 529 916325 N/A N/A 5430 5445 AACATATCAGCATTAG 85 530 916345 N/A N/A 5839 5854 CAAGGATGCCACCAAC 84 531 916365 N/A N/A 6974 6989 TCATTATGGAAGATGC 0 532 916385 N/A N/A 7602 7617 TTAACAACCCTGTCAG 1 533 916545 N/A N/A 12151 12166 GTAACTGGTAGCTCCT 93 534 916565 N/A N/A 12338 12353 ACCCATACTGCACCCC 79 535 916655 N/A N/A 12972 GCCTATCCCAATTGCC 70 536 916605 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538	916225	2681	2696	26444	26459	AGAGGAGGCGGAAGCT	25	526
916305 N/A N/A 4866 4881 TGTACTTTAGGCTCCT 93 529 916325 N/A N/A 5430 5445 AACATATCAGCATTAG 85 530 916345 N/A N/A 5839 5854 CAAGGATGCCACCAAC 84 531 916365 N/A N/A 6974 6989 TCATTATGGAAGATGC 0 532 916385 N/A N/A 7602 7617 TTAACAACCCTGTCAG 1 533 916545 N/A N/A 12151 12166 GTAACTGGTAGCTCCT 93 534 916565 N/A N/A 12338 12353 ACCCATACTGCACCCC 79 535 916585 N/A N/A 12957 12972 GCCTATCCCAATTGCC 70 536 916605 N/A N/A 13719 13734 GTCTTTACCAAGACCG 23 537 916625 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 </td <td>916245</td> <td>2711</td> <td>2726</td> <td>26474</td> <td>26489</td> <td>AAGCCAGGTTCAAGTT</td> <td>83</td> <td>527</td>	916245	2711	2726	26474	26489	AAGCCAGGTTCAAGTT	83	527
916325 N/A N/A 5430 5445 AACATATCAGCATTAG 85 530 916345 N/A N/A 5839 5854 CAAGGATGCCACCAAC 84 531 916365 N/A N/A 6974 6989 TCATTATGGAAGATGC 0 532 916385 N/A N/A 7602 7617 TTAACAACCCTGTCAG 1 533 916545 N/A N/A 12151 12166 GTAACTGGTAGCTCCT 93 534 916565 N/A N/A 12338 12353 ACCCATACTGCACCCC 79 535 916585 N/A N/A 12957 12972 GCCTATCCCAATTGCC 70 536 916605 N/A N/A 13719 13734 GTCTTTACCAAGACCG 23 537 916625 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538 916645 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539	916285	N/A	N/A	4240	4255	ATTAGGACAAGATTCA	75	528
916345 N/A N/A 5839 5854 CAAGGATGCCACCAAC 84 531 916365 N/A N/A 6974 6989 TCATTATGGAAGATGC 0 532 916385 N/A N/A 7602 7617 TTAACAACCCTGTCAG 1 533 916545 N/A N/A 12151 12166 GTAACTGGTAGCTCCT 93 534 916565 N/A N/A 12338 12353 ACCCATACTGCACCCC 79 535 916585 N/A N/A 12957 12972 GCCTATCCCAATTGCC 70 536 916605 N/A N/A 13719 13734 GTCTTTACCAAGACCG 23 537 916625 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538 916645 N/A N/A 14788 14803 TGCAATCCCCTGTAT 17 539 916665 N/A N/A 16366 16381 TGTCATGGTTGCCTCA 70 541	916305	N/A	N/A	4866	4881	TGTACTTTAGGCTCCT	93	529
916365 N/A N/A 6974 6989 TCATTATGGAAGATGC 0 532 916385 N/A N/A 7602 7617 TTAACAACCCTGTCAG 1 533 916545 N/A N/A 12151 12166 GTAACTGGTAGCTCCT 93 534 916565 N/A N/A 12338 12353 ACCCATACTGCACCCC 79 535 916585 N/A N/A 12957 12972 GCCTATCCCAATTGCC 70 536 916605 N/A N/A 13719 13734 GTCTTTACCAAGACCG 23 537 916625 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538 916645 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916665 N/A N/A 15598 15613 AATACATAGCAGAGCC 68 540 916705 N/A N/A 16366 16381 TGTCATGGTTGCCTCA 70 541	916325	N/A	N/A	5430	5445	AACATATCAGCATTAG	85	530
916385 N/A N/A 7602 7617 TTAACAACCCTGTCAG 1 533 916545 N/A N/A 12151 12166 GTAACTGGTAGCTCCT 93 534 916565 N/A N/A 12338 12353 ACCCATACTGCACCCC 79 535 916585 N/A N/A 12957 12972 GCCTATCCCAATTGCC 70 536 916605 N/A N/A 13719 13734 GTCTTTACCAAGACCG 23 537 916605 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538 916625 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916645 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916685 N/A N/A 16366 16381 TGTCATGGTTGCCTCA 70 541 916705 N/A N/A 17273 17288 ATAAGGAGTTATGTCT 80 542 <td>916345</td> <td>N/A</td> <td>N/A</td> <td>5839</td> <td>5854</td> <td>CAAGGATGCCACCAAC</td> <td>84</td> <td>531</td>	916345	N/A	N/A	5839	5854	CAAGGATGCCACCAAC	84	531
916545 N/A N/A 12151 12166 GTAACTGGTAGCTCCT 93 534 916565 N/A N/A 12338 12353 ACCCATACTGCACCCC 79 535 916585 N/A N/A 12957 12972 GCCTATCCCAATTGCC 70 536 916605 N/A N/A 13719 13734 GTCTTTACCAAGACCG 23 537 916625 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538 916645 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916665 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916685 N/A N/A 16366 16381 TGTCATGGTTGCCTCA 70 541 916705 N/A N/A 17273 17288 ATAAGGAGTTATGTCT 80 542 916725 N/A N/A 18255 18270 GAATATACCCCACAGC 58 543	916365	N/A	N/A	6974	6989	TCATTATGGAAGATGC	0	532
916565 N/A N/A 12338 12353 ACCCATACTGCACCCC 79 535 916585 N/A N/A 12957 12972 GCCTATCCCAATTGCC 70 536 916605 N/A N/A 13719 13734 GTCTTTACCAAGACCG 23 537 916625 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538 916645 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916665 N/A N/A 15598 15613 AATACATAGCAGAGCC 68 540 916685 N/A N/A 16366 16381 TGTCATGGTTGCCTCA 70 541 916705 N/A N/A 17273 17288 ATAAGGAGTTATGTCT 80 542 916725 N/A N/A 18255 18270 GAATATACCCCACAGC 58 543 916745 N/A N/A 19295 19310 GTTACAGGTGCATGTG 75 544	916385	N/A	N/A	7602	7617	TTAACAACCCTGTCAG	1	533
916585 N/A N/A 12957 12972 GCCTATCCCAATTGCC 70 536 916605 N/A N/A 13719 13734 GTCTTTACCAAGACCG 23 537 916625 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538 916645 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916665 N/A N/A 15598 15613 AATACATAGCAGAGCC 68 540 916685 N/A N/A 16366 16381 TGTCATGGTTGCCTCA 70 541 916705 N/A N/A 17273 17288 ATAAGGAGTTATGTCT 80 542 916725 N/A N/A 18255 18270 GAATATACCCCACAGC 58 543 916745 N/A N/A 19295 19310 GTTACAGGTGCATGTG 75 544 916764 N/A N/A 20435 20450 AGTCATCTGGAGTCAC 69 545	916545	N/A	N/A	12151	12166	GTAACTGGTAGCTCCT	93	534
916605 N/A N/A 13719 13734 GTCTTTACCAAGACCG 23 537 916625 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538 916645 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916665 N/A N/A 15598 15613 AATACATAGCAGAGCC 68 540 916685 N/A N/A 16366 16381 TGTCATGGTTGCCTCA 70 541 916705 N/A N/A 17273 17288 ATAAGGAGTTATGTCT 80 542 916725 N/A N/A 18255 18270 GAATATACCCCACAGC 58 543 916745 N/A N/A 19295 19310 GTTACAGGTGCATGTG 75 544 916764 N/A N/A 20435 20450 AGTCATCTGGAGTCAC 69 545 916784 N/A N/A 20756 20771 TCAGACAACCCACTGA 24 546	916565	N/A	N/A	12338	12353	ACCCATACTGCACCCC	79	535
916625 N/A N/A 14248 14263 AACGACAAATTCATCA 84 538 916645 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916665 N/A N/A 15598 15613 AATACATAGCAGAGCC 68 540 916685 N/A N/A 16366 16381 TGTCATGGTTGCCTCA 70 541 916705 N/A N/A 17273 17288 ATAAGGAGTTATGTCT 80 542 916725 N/A N/A 18255 18270 GAATATACCCCACAGC 58 543 916745 N/A N/A 19295 19310 GTTACAGGTGCATGTG 75 544 916764 N/A N/A 20435 20450 AGTCATCTGGAGTCAC 69 545 916784 N/A N/A 20756 20771 TCAGACAACCCACTGA 24 546 916804 N/A N/A 21046 21061 AGGAATCTGAATCCTA 0 547<	916585	N/A	N/A	12957	12972	GCCTATCCCAATTGCC	70	536
916645 N/A N/A 14788 14803 TGCAATCCCCCTGTAT 17 539 916665 N/A N/A 15598 15613 AATACATAGCAGAGCC 68 540 916685 N/A N/A 16366 16381 TGTCATGGTTGCCTCA 70 541 916705 N/A N/A 17273 17288 ATAAGGAGTTATGTCT 80 542 916725 N/A N/A 18255 18270 GAATATACCCCACAGC 58 543 916745 N/A N/A 19295 19310 GTTACAGGTGCATGTG 75 544 916764 N/A N/A 20435 20450 AGTCATCTGGAGTCAC 69 545 916784 N/A N/A 20756 20771 TCAGACAACCCACTGA 24 546 916804 N/A N/A 21046 21061 AGGAATCTGAATCCTA 0 547 916824 N/A N/A 21640 21655 GATAATTTCCTAGAGC 29 548<	916605	N/A	N/A	13719	13734	GTCTTTACCAAGACCG	23	537
916665 N/A N/A 15598 15613 AATACATAGCAGAGCC 68 540 916685 N/A N/A 16366 16381 TGTCATGGTTGCCTCA 70 541 916705 N/A N/A 17273 17288 ATAAGGAGTTATGTCT 80 542 916725 N/A N/A 18255 18270 GAATATACCCCACAGC 58 543 916745 N/A N/A 19295 19310 GTTACAGGTGCATGTG 75 544 916764 N/A N/A 20435 20450 AGTCATCTGGAGTCAC 69 545 916784 N/A N/A 20756 20771 TCAGACAACCCACTGA 24 546 916804 N/A N/A 21046 21061 AGGAATCTGAATCCTA 0 547 916824 N/A N/A 21640 21655 GATAATTTCCTAGAGC 29 548 916844 N/A N/A 22699 22714 GAAATAAGTGCTCAGG 73 549<	916625	N/A	N/A	14248	14263	AACGACAAATTCATCA	84	538
916685 N/A N/A 16366 16381 TGTCATGGTTGCCTCA 70 541 916705 N/A N/A 17273 17288 ATAAGGAGTTATGTCT 80 542 916725 N/A N/A 18255 18270 GAATATACCCCACAGC 58 543 916745 N/A N/A 19295 19310 GTTACAGGTGCATGTG 75 544 916764 N/A N/A 20435 20450 AGTCATCTGGAGTCAC 69 545 916784 N/A N/A 20756 20771 TCAGACAACCCACTGA 24 546 916804 N/A N/A 21046 21061 AGGAATCTGAATCCTA 0 547 916824 N/A N/A 21640 21655 GATAATTTCCTAGAGC 29 548 916844 N/A N/A 23582 23597 CTCCAATCTGATGACT 53 550	916645	N/A	N/A	14788	14803	TGCAATCCCCCTGTAT	17	539
916705 N/A N/A 17273 17288 ATAAGGAGTTATGTCT 80 542 916725 N/A N/A 18255 18270 GAATATACCCCACAGC 58 543 916745 N/A N/A 19295 19310 GTTACAGGTGCATGTG 75 544 916764 N/A N/A 20435 20450 AGTCATCTGGAGTCAC 69 545 916784 N/A N/A 20756 20771 TCAGACAACCCACTGA 24 546 916804 N/A N/A 21046 21061 AGGAATCTGAATCCTA 0 547 916824 N/A N/A 21640 21655 GATAATTTCCTAGAGC 29 548 916844 N/A N/A 22699 22714 GAAATAAGTGCTCAGG 73 549 916864 N/A N/A 23582 23597 CTCCAATCTGATGACT 53 550	916665	N/A	N/A	15598	15613	AATACATAGCAGAGCC	68	540
916725 N/A N/A 18255 18270 GAATATACCCCACAGC 58 543 916745 N/A N/A 19295 19310 GTTACAGGTGCATGTG 75 544 916764 N/A N/A 20435 20450 AGTCATCTGGAGTCAC 69 545 916784 N/A N/A 20756 20771 TCAGACAACCCACTGA 24 546 916804 N/A N/A 21046 21061 AGGAATCTGAATCCTA 0 547 916824 N/A N/A 21640 21655 GATAATTTCCTAGAGC 29 548 916844 N/A N/A 22699 22714 GAAATAAGTGCTCAGG 73 549 916864 N/A N/A 23582 23597 CTCCAATCTGATGACT 53 550	916685	N/A	N/A	16366	16381	TGTCATGGTTGCCTCA	70	541
916745 N/A N/A 19295 19310 GTTACAGGTGCATGTG 75 544 916764 N/A N/A 20435 20450 AGTCATCTGGAGTCAC 69 545 916784 N/A N/A 20756 20771 TCAGACAACCCACTGA 24 546 916804 N/A N/A 21046 21061 AGGAATCTGAATCCTA 0 547 916824 N/A N/A 21640 21655 GATAATTTCCTAGAGC 29 548 916844 N/A N/A 22699 22714 GAAATAAGTGCTCAGG 73 549 916864 N/A N/A 23582 23597 CTCCAATCTGATGACT 53 550	916705	N/A	N/A	17273	17288	ATAAGGAGTTATGTCT	80	542
916764 N/A N/A 20435 20450 AGTCATCTGGAGTCAC 69 545 916784 N/A N/A 20756 20771 TCAGACAACCCACTGA 24 546 916804 N/A N/A 21046 21061 AGGAATCTGAATCCTA 0 547 916824 N/A N/A 21640 21655 GATAATTTCCTAGAGC 29 548 916844 N/A N/A 22699 22714 GAAATAAGTGCTCAGG 73 549 916864 N/A N/A 23582 23597 CTCCAATCTGATGACT 53 550	916725	N/A	N/A	18255	18270	GAATATACCCCACAGC	58	543
916784 N/A N/A 20756 20771 TCAGACAACCCACTGA 24 546 916804 N/A N/A 21046 21061 AGGAATCTGAATCCTA 0 547 916824 N/A N/A 21640 21655 GATAATTTCCTAGAGC 29 548 916844 N/A N/A 22699 22714 GAAATAAGTGCTCAGG 73 549 916864 N/A N/A 23582 23597 CTCCAATCTGATGACT 53 550	916745	N/A	N/A	19295	19310	GTTACAGGTGCATGTG	75	544
916804 N/A N/A 21046 21061 AGGAATCTGAATCCTA 0 547 916824 N/A N/A 21640 21655 GATAATTTCCTAGAGC 29 548 916844 N/A N/A 22699 22714 GAAATAAGTGCTCAGG 73 549 916864 N/A N/A 23582 23597 CTCCAATCTGATGACT 53 550	916764	N/A	N/A	20435	20450	AGTCATCTGGAGTCAC	69	545
916824 N/A N/A 21640 21655 GATAATTTCCTAGAGC 29 548 916844 N/A N/A 22699 22714 GAAATAAGTGCTCAGG 73 549 916864 N/A N/A 23582 23597 CTCCAATCTGATGACT 53 550	916784	N/A	N/A	20756	20771	TCAGACAACCCACTGA	24	546
916844 N/A N/A 22699 22714 GAAATAAGTGCTCAGG 73 549 916864 N/A N/A 23582 23597 CTCCAATCTGATGACT 53 550	916804	N/A	N/A	21046	21061	AGGAATCTGAATCCTA	0	547
916864 N/A N/A 23582 23597 CTCCAATCTGATGACT 53 550	916824	N/A	N/A	21640	21655	GATAATTTCCTAGAGC	29	548
	916844	N/A	N/A	22699		GAAATAAGTGCTCAGG	73	549
01/0904 N/A N/A 24247 24242 CAATTCA COAA CTA CO	916864	N/A	N/A	23582	23597	CTCCAATCTGATGACT	53	550
910884 N/A N/A 24347 24362 GAATTCAGGAAGTAGC 50 551	916884	N/A	N/A	24347	24362	GAATTCAGGAAGTAGC	50	551

Таблица 9 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

нацеливающихся на SEQ ID NO: 1 и 2 SEQ ID SEQ ID SEQ ID SEQ ID %								
Номер	SEQ ID	SEQ ID	SEQ ID	SEQ ID			SEQ	
соеди-	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность (5'-3')	подавле-	ID	
нения	старто-	стоп-	старто-	стоп-		ния	NO	
015045	вый сайт	сайт	вый сайт	сайт	00177700010000010	PNPLA3	7.70	
915347	26	41	2764	2779	GCATTCCCAGCGCGAC	0	552	
915367	58	73	2796	2811	GCTCTCTACCCTGCCT	9	553	
915387	113	128	2851	2866	ATCGGGAATCGGCTCG	28	554	
915407	198	213	2936	2951	CCGCGAAGGACAAGCT	0	555	
915427	253	268	2991	3006	TGCTCGCTCAGGCAGC	0	556	
915447	351	366	N/A	N/A	TCTGCTCCAGCGGGAT	1	557	
915467	391	406	5965	5980	CTCCTGGCCTTCCGCA	29	558	
915487	433	448	6007	6022	TTGCTTAAGTTGAAGG	94	559	
915507	456	471	6030	6045	TGCAGAGACCCTGTCG	31	560	
915527	494	509	6068	6083	GCCGGAGATGAGCTGG	0	561	
915547	515	530	6089	6104	GGTAAGAGAGATGCCT	0	562	
915567	563	578	6137	6152	TTTGGACCGAAAGTCA	0	563	
915607	703	718	11921	11936	ATGGTTGTTTTGGCAT	35	564	
915627	758	773	11976	11991	CGTGGACTTGACTTTA	85	565	
915647	831	846	12049	12064	CTCTCGAGAGAAGGTA	7	566	
915667	883	898	13619	13634	TATCCTCGAAGGCATA	0	567	
915687	959	974	16079	16094	TTCTGAGGATGACTTC	39	568	
915707	996	1011	16116	16131	TTGCCCAGCTGGGCAT	0	569	
915727	1065	1080	16185	16200	CTAGCAGCTCATCTCC	58	570	
915747	1136	1151	16256	16271	TGTAGCGAGCCTGGGC	16	571	
915767	1197	1212	19037	19052	GTAGCAAGTTGCAAAT	80	572	
915787	1233	1248	19073	19088	TACAGGGCAGCATTAC	71	573	
915807	1316	1331	23721	23736	CAACCACAGGACATCG	0	574	
915827	1353	1368	23758	23773	TCAGCACTCGAGTGAA	0	575	
915847	1409	1424	25172	25187	GGAGGCCTGTTGGCTG	0	576	
915867	1509	1524	25272	25287	TGAGGATGGACCGCGG	14	577	
915887	1553	1568	25316	25331	ACCAGCAGGTACTTTA	29	578	
915907	1611	1626	25374	25389	AAGTGACTCACAGACT	29	579	
915927	1637	1652	25400	25415	AAAGAATCTGCTAGAC	60	580	
915947	1690	1705	25453	25468	TACACAGCAATGCGGA	69	581	
915967	1772	1787	25535	25550	AGGCGAAAGGTTGCTT	0	582	
915987	1793	1808	25556	25571	TTAAGTGCTGGACCGC	82	583	
916007	1819	1834	25582	25597	AATTAACGCATGCTGA	61	584	
916027	1864	1879	25627	25642	GGACCCTCTGCACTGG	43	585	
916047	1888	1903	25651	25666	TAGGGCCACGAAACAG	80	586	
916067	1918	1933	25681	25696	AACCTCATGCTGGAAC	72	587	
916087	1961	1976	25724	25739	CCATCACAAGGCCCCC	63	588	
916107	1981	1996	25744	25759	CACATGGGCCAGCCTA	74	589	
916127	2056	2071	25819	25834	GGACGAACTGCACCCC	5	590	
916146	2106	2121	25869	25884	GTCAAGGTTATCATCT	88	591	
916166	2143	2158	25906	25921	TCATCTTGTTACCCCC	90	592	
916186	2272	2287	26035	26050	TACTAACATCTCACTG	1	593	
916206	2628	2643	26391	26406	AATGCCCTGCACACTA	56	594	
			L					

916226	2682	2697	26445	26460	GAGAGGAGGCGGAAGC	10	595
916246	2712	2727	26475	26490	TAAGCCAGGTTCAAGT	81	596
916286	N/A	N/A	4244	4259	TTTCATTAGGACAAGA	61	597
916306	N/A	N/A	4867	4882	GTGTACTTTAGGCTCC	97	598
916326	N/A	N/A	5431	5446	GAACATATCAGCATTA	52	599
916346	N/A	N/A	5872	5887	GTAATACTTTTGGCAA	75	600
916366	N/A	N/A	7069	7084	GGTATTACAAATTATC	10	601
916386	N/A	N/A	7603	7618	CTTAACAACCCTGTCA	0	602
916546	N/A	N/A	12152	12167	AGTAACTGGTAGCTCC	88	603
916566	N/A	N/A	12343	12358	CTAATACCCATACTGC	84	604
916586	N/A	N/A	12966	12981	AACTTTGCAGCCTATC	85	605
916606	N/A	N/A	13739	13754	AGAACTAAGGCAAATC	85	606
916626	N/A	N/A	14257	14272	GTCTTGGCCAACGACA	0	607
916646	N/A	N/A	14793	14808	CAGGATGCAATCCCCC	45	608
916666	N/A	N/A	15601	15616	GCCAATACATAGCAGA	75	609
916686	N/A	N/A	16630	16645	GTCCATGAAATCCAGG	0	610
916706	N/A	N/A	17293	17308	TCTCTTAGGGCACCTC	87	611
916726	N/A	N/A	18256	18271	TGAATATACCCCACAG	24	612
916746	N/A	N/A	19337	19352	AGCTCTAGGAGTCCCC	63	613
916765	N/A	N/A	20513	20528	CCAGATTGAGTCTCCT	91	614
916785	N/A	N/A	20775	20790	AATCAAGTGCCCTCCA	73	615
916805	N/A	N/A	21211	21226	TGTAGCTGTGTGGTGG	85	616
916825	N/A	N/A	21760	21775	TACCATGATCAGGTCA	0	617
916845	N/A	N/A	22713	22728	GTAAAGATGTGAGTGA	85	618
916865	N/A	N/A	23606	23621	GTTTACAAAAGCTGCC	17	619
916885	N/A	N/A	24375	24390	TGAACTCCGGCTCAGT	0	620

Таблица 10 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер	SEQ ID	SEQ ID	SEQ ID	SEQ ID		%	SEQ
соеди-	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность (5'-3')	подавле-	ID
нения	старто-	стоп-	старто-	стоп-		ния	NO

	вый сайт	сайт	вый сайт	сайт		PNPLA3	
915348	28	43	2766	2781	GGGCATTCCCAGCGCG	0	621
915368	59	74	2797	2812	CGCTCTCTACCCTGCC	0	622
915388	114	129	2852	2867	GATCGGGAATCGGCTC	32	623
915408	199	214	2937	2952	CCCGCGAAGGACAAGC	6	624
915428	275	290	3013	3028	GTCGCGGAGGAGGTGC	0	625
915448	352	367	N/A	N/A	GTCTGCTCCAGCGGGA	4	626
915468	392	407	5966	5981	ACTCCTGGCCTTCCGC	87	627
915488	434	449	6008	6023	CTTGCTTAAGTTGAAG	0	628
915508	457	472	6031	6046	TTGCAGAGACCCTGTC	63	629
915528	495	510	6069	6084	TGCCGGAGATGAGCTG	0	630
915548	516	531	6090	6105	TGGTAAGAGAGATGCC	18	631
915568	564	579	6138	6153	CTTTGGACCGAAAGTC	10	632
915608	704	719	11922	11937	GATGGTTGTTTTGGCA	98	633
915628	772	787	11990	12005	ACATGAAGAAAGTTCG	41	634
915648	832	847	12050	12065	GCTCTCGAGAGAAGGT	55	635
915668	884	899	13620	13635	ATATCCTCGAAGGCAT	33	636
915688	962	977	16082	16097	CCCTTCTGAGGATGAC	11	637
915708	998	1013	16118	16133	GTTTGCCCAGCTGGGC	0	638
915728	1067	1082	16187	16202	GTCTAGCAGCTCATCT	68	639
915748	1137	1152	16257	16272	CTGTAGCGAGCCTGGG	0	640
915768	1198	1213	19038	19053	GGTAGCAAGTTGCAAA	90	641
915788	1234	1249	19074	19089	GTACAGGGCAGCATTA	69	642
915808	1317	1332	23722	23737	GCAACCACAGGACATC	51	643
915828	1354	1369	23759	23774	ATCAGCACTCGAGTGA	0	644
915848	1410	1425	25173	25188	GGGAGGCCTGTTGGCT	17	645
915868	1510	1525	25273	25288	CTGAGGATGGACCGCG	53	646
915888	1554	1569	25317	25332	CACCAGCAGGTACTTT	0	647
915908	1612	1627	25375	25390	CAAGTGACTCACAGAC	91	648
915928	1639	1654	25402	25417	TGAAAGAATCTGCTAG	59	649
915948	1691	1706	25454	25469	CTACACAGCAATGCGG	20	650
915968	1773	1788	25536	25551	CAGGCGAAAGGTTGCT	60	651
915988	1794	1809	25557	25572	GTTAAGTGCTGGACCG	86	652

916008	1820	1835	25583	25598	GAATTAACGCATGCTG	88	653
916028	1865	1880	25628	25643	GGGACCCTCTGCACTG	0	654
916048	1889	1904	25652	25667	ATAGGGCCACGAAACA	75	655
916068	1919	1934	25682	25697	GAACCTCATGCTGGAA	72	656
916088	1962	1977	25725	25740	CCCATCACAAGGCCCC	37	657
916108	1984	1999	25747	25762	TCACACATGGGCCAGC	84	658
916128	2079	2094	25842	25857	CTGACAGGCAGTGTCG	10	659
916147	2107	2122	25870	25885	AGTCAAGGTTATCATC	81	660
916167	2144	2159	25907	25922	ATCATCTTGTTACCCC	88	661
916187	2276	2291	26039	26054	ATTCTACTAACATCTC	90	662
916207	2629	2644	26392	26407	GAATGCCCTGCACACT	72	663
916227	2691	2706	26454	26469	GCTCCAGTGGAGAGGA	14	664
916247	2713	2728	26476	26491	ATAAGCCAGGTTCAAG	88	665
916287	N/A	N/A	4308	4323	GTGAGAAACAAACCCT	92	666
916307	N/A	N/A	4882	4897	TCTATACCAGAGTGAG	84	667
916327	N/A	N/A	5514	5529	AGGAATGAGTCTCCCA	17	668
916347	N/A	N/A	5873	5888	GGTAATACTTTTGGCA	70	669
916367	N/A	N/A	7106	7121	CGCTTATGAAAGCATC	0	670
916387	N/A	N/A	7605	7620	CCCTTAACAACCCTGT	28	671
916547	N/A	N/A	12167	12182	TTTGATTGTGCAGACA	98	672
916567	N/A	N/A	12345	12360	TCCTAATACCCATACT	74	673
916587	N/A	N/A	12969	12984	ACAAACTTTGCAGCCT	95	674
916607	N/A	N/A	13742	13757	GTTAGAACTAAGGCAA	94	675
916627	N/A	N/A	14301	14316	GAGCAGATAAATACAC	91	676
916647	N/A	N/A	14892	14907	TGGTATCTCGCTTCCT	0	677
916667	N/A	N/A	15613	15628	TAAAGCCACGCAGCCA	46	678
916687	N/A	N/A	16656	16671	CCAGATGCAGGACCCC	0	679
916707	N/A	N/A	17326	17341	AAACTAATGCACCTGG	43	680
916727	N/A	N/A	18257	18272	CTGAATATACCCCACA	75	681
916747	N/A	N/A	19360	19375	AGCTGCTATGTGAGGC	12	682
916766	N/A	N/A	20520	20535	TCAGTAACCAGATTGA	25	683
916786	N/A	N/A	20778	20793	TTTAATCAAGTGCCCT	81	684
916806	N/A	N/A	21216	21231	CAGGATGTAGCTGTGT	84	685
916826	N/A	N/A	21887	21902	TAAGATCCCATCTTAC	13	686
916846	N/A	N/A	22739	22754	AAAGTAAACACCCACC	42	687
916866	N/A	N/A	23625	23640	GCTTACAACACTACCC	57	688
916886	N/A	N/A	24393	24408	GTAATGGGAGCCAGGC	38	689
				1		T-6	11

Таблица 11 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

					a SEQ ID NO. 1 H Z	0/	
Номер	SEQ ID	SEQ ID	SEQ ID	SEQ ID		%	SEO
соеди-	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность (5'-3')	подавле-	ID
	старто-	стоп-	старто-	стоп-	последовательность (3-3)	ния	
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
915349	29	44	2767	2782	AGGGCATTCCCAGCGC	0	690
915369	60	75	2798	2813	GCGCTCTCTACCCTGC	23	691
915389	115	130	2853	2868	GGATCGGGAATCGGCT	54	692
915409	200	215	2938	2953	GCCCGCGAAGGACAAG	32	693
915429	276	291	3014	3029	CGTCGCGGAGGAGGTG	0	694
915449	364	379	5938	5953	AGGACCTGCAGAGTCT	21	695
915469	394	409	5968	5983	CGACTCCTGGCCTTCC	59	696
915489	435	450	6009	6024	ACTTGCTTAAGTTGAA	86	697
915509	466	481	6040	6055	GGGAGGCATTTGCAGA	57	698
915529	496	511	6070	6085	TTGCCGGAGATGAGCT	40	699
915549	518	533	6092	6107	TCTGGTAAGAGAGATG	61	700
915569	565	580	6139	6154	TCTTTGGACCGAAAGT	9	701
915609	705	720	11923	11938	TGATGGTTGTTTTGGC	99	702
915629	776	791	11994	12009	GTCCACATGAAGAAAG	32	703
915649	833	848	12051	12066	AGCTCTCGAGAGAAGG	36	704
915669	885	900	13621	13636	AATATCCTCGAAGGCA	55	705
915689	969	984	16089	16104	GATCCATCCCTTCTGA	20	706
915709	999	1014	16119	16134	TGTTTGCCCAGCTGGG	5	707
915729	1077	1092	16197	16212	GACGCAGGTGGTCTAG	0	708
915749	1138	1153	N/A	N/A	GCTGTAGCGAGCCTGG	71	709
915769	1200	1215	19040	19055	TGGGTAGCAAGTTGCA	81	710

915789	1235	1250	19075	19090	GGTACAGGGCAGCATT	88	711
915809	1318	1333	23723	23738	TGCAACCACAGGACAT	40	712
915829	1355	1370	23760	23775	CATCAGCACTCGAGTG	0	713
915849	1424	1439	25187	25202	CTCAGGTGTGCATGGG	61	714
915869	1511	1526	25274	25289	CCTGAGGATGGACCGC	70	715
915889	1556	1571	25319	25334	AGCACCAGCAGGTACT	35	716
915909	1613	1628	25376	25391	TCAAGTGACTCACAGA	84	717
915929	1645	1660	25408	25423	CACCTCTGAAAGAATC	89	718
915949	1692	1707	25455	25470	ACTACACAGCAATGCG	33	719
915969	1774	1789	25537	25552	ACAGGCGAAAGGTTGC	88	720
915989	1795	1810	25558	25573	AGTTAAGTGCTGGACC	84	721
916009	1823	1838	25586	25601	GCTGAATTAACGCATG	67	722
916029	1866	1881	25629	25644	AGGGACCCTCTGCACT	15	723
916049	1890	1905	25653	25668	AATAGGGCCACGAAAC	52	724
916069	1920	1935	25683	25698	AGAACCTCATGCTGGA	85	725
916089	1963	1978	25726	25741	CCCCATCACAAGGCCC	20	726
916109	1985	2000	25748	25763	ATCACACATGGGCCAG	72	727
916129	2080	2095	25843	25858	CCTGACAGGCAGTGTC	15	728
916148	2108	2123	25871	25886	TAGTCAAGGTTATCAT	87	729
916168	2146	2161	25909	25924	TTATCATCTTGTTACC	82	730
916188	2279	2294	26042	26057	CTTATTCTACTAACAT	87	731
916208	2630	2645	26393	26408	TGAATGCCCTGCACAC	68	732
916228	2692	2707	26455	26470	TGCTCCAGTGGAGAGG	80	733
916248	2726	2741	26489	26504	GTCCCTGCAGAAAATA	0	734
916288	N/A	N/A	4337	4352	AGCATACCACACCCCA	75	735
916308	N/A	N/A	5086	5101	GGACATGCTCAGCAGC	68	736
916328	N/A	N/A	5533	5548	TGCTGTAGGCCTCAGC	0	737
916348	N/A	N/A	5874	5889	TGGTAATACTTTTGGC	86	738
916368	N/A	N/A	7132	7147	GTAAATGGAGTCCTTC	80	739
916388	N/A	N/A	7612	7627	CATAATCCCCTTAACA	32	740
916548	N/A	N/A	12195	12210	TTAACCATCAAGGACA	77	741
916568	N/A	N/A	12665	12680	TCTTAGTGGCTGGGTA	85	742
916588	N/A	N/A	12973	12988	CCTAACAAACTTTGCA	32	743
916608	N/A	N/A	13749	13764	ACTAAGTGTTAGAACT	76	744
916628	N/A	N/A	14338	14353	CTGCAGTATCCCTAGC	0	745
916648	N/A	N/A	15012	15027	TCCCATCGGTCATTTC	45	746
916668	N/A	N/A	15682	15697	GAAACCACTATCATCA	62	747
916688	N/A	N/A	16671	16686	GTAATAGGCCAAGTCC	0	748
916708	N/A	N/A	17327	17342	CAAACTAATGCACCTG	66	749
916728	N/A	N/A	18332	18347	CCAATATCATAGCTGA	85	750
916748	N/A	N/A	19376	19391	CACAAGAGACTGGACC	64	751
916767	N/A	N/A	20551	20566	TACTATGGGATGAGTA	0	752
916787	N/A	N/A	20779	20794	TTTTAATCAAGTGCCC	38	753
916807	N/A	N/A	21218	21233	GGCAGGATGTAGCTGT	63	754
916827	N/A	N/A	21947	21962	AGTCAAACATCTTCCT	50	755
916847	N/A	N/A	22759	22774	CAGACTAACTTACTAA	77	756
916867	N/A	N/A	23626	23641	AGCTTACAACACTACC	13	757
916887	N/A	N/A	24505	24520	ATGCTACGGGCTCTCA	0	758

Таблица 12 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID		SEQ ID	a seq id No. 1 n 2	%	
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,		подавле-	SEQ
соеди-	старто-	стоп-	старто-	стоп-	Последовательность (5'-3')	ния	ID
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
915350	30	45	2768	2783	CAGGGCATTCCCAGCG	0	759
915370	82	97	2820	2835	CAGCTCCGCCCGGCGC	14	760
915390	130	145	2868	2883	TTAGGATCTGGGTCGG	88	761
915410	201	216	2939	2954	AGCCCGCGAAGGACAA	0	762
915430	295	310	3033	3048	GCGCCGAACAACATGC	0	763
915450	366	381	5940	5955	AGAGGACCTGCAGAGT	83	764
915470	395	410	5969	5984	CCGACTCCTGGCCTTC	68	765
915490	436	451	6010	6025	AACTTGCTTAAGTTGA	41	766
915510	467	482	6041	6056	CGGGAGGCATTTGCAG	44	767
915530	497	512	6071	6086	TTTGCCGGAGATGAGC	92	768
915550	519	534	6093	6108	CTCTGGTAAGAGAGAT	20	769
915570	566	581	6140	6155	GTCTTTGGACCGAAAG	19	770
915590	627	642	7857	7872	GAGGGATAAGGCCACT	83	771
915610	706	721	11924	11939	GTGATGGTTGTTTTGG	97	772
915630	782	797	12000	12015	GGTGATGTCCACATGA	87	773
915650	834	849	12052	12067	AAGCTCTCGAGAGAAG	44	774
915670	887	902	13623	13638	CAAATATCCTCGAAGG	0	775
915690	970	985	16090	16105	GGATCCATCCCTTCTG	0	776
915710	1003	1018	16123	16138	CTCATGTTTGCCCAGC	68	777
915730	1078	1093	16198	16213	AGACGCAGGTGGTCTA	0	778
915750	1139	1154	N/A	N/A	TGCTGTAGCGAGCCTG	56	779
915770	1201	1216	19041	19056	ATGGGTAGCAAGTTGC	79	780
915790	1247	1262	19087	19102	TTCCACAGGCAGGGTA	48	781
915810	1320	1335	23725	23740	ACTGCAACCACAGGAC	22	782
915830	1356	1371	23761	23776	ACATCAGCACTCGAGT	0	783
915850	1427	1442	25190	25205	CTGCTCAGGTGTGCAT	10	784
915870	1512	1527	25275	25290	ACCTGAGGATGGACCG	69	785
915890	1557	1572	25320	25335	CAGCACCAGCAGGTAC	62	786
915910	1617	1632	25380	25395	CTCCTCAAGTGACTCA	83	787
915930	1648	1663	25411	25426	TAGCACCTCTGAAAGA	55	788
915950	1693	1708	25456	25471	CACTACACAGCAATGC	74	789
915970	1775	1790	25538	25553	CACAGGCGAAAGGTTG	72	790
915990	1797	1812	25560	25575	AGAGTTAAGTGCTGGA	92	791
916010	1824	1839	25587	25602	AGCTGAATTAACGCAT	0	792
916030	1867	1882	25630	25645	AAGGGACCCTCTGCAC	38	793
916050	1891	1906	25654	25669	TAATAGGGCCACGAAA	53	794
916070	1921	1936	25684	25699	AAGAACCTCATGCTGG	24	795
916090	1964	1979	25727	25742	CCCCCATCACAAGGCC	24	796
916110	1986	2001	25749	25764	GATCACACATGGGCCA	0	797
916130	2081	2096	25844	25859	ACCTGACAGGCAGTGT	54	798
916149	2109	2124	25872	25887	GTAGTCAAGGTTATCA	87	799
916169	2154	2169	25917	25932	TAAGTAGATTATCATC	79	800
916189	2282	2297	26045	26060	AGGCTTATTCTACTAA	85	801

916209 916229	2631	2646	26394	26409	OTC A ATCCCCCTCCA CA	70	000
016220			20374	20409	GTGAATGCCCTGCACA	59	802
910229	2693	2708	26456	26471	GTGCTCCAGTGGAGAG	54	803
916249	2727	2742	26490	26505	GGTCCCTGCAGAAAAT	38	804
916289	N/A	N/A	4338	4353	AAGCATACCACACCCC	79	805
916309	N/A	N/A	5278	5293	AATCTTGGGATGCACA	95	806
916329	N/A	N/A	5569	5584	CATCATGGCTTCCAGT	79	807
916349	N/A	N/A	5879	5894	TGGGATGGTAATACTT	0	808
916369	N/A	N/A	7134	7149	AAGTAAATGGAGTCCT	5	809
916389	N/A	N/A	7615	7630	TTGCATAATCCCCTTA	33	810
916409	N/A	N/A	8165	8180	TTAACTAGATCACTGA	58	811
916429	N/A	N/A	9109	9124	TCCTAATGCGAGTCCC	86	812
916449	N/A	N/A	9522	9537	TGCTGCTGGGTGCACT	45	813
916469	N/A	N/A	10199	10214	GGTGATGACACAGCAT	94	814
916489	N/A	N/A	10382	10397	GCCATGTACAACTTTT	52	815
916509	N/A	N/A	11152	11167	TACAATTTGGACAGAG	71	816
916529	N/A	N/A	11546	11561	ACCTATAGGAGTGCCC	35	817
916549	N/A	N/A	12204	12219	TTATTTCCGTTAACCA	97	818
916569	N/A	N/A	12672	12687	AGAATCATCTTAGTGG	94	819
916589	N/A	N/A	12989	13004	CGGAATAAGCCTCCAC	0	820
916609	N/A	N/A	13752	13767	GGCACTAAGTGTTAGA	57	821
916629	N/A	N/A	14375	14390	TCTCACAAGGCTGGCA	84	822
916649	N/A	N/A	15137	15152	GCCATACCGGCTCCCT	30	823
916669	N/A	N/A	15691	15706	GGCCTTACAGAAACCA	15	824
916689	N/A	N/A	16672	16687	AGTAATAGGCCAAGTC	16	825
916709	N/A	N/A	17328	17343	ACAAACTAATGCACCT	42	826
916729	N/A	N/A	18333	18348	TCCAATATCATAGCTG	32	827
916749	N/A	N/A	19445	19460	CTACTAGGCATCTCTA	32	828
916768	N/A	N/A	20553	20568	CTTACTATGGGATGAG	83	829
916788	N/A	N/A	20808	20823	TAATATTCAGACCAGG	94	830
916808	N/A	N/A	21252	21267	CCATGCATGGCACAGT	4	831
916828	N/A	N/A	21968	21983	AGACAGGAATCCAACC	0	832
916848	N/A	N/A	22767	22782	GGACATGACAGACTAA	96	833
916868	N/A	N/A	23637	23652	GCAGACACAACAGCTT	40	834
916888	N/A	N/A	24507	24522	CCATGCTACGGGCTCT	0	835

Таблица 13 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соединения 915351 915371 915371 915391 915411 915431 915451 915471 915491 915511 915531 915571 915631 915631 915671 915671 915691 915711 915731	SEQ ID NO: 1, старто- вый сайт 33 83 132 222 321 368 400 437 468 498 520 567 708 783 835 890	SEQ ID NO: 1, cron- caŭr 48 98 147 237 336 383 415 452 483 513 535 582 723 798	NO: 2, старто- вый сайт 2771 2821 2870 2960 3059 5942 5974 6011 6042 6072 6094 6141	SEQ ID NO: 2, cron- cañt 2786 2836 2885 2975 3074 5957 5989 6026 6057 6087 6109	Последовательность (5'-3') GGCCAGGGCATTCCCA GCAGCTCCGCCCGGCG GGTTAGGATCTGGGTC GGTAGAAGCCCAGGAA CGACGCAGTGCAACGC TGAGAGGACCTGCAGA ATGTTCCGACTCCTGG GAACTTGCTTAAGTTG CCGGGAGGCATTTGCA TTTTGCCGGAGATGAG ACTCTGGTAAGAGAGA	9% подавления PNPLA3 0 2 54 57 49 0 82 23 0	SEQ ID NO 836 837 838 839 840 841 842 843 844
соеди- нения 915351 915371 915391 915411 915431 915451 915471 915511 915571 915571 915611 915631 915651 915671 915691 915711	старто- вый сайт 33 83 132 222 321 368 400 437 468 498 520 567 708 783 835	237 237 336 383 415 452 483 513 535 582 723 798	старто- вый сайт 2771 2821 2870 2960 3059 5942 5974 6011 6042 6072 6094 6141	2786 2836 2885 2975 3074 5957 5989 6026 6057 6087	GGCCAGGGCATTCCCA GCAGCTCCGCCCGGCG GGTTAGGATCTGGGTC GGTAGAAGCCCAGGAA CGACGCAGTGCAACGC TGAGAGGACCTGCAGA ATGTTCCGACTCCTGG GAACTTGCTTAAGTTG CCGGGAGGCATTGCA	PNPLA3 0 2 54 57 49 0 82 23	836 837 838 839 840 841 842 843
нения 915351 915371 915371 915391 915411 915431 915451 915471 915491 915511 915571 915611 915631 915651 915671 915691 915711 915731	вый сайт 33 83 132 222 321 368 400 437 468 498 520 567 708 783 835	237 237 336 383 415 452 483 513 535 582 723 798	вый сайт 2771 2821 2870 2960 3059 5942 5974 6011 6042 6072 6094 6141	2786 2836 2885 2975 3074 5957 5989 6026 6057 6087	GGCCAGGGCATTCCCA GCAGCTCCGCCCGGCG GGTTAGGATCTGGGTC GGTAGAAGCCCAGGAA CGACGCAGTGCAACGC TGAGAGGACCTGCAGA ATGTTCCGACTCCTGG GAACTTGCTTAAGTTG CCGGGAGGCATTGCA	PNPLA3 0 2 54 57 49 0 82 23 0	836 837 838 839 840 841 842 843
915351 915371 915371 915391 915411 915431 915451 915471 915511 915551 915571 915611 915631 915651 915671 915691 915711 915731	33 83 132 222 321 368 400 437 468 498 520 567 708 783 835	48 98 147 237 336 383 415 452 483 513 535 582 723 798	2771 2821 2870 2960 3059 5942 5974 6011 6042 6072 6094 6141	2786 2836 2885 2975 3074 5957 5989 6026 6057 6087	GCAGCTCCGCCCGGCG GGTTAGGATCTGGGTC GGTAGAAGCCCAGGAA CGACGCAGTGCAACGC TGAGAGGACCTGCAGA ATGTTCCGACTCCTGG GAACTTGCTTAAGTTG CCGGGAGGCATTTGCA TTTTGCCGGAGATGAG	0 2 54 57 49 0 82 23	836 837 838 839 840 841 842 843
915371 915391 915411 915431 915451 915471 915491 915511 915531 915551 915671 915611 915631 915671 915691 915711	83 132 222 321 368 400 437 468 498 520 567 708 783 835	98 147 237 336 383 415 452 483 513 535 582 723 798	2821 2870 2960 3059 5942 5974 6011 6042 6072 6094 6141	2836 2885 2975 3074 5957 5989 6026 6057 6087 6109	GCAGCTCCGCCCGGCG GGTTAGGATCTGGGTC GGTAGAAGCCCAGGAA CGACGCAGTGCAACGC TGAGAGGACCTGCAGA ATGTTCCGACTCCTGG GAACTTGCTTAAGTTG CCGGGAGGCATTTGCA TTTTGCCGGAGATGAG	2 54 57 49 0 82 23	837 838 839 840 841 842 843
915371 915391 915411 915431 915451 915471 915491 915511 915531 915551 915571 915611 915631 915651 915671 915691 915711 915731	83 132 222 321 368 400 437 468 498 520 567 708 783 835	147 237 336 383 415 452 483 513 535 582 723 798	2821 2870 2960 3059 5942 5974 6011 6042 6072 6094 6141	2836 2885 2975 3074 5957 5989 6026 6057 6087 6109	GCAGCTCCGCCCGGCG GGTTAGGATCTGGGTC GGTAGAAGCCCAGGAA CGACGCAGTGCAACGC TGAGAGGACCTGCAGA ATGTTCCGACTCCTGG GAACTTGCTTAAGTTG CCGGGAGGCATTTGCA TTTTGCCGGAGATGAG	54 57 49 0 82 23	837 838 839 840 841 842 843
915391 915411 915431 915431 915451 915471 915491 915511 915531 915551 915571 915611 915631 915651 915671 915691 915711	132 222 321 368 400 437 468 498 520 567 708 783 835	147 237 336 383 415 452 483 513 535 582 723 798	2870 2960 3059 5942 5974 6011 6042 6072 6094	2885 2975 3074 5957 5989 6026 6057 6087 6109	GGTTAGGATCTGGGTC GGTAGAAGCCCAGGAA CGACGCAGTGCAACGC TGAGAGGACCTGCAGA ATGTTCCGACTCCTGG GAACTTGCTTAAGTTG CCGGGAGGCATTTGCA TTTTGCCGGAGATGAG	54 57 49 0 82 23	838 839 840 841 842 843
915411 915431 915451 915471 915471 915491 915511 915531 915551 915671 915631 915651 915671 915691 915711 915731	222 321 368 400 437 468 498 520 567 708 783 835	237 336 383 415 452 483 513 535 582 723 798	2960 3059 5942 5974 6011 6042 6072 6094 6141	2975 3074 5957 5989 6026 6057 6087 6109	GGTAGAAGCCCAGGAA CGACGCAGTGCAACGC TGAGAGGACCTGCAGA ATGTTCCGACTCCTGG GAACTTGCTTAAGTTG CCGGGAGGCATTTGCA TTTTGCCGGAGATGAG	57 49 0 82 23 0	839 840 841 842 843 844
915431 915451 915471 915491 915511 915531 915551 915571 915631 915651 915671 915691 915711 915731	321 368 400 437 468 498 520 567 708 783 835	336 383 415 452 483 513 535 582 723 798	3059 5942 5974 6011 6042 6072 6094 6141	3074 5957 5989 6026 6057 6087 6109	CGACGCAGTGCAACGC TGAGAGGACCTGCAGA ATGTTCCGACTCCTGG GAACTTGCTTAAGTTG CCGGGAGGCATTTGCA TTTTGCCGGAGATGAG	49 0 82 23 0	840 841 842 843 844
915451 915471 915491 915511 915531 915551 915571 915611 915631 915651 915671 915691 915711 915731	368 400 437 468 498 520 567 708 783 835	383 415 452 483 513 535 582 723 798	5942 5974 6011 6042 6072 6094 6141	5957 5989 6026 6057 6087 6109	TGAGAGGACCTGCAGA ATGTTCCGACTCCTGG GAACTTGCTTAAGTTG CCGGGAGGCATTTGCA TTTTGCCGGAGATGAG	0 82 23 0	841 842 843 844
915471 915491 915511 915531 915531 915551 915671 915631 915631 915671 915691 915711 915731	400 437 468 498 520 567 708 783 835	415 452 483 513 535 582 723 798	5974 6011 6042 6072 6094 6141	5989 6026 6057 6087 6109	ATGTTCCGACTCCTGG GAACTTGCTTAAGTTG CCGGGAGGCATTTGCA TTTTGCCGGAGATGAG	82 23 0	842 843 844
915491 915511 915531 915551 915571 915611 915631 915651 915671 915691 915711 915731	437 468 498 520 567 708 783 835	452 483 513 535 582 723 798	6011 6042 6072 6094 6141	6026 6057 6087 6109	GAACTTGCTTAAGTTG CCGGGAGGCATTTGCA TTTTGCCGGAGATGAG	23	843 844
915511 915531 915531 915551 915571 915611 915631 915651 915671 915691 915711 915731	468 498 520 567 708 783 835	483 513 535 582 723 798	6042 6072 6094 6141	6057 6087 6109	CCGGGAGGCATTTGCA TTTTGCCGGAGATGAG	0	844
915531 915551 915571 915611 915631 915651 915671 915691 915711	498 520 567 708 783 835	513 535 582 723 798	6072 6094 6141	6087 6109	TTTTGCCGGAGATGAG		
915531 915551 915571 915611 915631 915651 915671 915691 915711	498 520 567 708 783 835	513 535 582 723 798	6072 6094 6141	6087 6109	TTTTGCCGGAGATGAG		
915551 915571 915611 915631 915651 915671 915691 915711 915731	520 567 708 783 835	535 582 723 798	6094 6141	6109		07	
915571 915611 915631 915651 915671 915691 915711 915731	567 708 783 835	582 723 798	6141			5	
915611 915631 915651 915671 915691 915711 915731	708 783 835	723 798					846
915631 915651 915671 915691 915711 915731	783 835	798	11004	6156	CGTCTTTGGACCGAAA	64	847
915651 915671 915691 915711 915731	835		11926	11941	CGGTGATGGTTGTTTT	98	848
915671 915691 915711 915731		0.50	12001	12016	TGGTGATGTCCACATG	0	849
915691 915711 915731	890	850	12053	12068	AAAGCTCTCGAGAGAA	35	850
915711 915731		905	13626	13641	ATCCAAATATCCTCGA	42	851
915731	971	986	16091	16106	AGGATCCATCCCTTCT	0	852
915731	1005	1020	16125	16140	GACTCATGTTTGCCCA	73	853
	1079	1094	16199	16214	GAGACGCAGGTGGTCT	0	854
015751							
915751	1140	1155	N/A	N/A	GTGCTGTAGCGAGCCT	0	855
915771	1202	1217	19042	19057	AATGGGTAGCAAGTTG	80	856
915791	1248	1263	19088	19103	ATTCCACAGGCAGGGT	37	857
915811	1327	1342	23732	23747	GTCACCCACTGCAACC	52	858
915831	1357	1372	23762	23777	CACATCAGCACTCGAG	29	859
915851	1429	1444	25192	25207	TCCTGCTCAGGTGTGC	2	860
915871	1513	1528	25276	25291	GACCTGAGGATGGACC	20	861
915891	1558	1573	25321	25336	TCAGCACCAGCAGGTA	68	862
915911	1620	1635	25383	25398	CGCCTCCTCAAGTGAC	48	863
915931	1652	1667	25415	25430	ACTTTAGCACCTCTGA	93	864
915951	1695	1710	25458	25473	GTCACTACACAGCAAT	84	865
915971	1776	1791	25539	25554	GCACAGGCGAAAGGTT	74	866
915991	1798	1813	25561	25576	TAGAGTTAAGTGCTGG	84	867
916011	1825	1840	25588	25603	CAGCTGAATTAACGCA	0	868
916031	1868	1883	25631	25646	TAAGGGACCCTCTGCA	54	869
916051	1892	1907	25655	25670	TTAATAGGGCCACGAA	75	870
916071	1922	1937	25685	25700	TAAGAACCTCATGCTG	56	871
916091	1965	1980	25728	25743	CCCCCCATCACAAGGC	9	872
916111	1987	2002	25750	25765	AGATCACACATGGGCC	26	873
916131	2084	2099	25847	25862	ACCACCTGACAGGCAG	80	874
916150	2110	2125	25873	25888	AGTAGTCAAGGTTATC	92	875
916170	2174	2189	25937	25952	TGAAAAAGGTGTTCTA	49	876
916190	2283	2298	26046	26061	AAGGCTTATTCTACTA	79	877
916210	2633	2648	26396	26411	AGGTGAATGCCCTGCA	71	878
916230	2694	2709	26457	26472	TGTGCTCCAGTGGAGA	75	879
916250	2728	2743	26491	26506	TGGTCCCTGCAGAAAA	79	880
916290	N/A	N/A	4397	4412	TGCCTACTGGCTCACA	14	881
916310	N/A	N/A	5279	5294	AAATCTTGGGATGCAC	94	882
916330	N/A	N/A	5572	5587	TGACATCATGGCTTCC	93	883
916350	N/A	N/A	6158	6173	GCTTACATCCACGACT	0	884
916370	N/A	N/A	7135	7150	CAAGTAAATGGAGTCC	77	885
916390	N/A	N/A	7620	7635	ATCTATTGCATAATCC	86	886
916550	N/A	N/A	12205	12220	TTTATTTCCGTTAACC	96	887
916570	N/A	N/A	12694	12709	TTCTTGACCGTGTTTC	98	888
916590	N/A	N/A	12990	13005	CCGGAATAAGCCTCCA	47	889
916610	N/A	N/A	13822	13837	TGTACAATGGGACGGA	69	890
916630	N/A	N/A	14418	14433	ATCGACACAGCATCAC	92	891
916650	N/A	N/A	15138	15153	TGCCATACCGGCTCCC	0	892

916670	N/A	N/A	15758	15773	GGTTTATAACAACTGA	89	893
916690	N/A	N/A	16722	16737	GCCTTGAGGTGGGTGG	0	894
916710	N/A	N/A	17512	17527	AGTCATGGGATGTGCA	58	895
916730	N/A	N/A	18395	18410	ATGTTTGGAAGTCGCC	92	896
916750	N/A	N/A	19473	19488	AAGGATCCTGCTTCTA	9	897
916769	N/A	N/A	20554	20569	GCTTACTATGGGATGA	62	898
916789	N/A	N/A	20809	20824	GTAATATTCAGACCAG	96	899
916809	N/A	N/A	21254	21269	ATCCATGCATGGCACA	72	900
916829	N/A	N/A	21979	21994	GTCAGACACGGAGACA	0	901
916849	N/A	N/A	23110	23125	GGCTTTTGAAGGAGAG	84	902
916869	N/A	N/A	23787	23802	TATTTACCTGGAGGCG	0	903
916889	N/A	N/A	24612	24627	CAAATCGGATCTTTGC	44	904

нацеливающихся на SEQ ID NO: 1 и 2

Таблица 14 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3,

SEQ ID % SEQ ID | SEQ ID | SEQ ID Номер SEQ NO: 1, NO: 1, NO: 2, NO: 2, Последовательность подавле-ID соедистартостопстартостоп-(5'-3') ния NO нения вый сайт сайт вый сайт сайт PNPLA3 CGGCCAGGGCATTCCC GCAGCAGCTCCGCCCG GCGGGTTAGGATCTGG CGTGGTAGAAGCCCAG CCGACGCAGTGCAACG ATCTGAGAGGACCTGC AATGTTCCGACTCCTG GGAACTTGCTTAAGTT GCCGGGAGGCATTTGC ATTTTGCCGGAGATGA CACTCTGGTAAGAGAG ACGGTGATGGTTGTTT

AGCTTGGTGATGTCCA

915652	836	851	12054	12069	AAAAGCTCTCGAGAGA	0	918
915672	891	906	13627	13642	CATCCAAATATCCTCG	82	919
915692	972	987	16092	16107	CAGGATCCATCCCTTC	0	920
915712	1006	1021	16126	16141	AGACTCATGTTTGCCC	77	921
915732	1081	1096	16201	16216	CTGAGACGCAGGTGGT	87	922
915752	1141	1156	N/A	N/A	AGTGCTGTAGCGAGCC	1	923
915772	1203	1218	19043	19058	TAATGGGTAGCAAGTT	77	924
915792	1257	1272	19097	19112	CAATGGCAGATTCCAC	56	925
915812	1328	1343	23733	23748	GGTCACCCACTGCAAC	58	926
915832	1358	1373	23763	23778	ACACATCAGCACTCGA	66	927
915852	1430	1445	25193	25208	GTCCTGCTCAGGTGTG	52	928
915872	1518	1533	25281	25296	GGCTGGACCTGAGGAT	0	929
915892	1570	1585	25333	25348	GTGGAGAGCCCCTCAG	47	930
915912	1621	1636	25384	25399	TCGCCTCCTCAAGTGA	8	931
915932	1654	1669	25417	25432	AAACTTTAGCACCTCT	90	932
915952	1696	1711	25459	25474	GGTCACTACACAGCAA	82	933
915972	1777	1792	25540	25555	TGCACAGGCGAAAGGT	64	934
915992	1799	1814	25562	25577	TTAGAGTTAAGTGCTG	91	935
916012	1826	1841	25589	25604	CCAGCTGAATTAACGC	32	936
916032	1869	1884	25632	25647	GTAAGGGACCCTCTGC	73	937
916052	1894	1909	25657	25672	CATTAATAGGGCCACG	81	937
916032	1923	1909	25686	25701	CTAAGAACCTCATGCT	70	939
		1938	25729	25744		30	939
916092	1966				ACCCCCCATCACAAGG		
916112	1988	2003	25751	25766	AAGATCACACATGGGC	86	941
916132	2085	2100	25848	25863	GACCACCTGACAGGCA	61	942
916151	2111	2126	25874	25889	TAGTAGTCAAGGTTAT	88	943
916171	2176	2191	25939	25954	GGTGAAAAAGGTGTTC	84	944
916191	2284	2299	26047	26062	TAAGGCTTATTCTACT	76	945
916211	2634	2649	26397	26412	GAGGTGAATGCCCTGC	0	946
916231	2695	2710	26458	26473	GTGTGCTCCAGTGGAG	87	947
916251	2729	2744	26492	26507	CTGGTCCCTGCAGAAA	67	948
916291	N/A	N/A	4419	4434	CAATGCTACTTGCCCC	68	949
916311	N/A	N/A	5280	5295	TAAATCTTGGGATGCA	94	950
916331	N/A	N/A	5576	5591	ACAATGACATCATGGC	97	951
916351	N/A	N/A	6165	6180	GCAAACTGCTTACATC	0	952
916371	N/A	N/A	7172	7187	GTTAGACGCGCCAGGC	7	953
916391	N/A	N/A	7624	7639	TCTCATCTATTGCATA	0	954
916551	N/A	N/A	12206	12221	TTTTATTTCCGTTAAC	73	955
916571	N/A	N/A	12714	12729	TAAACTACCGAACGCA	96	956
916591	N/A	N/A	12991	13006	CCCGGAATAAGCCTCC	47	957
916611	N/A	N/A	13823	13838	CTGTACAATGGGACGG	23	958
916631	N/A	N/A	14422	14437	TCCCATCGACACAGCA	95	959
916651	N/A	N/A	15206	15221	GGAATATTGCCAGGTA	95	960
916671	N/A	N/A	15759	15774	TGGTTTATAACAACTG	29	961
916691	N/A	N/A	16746	16761	ATTAGGAGAGGTCTCA	55	962
916711	N/A	N/A	17602	17617	CTTGATAGTGAATGTG	90	963
916731	N/A	N/A	18859	18874	GGCACTCACAAAAGCG	10	964
916751	N/A	N/A	20182	20197	CCCTATGTTCTACTTT	54	965
916770	N/A	N/A	20572	20587	CAACATCTCTAGCTGG	82	966
916790	N/A	N/A	20810	20825	GGTAATATTCAGACCA	0	967
916810	N/A	N/A	21265	21280	TGAAGCTACAGATCCA	74	968
916830	N/A	N/A	22042	22057	GGAAATCTGTCAGAGC	18	969
916850	N/A N/A	N/A	23142	23157	GAATCTAGGAAGGCGA	77	969
916870	N/A	N/A	23789	23804	AGCCTTACCAACCCTC	0	971
916890	N/A	N/A	24738	24753	AGCCTTAGGAAGCCTC	16	972

Таблица 15 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID		SEQ ID	a SEQ ID NO. 1 H Z	%	
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ
соеди-	старто-	стоп-	старто-	стоп-	(5'-3')	ния	ID
нения	вый сайт	сайт	вый сайт	сайт	,	PNPLA3	NO
915353	35	50	2773	2788	TCGGCCAGGGCATTCC	0	973
915373	87	102	2825	2840	CGCAGCAGCTCCGCCC	0	974
915393	136	151	2874	2889	CGCGGGTTAGGATCTG	0	975
915413	239	254	2977	2992	GCGGGTCGCCCCGACG	0	976
915433	325	340	3063	3078	ACGCCGACGCAGTGCA	0	977
915453	372	387	5946	5961	GATCTGAGAGGACCTG	24	978
915473	402	417	5976	5991	CAATGTTCCGACTCCT	73	979
915493	441	456	6015	6030	GGAGGAACTTGCTTAA	87	980
915513	470	485	6044	6059	GGCCGGGAGGCATTTG	0	981
915533	500	515	6074	6089	TATTTTGCCGGAGATG	75	982
915553	522	537	6096	6111	ACACTCTGGTAAGAGA	0	983
915613	710	725	11928	11943	CACGGTGATGGTTGTT	64	984
915633	788	803	12006	12021	GAGCTTGGTGATGTCC	74	985
915653	837	852	12055	12070	CAAAAGCTCTCGAGAG	0	986
915673	892	907	13628	13643	GCATCCAAATATCCTC	81	987
915693	973	988	16093	16108	TCAGGATCCATCCCTT	10	988
915713	1007	1022	16127	16142	CAGACTCATGTTTGCC	0	989
915733	1082	1097	16202	16217	GCTGAGACGCAGGTGG	64	990
915753	1142	1157	N/A	N/A	CAGTGCTGTAGCGAGC	0	991
915773	1204	1219	19044	19059	CTAATGGGTAGCAAGT	72	992
915793	1258	1273	19098	19113	GCAATGGCAGATTCCA	57	993
915813	1329	1344	23734	23749	AGGTCACCCACTGCAA	56	994
915833	1359	1374	23764	23779	GACACATCAGCACTCG	43	995
915853	1431	1446	25194	25209	AGTCCTGCTCAGGTGT	66	996
915873	1525	1540	25288	25303	AAGTTCAGGCTGGACC	54	997
915893	1571	1586	25334	25349	GGTGGAGAGCCCCTCA	0	998
915913	1622	1637	25385	25400	CTCGCCTCCTCAAGTG	52	999
915933	1660	1675	25423	25438	GATGGGAAACTTTAGC	85	1000
915953	1697	1712	25460	25475	GGGTCACTACACAGCA	78	1001
915973	1778	1793	25541	25556	CTGCACAGGCGAAAGG	35	1002
915993	1800	1815	25563	25578	ATTAGAGTTAAGTGCT	63	1003
916013	1827	1842	25590	25605	ACCAGCTGAATTAACG	66	1004
916033	1873	1888	25636	25651	GTCAGTAAGGGACCCT	52	1005
916053	1897	1912	25660	25675	GACCATTAATAGGGCC	51	1006
916073	1924	1939	25687	25702	TCTAAGAACCTCATGC	55	1007
916093	1967	1982	25730	25745	TACCCCCCATCACAAG	15	1008

916113	1990	2005	25753	25768	ACAAGATCACACATGG	72	1009
916133	2086	2101	25849	25864	AGACCACCTGACAGGC	79	1010
916152	2112	2127	25875	25890	TTAGTAGTCAAGGTTA	84	1011
916172	2177	2192	25940	25955	AGGTGAAAAAGGTGTT	88	1012
916192	2285	2300	26048	26063	TTAAGGCTTATTCTAC	82	1013
916212	2635	2650	26398	26413	TGAGGTGAATGCCCTG	58	1014
916232	2696	2711	26459	26474	TGTGTGCTCCAGTGGA	89	1015
916252	2730	2745	26493	26508	GCTGGTCCCTGCAGAA	44	1016
916272	N/A	N/A	3328	3343	GGGACGCACGAGAGTC	0	1017
916292	N/A	N/A	4432	4447	GTCAATAGCTTCACAA	86	1018
916312	N/A	N/A	5281	5296	ATAAATCTTGGGATGC	92	1019
916332	N/A	N/A	5577	5592	CACAATGACATCATGG	95	1020
916352	N/A	N/A	6170	6185	GATAAGCAAACTGCTT	19	1021
916372	N/A	N/A	7192	7207	GAGGATGCAACTGGCT	84	1022
916392	N/A	N/A	7644	7659	TCGGACTTCAGGCCCA	0	1023
916552	N/A	N/A	12208	12223	CCTTTTATTTCCGTTA	97	1024
916572	N/A	N/A	12745	12760	GCATACTAAAACCACC	85	1025
916592	N/A	N/A	13375	13390	GACTTTGCAGGCACCC	92	1026
916612	N/A	N/A	13909	13924	TGACATCCCAGTTCAA	30	1027
916632	N/A	N/A	14427	14442	TACTTTCCCATCGACA	81	1028
916652	N/A	N/A	15207	15222	AGGAATATTGCCAGGT	88	1029
916672	N/A	N/A	15768	15783	GGTTAGTGTTGGTTTA	92	1030
916692	N/A	N/A	16790	16805	CATTCGATGGAGGTTC	58	1031
916712	N/A	N/A	17629	17644	GGCGGATTTCCCCACT	11	1032
916732	N/A	N/A	18894	18909	TAAAATACGCCCGTCC	7	1033
916752	N/A	N/A	20183	20198	TCCCTATGTTCTACTT	32	1034
916771	N/A	N/A	20574	20589	ATCAACATCTCTAGCT	46	1035
916791	N/A	N/A	20811	20826	GGGTAATATTCAGACC	43	1036
916811	N/A	N/A	21313	21328	TTTACTAGAGACTCTG	69	1037
916831	N/A	N/A	22071	22086	GTAGGATAGGACTAGA	45	1038
916851	N/A	N/A	23219	23234	ATAAATGCCTGACCAC	64	1039
916871	N/A	N/A	23861	23876	TGTTTCTAGAATGTCG	68	1040
916891	N/A	N/A	24873	24888	GCCTATCAGTTTCCCC	0	1041

Таблица 16 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID	SEQ ID	SEQ ID	a SEQ ID NO. 1 и 2	%	
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ
соеди-	старто-	стоп-	старто-	стоп-	(5'-3')	ния	ID
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
915354	36	51	2774	2789	CTCGGCCAGGGCATTC	0	1042
915374	89	104	2827	2842	TCCGCAGCAGCTCCGC	60	1043
915394	137	152	2875	2890	GCGCGGGTTAGGATCT	0	1044
915414	240	255	2978	2993	AGCGGGTCGCCCCGAC	21	1045
915434	337	352	3075	3090	ATACCGGAGAGGACGC	85	1046
915454	374	389	5948	5963	AAGATCTGAGAGGACC	24	1047
915474	403	418	5977	5992	CCAATGTTCCGACTCC	95	1048
915494	442	457	6016	6031	CGGAGGAACTTGCTTA	93	1049
915514	471	486	6045	6060	TGGCCGGGAGGCATTT	0	1050
915534	501	516	6075	6090	CTATTTTGCCGGAGAT	87	1051
915554	523	538	6097	6112	GACACTCTGGTAAGAG	26	1052
915614	711	726	11929	11944	ACACGGTGATGGTTGT	46	1053
915634	791	806	12009	12024	ACTGAGCTTGGTGATG	87	1054
915654	838	853	12056	12071	ACAAAAGCTCTCGAGA	0	1055
915674	900	915	13636	13651	ACCTGAATGCATCCAA	93	1056
915694	974	989	16094	16109	CTCAGGATCCATCCCT	43	1057
915714	1008	1023	16128	16143	CCAGACTCATGTTTGC	0	1058
915734	1083	1098	16203	16218	TGCTGAGACGCAGGTG	50	1059
915754	1143	1158	N/A	N/A	TCAGTGCTGTAGCGAG	42	1060
915774	1208	1223	19048	19063	TATCCTAATGGGTAGC	53	1061
915794	1260	1275	19100	19115	TCGCAATGGCAGATTC	67	1062
915814	1333	1348	23738	23753	TGTGAGGTCACCCACT	0	1063
915834	1360	1375	23765	23780	AGACACATCAGCACTC	24	1064
915854	1432	1447	25195	25210	CAGTCCTGCTCAGGTG	54	1065
915874	1526	1541	25289	25304	GAAGTTCAGGCTGGAC	75	1066
915894	1572	1587	25335	25350	AGGTGGAGAGCCCCTC	0	1067

915914	1623	1638	25386	25401	ACTCGCCTCCTCAAGT	0	1068
915934	1661	1676	25424	25439	AGATGGGAAACTTTAG	84	1069
915954	1724	1739	25487	25502	GGCTGGGATCCTCCAC	24	1070
915974	1779	1794	25542	25557	GCTGCACAGGCGAAAG	56	1071
915994	1801	1816	25564	25579	TATTAGAGTTAAGTGC	75	1072
916014	1828	1843	25591	25606	AACCAGCTGAATTAAC	55	1073
916034	1875	1890	25638	25653	CAGTCAGTAAGGGACC	70	1074
916054	1898	1913	25661	25676	TGACCATTAATAGGGC	74	1075
916074	1925	1940	25688	25703	TTCTAAGAACCTCATG	22	1076
916094	1968	1983	25731	25746	CTACCCCCCATCACAA	0	1077
916114	1992	2007	25755	25770	CCACAAGATCACACAT	0	1078
916134	2087	2102	25850	25865	CAGACCACCTGACAGG	78	1079
916153	2113	2128	25876	25891	TTTAGTAGTCAAGGTT	93	1080
916173	2178	2193	25941	25956	TAGGTGAAAAAGGTGT	89	1081
916193	2306	2321	26069	26084	ACCCAACCGATTTTTT	61	1082
916213	2636	2651	26399	26414	CTGAGGTGAATGCCCT	73	1083
916233	2697	2712	26460	26475	TTGTGTGCTCCAGTGG	92	1084
916253	2746	2761	26509	26524	TCACTGACCATGTGGG	16	1085
916273	N/A	N/A	3362	3377	CTTCATGCACGGGCGC	37	1086
916293	N/A	N/A	4462	4477	GCATAATCTCCTGCCT	0	1087
916313	N/A	N/A	5284	5299	GCCATAAATCTTGGGA	37	1088
916333	N/A	N/A	5605	5620	CTTTATTCAATGTGGC	97	1089
916353	N/A	N/A	6529	6544	TACAACTGCCTGTGTT	0	1090
916373	N/A	N/A	7218	7233	AAAGCTTCCGCAAACA	51	1091
916393	N/A	N/A	7657	7672	CTAACATACACCCTCG	0	1092
916553	N/A	N/A	12225	12240	AGCTTCTGGGACAAGC	10	1093
916573	N/A	N/A	12746	12761	GGCATACTAAAACCAC	55	1094
916593	N/A	N/A	13397	13412	TTGAATGTCACCCTTC	91	1095
916613	N/A	N/A	13914	13929	AGTCATGACATCCCAG	93	1096
916633	N/A	N/A	14442	14457	TCTCATTGGCACCTGT	86	1097
916653	N/A	N/A	15252	15267	CCCTATCAGATGCCCT	81	1098
916673	N/A	N/A	15799	15814	CATATCTGGTTTCATG	0	1099
916693	N/A	N/A	16842	16857	GACCATAGCACTGTCT	0	1100
916713	N/A	N/A	17737	17752	ATTAATCTGGTCATAT	0	1101
916733	N/A	N/A	18898	18913	TCCATAAAATACGCCC	69	1102
916753	N/A	N/A	20195	20210	GAAAGATGGAATTCCC	86	1103
916772	N/A	N/A	20604	20619	TACGATCATCATTATT	91	1104
916792	N/A	N/A	20841	20856	GTATTAGCTCAATATT	0	1105
916812	N/A	N/A	21314	21329	GTTTACTAGAGACTCT	64	1106
916832	N/A	N/A	22080	22095	GTAAAAACTGTAGGAT	0	1107
916852	N/A	N/A	23220	23235	GATAAATGCCTGACCA	29	1108
916872	N/A	N/A	24011	24026	CCGACGGGAAGTCTTC	0	1109
916892	N/A	N/A	24874	24889	GGCCTATCAGTTTCCC	0	1110

Таблица 17 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID		SEQ ID	a SEQ ID NO: 1 и 2	%	
Номер	NO: 1,			-	Положения от стания		SEQ
соеди-	<u> </u>	NO: 1,	NO: 2,	NO: 2,	Последовательность (5'-3')	подавле-	ID
нения	старто- вый сайт	стоп-	старто-	стоп-	(5'-5')	HUSI A 2	NO
015255	37	сайт 52	вый сайт 2775	сайт	TOTOCOCOCACOCOATT	PNPLA3	1111
915355 915375	90	105	2828	2790 2843	TCTCGGCCAGGGCATT ATCCGCAGCAGCTCCG	52	1111
	138	153	2876	2891	GGCGCGGGTTAGGATC	0	1112
915395		256	2979	2994	CAGCGGGTTAGGATC	8	1113
915415	241 338	353				30	
915435 915455	378	393	3076 5952	3091 5967	GATACCGGAGAGGACG GCACAAGATCTGAGAG	72	1115
915475	405	420	5979	5994	TGCCAATGTTCCGACT	0	1116
915495	443	458	6017	6032	TCGGAGGAACTTGCTT	69	1117
915495	472	487	6046	6061	TTGGCCGGGAGGCATT	9	1118
915535	502	517	6076	6091	CCTATTTTGCCGGAGA	96	1119
915555	524	539	6098	6113	AGACACTCTGGTAAGA	2	1120
					GACACGGTGATGGTTG		
915615	712	727	11930	11945		32	1122
915635	792	807	12010	12025	GACAAAAGCTCTCGAG	93	1123
915655	839	854	12057	12072	GACAAAAGCTCTCGAG	40	1124
915675	901	916	13637	13652	AACCTGAATGCATCCA	92	1125
915695	975	990	16095	16110	CCTCAGGATCCATCCC	0	1126
915715	1011	1026	16131	16146	AATCCAGACTCATGTT	67	1127
915735	1088	1103	16208	16223	CAGGATGCTGAGACGC	86	1128
915755	1144	1159	N/A	N/A	CTCAGTGCTGTAGCGA	25	1129
915775	1209	1224	19049	19064	TTATCCTAATGGGTAG	23	1130
915795	1261	1276	19101	19116	ATCGCAATGGCAGATT	0	1131
915815	1337	1352	23742	23757	CACCTGTGAGGTCACC	35	1132
915835	1361	1376	23766	23781	CAGACACATCAGCACT	54	1133
915855	1433	1448	25196	25211	CCAGTCCTGCTCAGGT	23	1134
915875	1530	1545	25293	25308	AGAAGAAGTTCAGGCT	81	1135
915895	1574	1589	25337	25352	AAAGGTGGAGAGCCCC	76	1136
915915	1624	1639	25387	25402	GACTCGCCTCCTCAAG	75	1137
915935	1674	1689	25437	25452	GGTAGCTGCACAAAGA	76	1138
915955	1726	1741	25489	25504	GAGGCTGGGATCCTCC	0	1139
915975	1780	1795	25543	25558	CGCTGCACAGGCGAAA	0	1140
915995	1805	1820	25568	25583	GATGTATTAGAGTTAA	82	1141
916015	1829	1844	25592	25607	CAACCAGCTGAATTAA	59	1142
916035	1876	1891	25639	25654	ACAGTCAGTAAGGGAC	81	1143
916055	1899	1914	25662	25677	CTGACCATTAATAGGG	49	1144
916075	1929	1944	25692	25707	GTCATTCTAAGAACCT	81	1145
916095	1969	1984	25732	25747	CCTACCCCCCATCACA	21	1146
916115	1995	2010	25758	25773	ACCCCACAAGATCACA	0	1147
916135	2088	2103	25851	25866	GCAGACCACCTGACAG	44	1148
916154	2131	2146	25894	25909	CCCCGCCATGGAGACG	68	1149
916174	2180	2195	25943	25958	GTTAGGTGAAAAAGGT	90	1150
916194	2308	2323	26071	26086	GCACCCAACCGATTTT	83	1151
916214	2637	2652	26400	26415	GCTGAGGTGAATGCCC	52	1152
916234	2698	2713	26461	26476	GTTGTGTGCTCCAGTG	88	1153
916254	2747	2762	26510	26525	CTCACTGACCATGTGG	13	1154
916274	N/A	N/A	3524	3539	GCAAATCGGCCCCTCG	3	1155
916294	N/A	N/A	4463	4478	GGCATAATCTCCTGCC	0	1156
916314	N/A	N/A	5324	5339	TGGCATGCAAGACCAC	0	1157
916334	N/A	N/A	5606	5621	ACTTTATTCAATGTGG	95	1158

916354	N/A	N/A	6556	6571	GTTTATGTCACTCTGG	68	1159
916374	N/A	N/A	7245	7260	GAACAGACAAGTGCTG	38	1160
916394	N/A	N/A	7658	7673	ACTAACATACACCCTC	31	1161
916554	N/A	N/A	12249	12264	ATAATCAGGGTGGTGC	0	1162
916574	N/A	N/A	12747	12762	AGGCATACTAAAACCA	47	1163
916594	N/A	N/A	13500	13515	GAATCATGCAAGCTCT	50	1164
916614	N/A	N/A	13996	14011	TAAACTAAGGGTCACA	37	1165
916634	N/A	N/A	14497	14512	ATCCATCCTGCATGAG	76	1166
916654	N/A	N/A	15254	15269	GGCCCTATCAGATGCC	0	1167
916674	N/A	N/A	15802	15817	CTACATATCTGGTTTC	0	1168
916694	N/A	N/A	16844	16859	TGGACCATAGCACTGT	60	1169
916714	N/A	N/A	17738	17753	TATTAATCTGGTCATA	18	1170
916734	N/A	N/A	18926	18941	CCACTTTACTCTGTTG	64	1171
916754	N/A	N/A	20210	20225	AACTATGCCTAGAACG	43	1172
916773	N/A	N/A	20606	20621	TTTACGATCATCATTA	77	1173
916793	N/A	N/A	20842	20857	TGTATTAGCTCAATAT	0	1174
916813	N/A	N/A	21319	21334	TGGGAGTTTACTAGAG	66	1175
916833	N/A	N/A	22118	22133	AGAGAGTACTCTTGGA	11	1176
916853	N/A	N/A	23222	23237	CTGATAAATGCCTGAC	78	1177
916873	N/A	N/A	24038	24053	ATCAATGCTGCACTCA	88	1178
916893	N/A	N/A	24889	24904	ACGAATCCCTGGAGGG	0	1179

Таблица 18 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соеди- нения	SEQ ID NO: 1, старто- вый сайт	SEQ ID NO: 1, стоп- сайт	SEQ ID NO: 2, старто- вый сайт	SEQ ID NO: 2, стоп- сайт	Последовательность (5'-3')	% подавле- ния PNPLA3	SEQ ID NO
915356	38	53	2776	2791	GTCTCGGCCAGGGCAT	0	1180
915376	93	108	2831	2846	CTGATCCGCAGCAGCT	28	1181
915396	165	180	2903	2918	CGTACATGGCGGCGGC	0	1182
915416	242	257	2980	2995	GCAGCGGGTCGCCCCG	0	1183

915436	339	354	3077	3092	GGATACCGGAGAGGAC	64	1184
915456	379	394	5953	5968	CGCACAAGATCTGAGA	79	1185
915476	406	421	5980	5995	ATGCCAATGTTCCGAC	83	1186
915496	444	459	6018	6033	GTCGGAGGAACTTGCT	35	1187
915516	473	488	6047	6062	ATTGGCCGGGAGGCAT	0	1188
915536	503	518	6077	6092	GCCTATTTTGCCGGAG	77	1189
915556	525	540	6099	6114	CAGACACTCTGGTAAG	62	1190
915616	730	745	11948	11963	TACTCCCCATAGAAGG	8	1191
915636	794	809	12012	12027	TAGACTGAGCTTGGTG	90	1192
915656	840	855	12058	12073	GGACAAAAGCTCTCGA	60	1193
915676	902	917	13638	13653	GAACCTGAATGCATCC	72	1194
915696	978	993	16098	16113	CGACCTCAGGATCCAT	0	1195
915716	1012	1027	16132	16147	GAATCCAGACTCATGT	0	1196
915736	1089	1104	16209	16224	GCAGGATGCTGAGACG	55	1197
915756	1145	1160	N/A	N/A	ACTCAGTGCTGTAGCG	12	1198
915776	1210	1225	19050	19065	ATTATCCTAATGGGTA	28	1199
915796	1262	1277	19102	19117	AATCGCAATGGCAGAT	0	1200
915816	1339	1354	23744	23759	AACACCTGTGAGGTCA	56	1201
915836	1365	1380	23770	23785	GGAGCAGACACATCAG	53	1202
915856	1434	1449	25197	25212	GCCAGTCCTGCTCAGG	21	1203
915876	1531	1546	25294	25309	AAGAAGAAGTTCAGGC	85	1204
915896	1575	1590	25338	25353	GAAAGGTGGAGAGCCC	78	1205
915916	1626	1641	25389	25404	TAGACTCGCCTCCTCA	32	1206
915936	1676	1691	25439	25454	GAGGTAGCTGCACAAA	91	1207
915956	1737	1752	25500	25515	AACTCAGCTCAGAGGC	46	1208
915976	1781	1796	25544	25559	CCGCTGCACAGGCGAA	0	1209
915996	1807	1822	25570	25585	CTGATGTATTAGAGTT	93	1210
916016	1830	1845	25593	25608	CCAACCAGCTGAATTA	21	1211
916036	1877	1892	25640	25655	AACAGTCAGTAAGGGA	82	1212
916056	1900	1915	25663	25678	TCTGACCATTAATAGG	13	1213
916076	1930	1945	25693	25708	TGTCATTCTAAGAACC	40	1214
916096	1970	1985	25733	25748	GCCTACCCCCATCAC	18	1215
916116	1996	2011	25759	25774	CACCCCACAAGATCAC	50	1216

916136	2089	2104	25852	25867	TGCAGACCACCTGACA	58	1217
916155	2132	2147	25895	25910	CCCCCGCCATGGAGAC	33	1218
916175	2224	2239	25987	26002	CGCTTCCTTACATTTT	89	1219
916195	2309	2324	26072	26087	TGCACCCAACCGATTT	64	1220
916215	2638	2653	26401	26416	GGCTGAGGTGAATGCC	0	1221
916235	2699	2714	26462	26477	AGTTGTGTGCTCCAGT	85	1222
916255	2748	2763	26511	26526	ACTCACTGACCATGTG	0	1223
916275	N/A	N/A	3555	3570	GGCCAAAGCCCCACTC	0	1224
916295	N/A	N/A	4464	4479	GGGCATAATCTCCTGC	0	1225
916315	N/A	N/A	5342	5357	GGCTGATCTGCACTCT	84	1226
916335	N/A	N/A	5626	5641	TAATTCTACCTGTGTC	92	1227
916355	N/A	N/A	6557	6572	AGTTTATGTCACTCTG	27	1228
916375	N/A	N/A	7321	7336	ACACTTTGCGAAGCAC	27	1229
916395	N/A	N/A	7660	7675	GAACTAACATACACCC	1	1230
916555	N/A	N/A	12252	12267	CCCATAATCAGGGTGG	0	1231
916575	N/A	N/A	12758	12773	GTAGAGTGGTAAGGCA	95	1232
916595	N/A	N/A	13502	13517	AAGAATCATGCAAGCT	34	1233
916615	N/A	N/A	13997	14012	TTAAACTAAGGGTCAC	65	1234
916635	N/A	N/A	14549	14564	TTAATGTGGATTCACG	76	1235
916655	N/A	N/A	15295	15310	CCAAGATAACCTCACA	64	1236
916675	N/A	N/A	15806	15821	CCATCTACATATCTGG	26	1237
916695	N/A	N/A	16854	16869	CACAATCATTTGGACC	72	1238
916715	N/A	N/A	17739	17754	GTATTAATCTGGTCAT	87	1239
916735	N/A	N/A	19113	19128	CACCTCTGGACAATCG	29	1240
916755	N/A	N/A	20212	20227	CAAACTATGCCTAGAA	70	1241
916774	N/A	N/A	20608	20623	ATTTTACGATCATCAT	91	1242
916794	N/A	N/A	20846	20861	TGCCTGTATTAGCTCA	90	1243
916814	N/A	N/A	21345	21360	CACATAAAGTCAAACG	87	1244
916834	N/A	N/A	22124	22139	AGAACAAGAGAGTACT	3	1245
916854	N/A	N/A	23250	23265	CACATAAAGGACCCCC	54	1246
916874	N/A	N/A	24126	24141	CGCTATCTGACACTCC	87	1247
916894	N/A	N/A	24896	24911	TCCACCAACGAATCCC	50	1248

Таблица 19 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID	SEQ ID	SEQ ID	a SEQ ID NO. 1 и 2	%	CEO
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ
соеди-	старто-	стоп-	старто-	стоп-	(5'-3')	ния	ID
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
915357	39	54	2777	2792	TGTCTCGGCCAGGGCA	0	1249
915377	94	109	2832	2847	CCTGATCCGCAGCAGC	0	1250
915397	182	197	2920	2935	CCAGCCGCGCTCTGCG	0	1251
915417	243	258	2981	2996	GGCAGCGGGTCGCCCC	0	1252
915437	341	356	3079	3094	CGGGATACCGGAGAGG	57	1253
915457	380	395	5954	5969	CCGCACAAGATCTGAG	71	1254
915477	407	422	5981	5996	GATGCCAATGTTCCGA	93	1255
915497	445	460	6019	6034	TGTCGGAGGAACTTGC	85	1256
915517	474	489	6048	6063	CATTGGCCGGGAGGCA	0	1257
915537	504	519	6078	6093	TGCCTATTTTGCCGGA	44	1258
915557	526	541	6100	6115	TCAGACACTCTGGTAA	26	1259
915617	732	747	11950	11965	CGTACTCCCCATAGAA	66	1260
915637	796	811	12014	12029	CGTAGACTGAGCTTGG	98	1261
915657	857	872	12075	12090	CACCTTGAGATCCGGG	0	1262
915677	903	918	13639	13654	AGAACCTGAATGCATC	78	1263
915697	979	994	16099	16114	GCGACCTCAGGATCCA	1	1264
915717	1031	1046	16151	16166	GGCAGCCGACTCCGGG	19	1265
915737	1109	1124	16229	16244	CAGGATGCTCTCATCC	0	1266
915757	1146	1161	N/A	N/A	CACTCAGTGCTGTAGC	33	1267
915777	1214	1229	19054	19069	AGACATTATCCTAATG	42	1268
915797	1263	1278	19103	19118	CAATCGCAATGGCAGA	49	1269
915817	1340	1355	23745	23760	GAACACCTGTGAGGTC	44	1270
915837	1398	1413	25161	25176	GGCTGCTCACTGGCAT	18	1271
915857	1435	1450	25198	25213	GGCCAGTCCTGCTCAG	0	1272
915877	1534	1549	25297	25312	CCCAAGAAGAAGTTCA	76	1273
915897	1576	1591	25339	25354	GGAAAGGTGGAGAGCC	24	1274

915917	1627	1642	25390	25405	CTAGACTCGCCTCCTC	77	1275
915937	1679	1694	25442	25457	GCGGAGGTAGCTGCAC	16	1276
915957	1738	1753	25501	25516	CAACTCAGCTCAGAGG	61	1277
915977	1782	1797	25545	25560	ACCGCTGCACAGGCGA	34	1278
915997	1809	1824	25572	25587	TGCTGATGTATTAGAG	83	1279
916017	1831	1846	25594	25609	CCCAACCAGCTGAATT	42	1280
916037	1878	1893	25641	25656	AAACAGTCAGTAAGGG	92	1281
916057	1901	1916	25664	25679	GTCTGACCATTAATAG	64	1282
916077	1931	1946	25694	25709	CTGTCATTCTAAGAAC	41	1283
916097	1971	1986	25734	25749	AGCCTACCCCCATCA	0	1284
916117	1997	2012	25760	25775	CCACCCCACAAGATCA	0	1285
916137	2090	2105	25853	25868	TTGCAGACCACCTGAC	65	1286
916156	2133	2148	25896	25911	ACCCCCGCCATGGAGA	54	1287
916176	2225	2240	25988	26003	ACGCTTCCTTACATTT	84	1288
916196	2310	2325	26073	26088	CTGCACCCAACCGATT	58	1289
916216	2639	2654	26402	26417	GGGCTGAGGTGAATGC	46	1290
916236	2700	2715	26463	26478	AAGTTGTGTGCTCCAG	86	1291
916256	2751	2766	26514	26529	GAAACTCACTGACCAT	41	1292
916276	N/A	N/A	4068	4083	GGAAACAACTTTCCTC	0	1293
916296	N/A	N/A	4730	4745	GATCATGTGGCGGTCT	68	1294
916316	N/A	N/A	5364	5379	CACTTACTGGCCTGGC	30	1295
916336	N/A	N/A	5645	5660	ATATTGGGCTCAATGA	89	1296
916356	N/A	N/A	6575	6590	ATCACTGGAGGTGTAC	0	1297
916376	N/A	N/A	7328	7343	CAGGATCACACTTTGC	17	1298
916396	N/A	N/A	7661	7676	GGAACTAACATACACC	0	1299
916556	N/A	N/A	12272	12287	GTATATGTTCCCAGGT	81	1300
916576	N/A	N/A	12788	12803	GTGTACATGGTCTGCA	94	1301
916596	N/A	N/A	13529	13544	ATCATTGGAAGACCGC	89	1302
916616	N/A	N/A	13998	14013	GTTAAACTAAGGGTCA	85	1303
916636	N/A	N/A	14550	14565	CTTAATGTGGATTCAC	91	1304
916656	N/A	N/A	15351	15366	TCCAACTTCAGGCTGA	74	1305
916676	N/A	N/A	15819	15834	AGCTTTGTGGGCTCCA	69	1306
916696	N/A	N/A	16982	16997	GTTTAATAAGGGCACC	63	1307
916716	N/A	N/A	17740	17755	CGTATTAATCTGGTCA	93	1308
916736	N/A	N/A	19126	19141	CACCTAAAATGCTCAC	17	1309
916756	N/A	N/A	20213	20228	ACAAACTATGCCTAGA	58	1310
916775	N/A	N/A	20609	20624	AATTTTACGATCATCA	78	1311
916795	N/A	N/A	20927	20942	GACAGATCAGCACTCG	80	1312
916815	N/A	N/A	21407	21422	CAATTCTAGACATGGC	88	1313
916835	N/A	N/A	22338	22353	TGCACCTACCCTTTTC	39	1314
916855	N/A	N/A	23251	23266	ACACATAAAGGACCCC	48	1315
916875	N/A	N/A	24241	24256	GCATTACCAGGCACCT	61	1316
916895	N/A	N/A	24912	24927	GACATCACAGGTGTTG	5	1317

Таблица 20 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID	SEQ ID		a SEQ ID NO: 1 и 2	%	
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ
соеди-	старто-	стоп-	старто-	стоп-	(5'-3')	ния	ID
нения	вый сайт	сайт	вый сайт	сайт	,	PNPLA3	NO
915358	40	55	2778	2793	GTGTCTCGGCCAGGGC	0	1318
915378	96	111	2834	2849	GTCCTGATCCGCAGCA	0	1319
915398	184	199	2922	2937	CTCCAGCCGCGCTCTG	14	1320
915418	244	259	2982	2997	AGGCAGCGGGTCGCCC	0	1321
915438	342	357	3080	3095	GCGGGATACCGGAGAG	44	1322
915458	381	396	5955	5970	TCCGCACAAGATCTGA	41	1323
915478	408	423	5982	5997	AGATGCCAATGTTCCG	95	1324
915498	446	461	6020	6035	CTGTCGGAGGAACTTG	40	1325
915518	475	490	6049	6064	ACATTGGCCGGGAGGC	5	1326
915538	505	520	6079	6094	ATGCCTATTTTGCCGG	61	1327
915558	527	542	6101	6116	ATCAGACACTCTGGTA	0	1328
915618	748	763	11966	11981	ACTTTAGGGCAGATGT	87	1329
915638	818	833	12036	12051	GTAGAGGTTCCCTGTG	87	1330
915658	859	874	N/A	N/A	AGCACCTTGAGATCCG	0	1331
915678	926	941	N/A	N/A	GTTGCAGATGCCCTTC	24	1332
915698	980	995	16100	16115	GGCGACCTCAGGATCC	0	1333
915718	1032	1047	16152	16167	AGGCAGCCGACTCCGG	8	1334
915738	1114	1129	16234	16249	GTGTCCAGGATGCTCT	41	1335
915758	1147	1162	N/A	N/A	TCACTCAGTGCTGTAG	59	1336
915778	1217	1232	19057	19072	ATAAGACATTATCCTA	85	1337
915798	1264	1279	19104	19119	ACAATCGCAATGGCAG	66	1338
915818	1342	1357	23747	23762	GTGAACACCTGTGAGG	58	1339
915838	1400	1415	25163	25178	TTGGCTGCTCACTGGC	79	1340
915858	1436	1451	25199	25214	GGGCCAGTCCTGCTCA	0	1341
915878	1535	1550	25298	25313	GCCCAAGAAGAAGTTC	54	1342
915898	1590	1605	25353	25368	CTAGTGAAAAACTGGG	34	1343
915918	1628	1643	25391	25406	GCTAGACTCGCCTCCT	33	1344
915938	1680	1695	25443	25458	TGCGGAGGTAGCTGCA	0	1345
915958	1756	1771	25519	25534	CCTAGCTTTTCATAAA	0	1346
915978	1783	1798	25546	25561	GACCGCTGCACAGGCG	24	1347
915998	1810	1825	25573	25588	ATGCTGATGTATTAGA	86	1348
916018	1832	1847	25595	25610	TCCCAACCAGCTGAAT	3	1349
916038	1879	1894	25642	25657	GAAACAGTCAGTAAGG	64	1350
916058	1902	1917	25665	25680	AGTCTGACCATTAATA	86	1351
916078	1933	1948	25696	25711	ACCTGTCATTCTAAGA	18	1352
916098	1972	1987	25735	25750	CAGCCTACCCCCCATC	41	1353
916118	1999	2014	25762	25777	CTCCACCCCACAAGAT	0	1354
916138	2092	2107	25855	25870	CTTTGCAGACCACCTG	65	1355
916157	2134	2149	25897	25912	TACCCCCGCCATGGAG	57	1356
916177	2237	2252	26000	26015	CAACAGGTAACAACGC	88	1357
916197	2579	2594	26342	26357	GTCAGACTTTCACTCA	81	1358
916217	2659	2674	26422	26437	GTGCTTGGCTCCTGCC	43	1359
916237	2701	2716	26464	26479	CAAGTTGTGTGCTCCA	73	1360
916257	2769	2784	26532	26547	CATCGCCACACATGGG	61	1361
916277	N/A	N/A	4105	4120	AGGAAGGGTCCCAAAC	0	1362
916297	N/A	N/A	4731	4746	TGATCATGTGGCGGTC	80	1363
916317	N/A	N/A	5391	5406	TGCTATCAGGTGCAGG	60	1364
916337	N/A	N/A	5646	5661	TATATTGGGCTCAATG	71	1365
710337	1 1/1/1	11/71	2040	2001	IMMI IOOGCICAAIO	/1	1303

916357	N/A	N/A	6594	6609	GTTTACAAACATGGAC	26	1366
916377	N/A	N/A	7464	7479	TCATTAGCATCACCGG	33	1367
916397	N/A	N/A	7662	7677	GGGAACTAACATACAC	0	1368
916557	N/A	N/A	12274	12289	GGGTATATGTTCCCAG	0	1369
916577	N/A	N/A	12830	12845	TGCATAGCCTTCTTTC	84	1370
916597	N/A	N/A	13530	13545	CATCATTGGAAGACCG	62	1371
916617	N/A	N/A	14016	14031	TCTTTAACTTCGGCCC	70	1372
916637	N/A	N/A	14551	14566	TCTTAATGTGGATTCA	88	1373
916657	N/A	N/A	15388	15403	TCAGACAACCACAGCT	66	1374
916677	N/A	N/A	15852	15867	TAAAGCAGGACACACG	74	1375
916697	N/A	N/A	17077	17092	AGACATGTTGGTGTCT	0	1376
916717	N/A	N/A	17788	17803	CCCCAGTCTTTTATTC	0	1377
916737	N/A	N/A	19140	19155	GGAAGACACGGAGCCA	20	1378
916757	N/A	N/A	20240	20255	CCTAACTGCTGGCTCT	85	1379
916776	N/A	N/A	20610	20625	TAATTTTACGATCATC	76	1380
916796	N/A	N/A	20939	20954	CTCTTTGTAGCAGACA	90	1381
916816	N/A	N/A	21439	21454	CAATATACTGAGAGGA	92	1382
916836	N/A	N/A	22392	22407	GTAGACATCCTTCCCG	65	1383
916856	N/A	N/A	23252	23267	GACACATAAAGGACCC	59	1384
916876	N/A	N/A	24242	24257	TGCATTACCAGGCACC	37	1385
916896	N/A	N/A	24913	24928	GGACATCACAGGTGTT	19	1386
					i		_

Таблица 21 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соеди- нения	SEQ ID NO: 1, старто- вый сайт	SEQ ID NO: 1, cton- caŭt	SEQ ID NO: 2, старто- вый сайт	SEQ ID NO: 2, стоп- сайт	Последовательность (5'-3')	% подавле- ния PNPLA3	SEQ ID NO
915359	41	56	2779	2794	AGTGTCTCGGCCAGGG	0	1387
915379	97	112	2835	2850	GGTCCTGATCCGCAGC	0	1388
915399	185	200	2923	2938	GCTCCAGCCGCGCTCT	26	1389
915419	245	260	2983	2998	CAGGCAGCGGGTCGCC	0	1390

915439	343	358	3081	3096	AGCGGGATACCGGAGA	69	1391
915459	382	397	5956	5971	TTCCGCACAAGATCTG	71	1392
915479	409	424	5983	5998	AAGATGCCAATGTTCC	93	1393
915499	448	463	6022	6037	CCCTGTCGGAGGAACT	30	1394
915519	477	492	6051	6066	GGACATTGGCCGGGAG	88	1395
915539	506	521	6080	6095	GATGCCTATTTTGCCG	60	1396
915559	529	544	6103	6118	CCATCAGACACTCTGG	30	1397
915579	595	610	7825	7840	CAGGAACATACCAAGG	98	1398
915599	674	689	11892	11907	GTTGTCACTCACTCCT	98	1399
915619	749	764	11967	11982	GACTTTAGGGCAGATG	96	1400
915639	819	834	12037	12052	GGTAGAGGTTCCCTGT	92	1401
915659	860	875	N/A	N/A	CAGCACCTTGAGATCC	0	1402
915679	928	943	N/A	N/A	CTGTTGCAGATGCCCT	58	1403
915699	981	996	16101	16116	TGGCGACCTCAGGATC	40	1404
915719	1033	1048	16153	16168	AAGGCAGCCGACTCCG	0	1405
915739	1115	1130	16235	16250	GGTGTCCAGGATGCTC	40	1406
915759	1148	1163	N/A	N/A	TTCACTCAGTGCTGTA	29	1407
915779	1219	1234	19059	19074	ACATAAGACATTATCC	86	1408
915799	1268	1283	19108	19123	CTGGACAATCGCAATG	42	1409
915819	1344	1359	23749	23764	GAGTGAACACCTGTGA	81	1410
915839	1401	1416	25164	25179	GTTGGCTGCTCACTGG	85	1411
915859	1437	1452	25200	25215	AGGGCCAGTCCTGCTC	0	1412
915879	1538	1553	25301	25316	ATTGCCCAAGAAGAAG	54	1413
915899	1591	1606	25354	25369	TCTAGTGAAAAACTGG	0	1414
915919	1629	1644	25392	25407	TGCTAGACTCGCCTCC	72	1415
915939	1681	1696	25444	25459	ATGCGGAGGTAGCTGC	39	1416
915959	1764	1779	25527	25542	GGTTGCTTCCTAGCTT	87	1417
915979	1784	1799	25547	25562	GGACCGCTGCACAGGC	0	1418
915999	1811	1826	25574	25589	CATGCTGATGTATTAG	35	1419
916019	1833	1848	25596	25611	TTCCCAACCAGCTGAA	0	1420
916039	1880	1895	25643	25658	CGAAACAGTCAGTAAG	80	1421
916059	1905	1920	25668	25683	AACAGTCTGACCATTA	85	1422
916079	1934	1949	25697	25712	CACCTGTCATTCTAAG	45	1423

916099	1973	1988	25736	25751	CCAGCCTACCCCCAT	53	1424
916119	2022	2037	25785	25800	GTGGGATCATGCTATT	76	1425
916139	2093	2108	25856	25871	TCTTTGCAGACCACCT	85	1426
916158	2135	2150	25898	25913	TTACCCCCGCCATGGA	0	1427
916178	2238	2253	26001	26016	TCAACAGGTAACAACG	87	1428
916198	2620	2635	26383	26398	GCACACTAGATTATTT	66	1429
916218	2673	2688	26436	26451	CGGAAGCTCCTGCTGT	27	1430
916238	2702	2717	26465	26480	TCAAGTTGTGTGCTCC	91	1431
916258	2770	2785	26533	26548	TCATCGCCACACATGG	49	1432
916278	N/A	N/A	4211	4226	TCATTTCCAGGAGTAC	75	1433
916298	N/A	N/A	4735	4750	CAAATGATCATGTGGC	93	1434
916318	N/A	N/A	5394	5409	TAATGCTATCAGGTGC	95	1435
916338	N/A	N/A	5648	5663	GATATATTGGGCTCAA	97	1436
916358	N/A	N/A	6596	6611	GGGTTTACAAACATGG	75	1437
916378	N/A	N/A	7465	7480	TTCATTAGCATCACCG	78	1438
916398	N/A	N/A	7686	7701	GTTAATCCATGGGTCA	49	1439
916418	N/A	N/A	8992	9007	AGCCTAAACTTCCTCC	63	1440
916438	N/A	N/A	9318	9333	AGAAGAGCCGCCCTGC	77	1441
916458	N/A	N/A	9795	9810	GCAAGACTAGCAAGTG	85	1442
916478	N/A	N/A	10301	10316	AGCATGCGGTATGTAC	67	1443
916498	N/A	N/A	10849	10864	CACACAATTTCTAGGG	82	1444
916518	N/A	N/A	11346	11361	TTGACAATTAGAACCA	96	1445
916538	N/A	N/A	11711	11726	ACAAATCCTTACCGAG	54	1446
916558	N/A	N/A	12285	12300	GTTTTAGGTCTGGGTA	94	1447
916578	N/A	N/A	12831	12846	TTGCATAGCCTTCTTT	93	1448
916598	N/A	N/A	13660	13675	CATACATACCCTTCTC	9	1449
916618	N/A	N/A	14025	14040	CGCAGAAACTCTTTAA	89	1450
916638	N/A	N/A	14552	14567	GTCTTAATGTGGATTC	93	1451
916658	N/A	N/A	15421	15436	AGCATTGGCACACTGG	70	1452
916678	N/A	N/A	15857	15872	GGCTTTAAAGCAGGAC	62	1453
916698	N/A	N/A	17079	17094	GCAGACATGTTGGTGT	2	1454
916718	N/A	N/A	17839	17854	TACAAGCTGGTCCTTG	0	1455
916738	N/A	N/A	19211	19226	GACAATCCAGGTCCCA	70	1456
916758	N/A	N/A	20285	20300	GAGGAAGCCCAATCAA	81	1457
916777	N/A	N/A	20611	20626	CTAATTTTACGATCAT	81	1458
916797	N/A	N/A	20984	20999	TTAAACTGCCAAGTCC	83	1459
916817	N/A	N/A	21440	21455	CCAATATACTGAGAGG	96	1460
916837	N/A	N/A	22406	22421	GGTAGCACCGCCAAGT	0	1461
916857	N/A	N/A	23301	23316	CACCATGGAGAGGTCT	0	1462
916877	N/A	N/A	24243	24258	TTGCATTACCAGGCAC	17	1463
916897	N/A	N/A	24934	24949	GCTACCTGGACACCTC	47	1464
			<u> </u>				

Таблица 22 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Harran	SEQ ID	SEQ ID	SEQ ID	SEQ ID	-	%	SEO
Номер соеди-	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	ID
нения	старто-	стоп-	старто-	стоп-	(5'-3')	ния	NO
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	110
841947	2094	2109	25857	25872	ATCTTTGCAGACCACC	89	1464
912986	N/A	N/A	20288	20303	TCAGAGGAAGCCCAAT	92	254
312300	14/71	14/21	20318	20333	Teriorido inidecentri)2	254
915360	42	57	2780	2795	CAGTGTCTCGGCCAGG	0	1466
915380	98	113	2836	2851	GGGTCCTGATCCGCAG	0	1467
915400	186	201	2924	2939	AGCTCCAGCCGCGCTC	0	1468
915420	246	261	2984	2999	TCAGGCAGCGGGTCGC	78	1469
915440	344	359	3082	3097	CAGCGGGATACCGGAG	72	1470
915460	383	398	5957	5972	CTTCCGCACAAGATCT	0	1471
915480	411	426	5985	6000	GGAAGATGCCAATGTT	94	1472
915500	449	464	6023	6038	ACCCTGTCGGAGGAAC	40	1473
915520	480	495	6054	6069	GGTGGACATTGGCCGG	38	1474
915540	507	522	6081	6096	AGATGCCTATTTTGCC	76	1475
915560	556	571	6130	6145	CGAAAGTCAGACACCA	69	1476
915620	750	765	11968	11983	TGACTTTAGGGCAGAT	89	1477
915640	821	836	12039	12054	AAGGTAGAGGTTCCCT	10	1478
915660	875	890	13611	13626	AAGGCATATCTCTCCC	47	1479

915680	929	944	N/A	N/A	CCTGTTGCAGATGCCC	22	1480
915700	982	997	16102	16117	ATGGCGACCTCAGGAT	58	1481
915720	1034	1049	16154	16169	CAAGGCAGCCGACTCC	63	1482
915740	1121	1136	16241	16256	CGAGAGGGTGTCCAGG	0	1483
915760	1149	1164	N/A	N/A	CTTCACTCAGTGCTGT	13	1484
915780	1226	1241	19066	19081	CAGCATTACATAAGAC	94	1485
915800	1270	1285	19110	19125	CTCTGGACAATCGCAA	55	1486
915820	1345	1360	23750	23765	CGAGTGAACACCTGTG	83	1487
915840	1402	1417	25165	25180	TGTTGGCTGCTCACTG	77	1488
915860	1470	1485	25233	25248	CTGGACAGCCCTTGGG	29	1489
915880	1539	1554	25302	25317	TATTGCCCAAGAAGAA	18	1490
915900	1598	1613	25361	25376	ACTCTTCTCTAGTGAA	67	1491
915920	1630	1645	25393	25408	CTGCTAGACTCGCCTC	88	1492
915940	1682	1697	25445	25460	AATGCGGAGGTAGCTG	0	1493
915960	1765	1780	25528	25543	AGGTTGCTTCCTAGCT	55	1494
915980	1785	1800	25548	25563	TGGACCGCTGCACAGG	82	1495
916000	1812	1827	25575	25590	GCATGCTGATGTATTA	52	1496
916020	1837	1852	25600	25615	TCATTTCCCAACCAGC	94	1497
916040	1881	1896	25644	25659	ACGAAACAGTCAGTAA	79	1498
916060	1907	1922	25670	25685	GGAACAGTCTGACCAT	22	1499
916080	1936	1951	25699	25714	AACACCTGTCATTCTA	71	1500
916100	1974	1989	25737	25752	GCCAGCCTACCCCCCA	23	1501
916120	2023	2038	25786	25801	AGTGGGATCATGCTAT	0	1502
916159	2136	2151	25899	25914	GTTACCCCCGCCATGG	47	1503
916179	2239	2254	26002	26017	TTCAACAGGTAACAAC	84	1504
916199	2621	2636	26384	26399	TGCACACTAGATTATT	0	1505
916219	2674	2689	26437	26452	GCGGAAGCTCCTGCTG	6	1506
916239	2704	2719	26467	26482	GTTCAAGTTGTGTGCT	85	1507
916259	2771	2786	26534	26549	CTCATCGCCACACATG	85	1508
916279	N/A	N/A	4218	4233	CGGAATCTCATTTCCA	0	1509
916299	N/A	N/A	4736	4751	GCAAATGATCATGTGG	93	1510
916319	N/A	N/A	5396	5411	CTTAATGCTATCAGGT	83	1511
916339	N/A	N/A	5649	5664	GGATATATTGGGCTCA	96	1512
916359	N/A	N/A	6597	6612	AGGGTTTACAAACATG	32	1513
916379	N/A	N/A	7466	7481	ATTCATTAGCATCACC	52	1514
916399	N/A	N/A	7687	7702	GGTTAATCCATGGGTC	0	1515
916559	N/A	N/A	12286	12301	AGTTTTAGGTCTGGGT	89	1516
916579	N/A	N/A	12833	12848	CATTGCATAGCCTTCT	96	1517
916599	N/A	N/A	13661	13676	CCATACATACCCTTCT	21	1518
916619	N/A	N/A	14077	14092	ACCCACACCTGACTGG	16	1519
916639	N/A	N/A	14572	14587	CGCTCCTACTTATCCC	96	1520
916659	N/A	N/A	15427	15442	TCTTACAGCATTGGCA	38	1521
916679	N/A	N/A	15973	15988	CATCTACCAAACTGCA	73	1522
916699	N/A	N/A	17135	17150	AACAAACATCGATTTT	47	1523
916719	N/A	N/A	17844	17859	AGCTTTACAAGCTGGT	0	1524
916739	N/A	N/A	19213	19228	ACGACAATCCAGGTCC	14	1525
916778	N/A	N/A	20612	20627	TCTAATTTTACGATCA	92	1526
916798	N/A	N/A	20985	21000	ATTAAACTGCCAAGTC	72	1527
916818	N/A	N/A	21441	21456	ACCAATATACTGAGAG	92	1528
916838	N/A	N/A	22409	22424	AGCGGTAGCACCGCCA	0	1529
916858	N/A	N/A	23323	23338	TCACATGTGAGCCCAG	46	1530
916878	N/A	N/A	24271	24286	GTACAACAGAGGGTGG	19	1531
916898	N/A	N/A	24978	24993	GGCTGATGTCACCACC	32	1532
	1	1	1		1		

Таблица 23 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID		SEQ ID	a SEQ ID NO. 1 и 2	%	a= 0
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ
соеди-	старто-	стоп-	старто-	стоп-	(5'-3')	ния	ID
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
915361	43	58	2781	2796	TCAGTGTCTCGGCCAG	0	1533
915381	105	120	2843	2858	TCGGCTCGGGTCCTGA	0	1534
915401	188	203	2926	2941	CAAGCTCCAGCCGCGC	22	1535
915421	247	262	2985	3000	CTCAGGCAGCGGGTCG	48	1536
915441	345	360	3083	3098	CCAGCGGGATACCGGA	0	1537
915461	384	399	5958	5973	CCTTCCGCACAAGATC	59	1538
915481	414	429	5988	6003	GATGGAAGATGCCAAT	83	1539
915501	450	465	6024	6039	GACCCTGTCGGAGGAA	26	1540
915521	482	497	6056	6071	CTGGTGGACATTGGCC	0	1541
915541	508	523	6082	6097	GAGATGCCTATTTTGC	92	1542
915561	557	572	6131	6146	CCGAAAGTCAGACACC	0	1543
915601	691	706	11909	11924	GCATCAATGAAGGGTA	91	1544
915621	751	766	11969	11984	TTGACTTTAGGGCAGA	85	1545
915641	822	837	12040	12055	GAAGGTAGAGGTTCCC	74	1546
915661	876	891	13612	13627	GAAGGCATATCTCTCC	32	1547
915681	930	945	16050	16065	GCCTGTTGCAGATGCC	0	1548
915701	983	998	16103	16118	CATGGCGACCTCAGGA	0	1549
915721	1035	1050	16155	16170	CCAAGGCAGCCGACTC	79	1550
915741	1122	1137	16242	16257	GCGAGAGGGTGTCCAG	0	1551
915761	1150	1165	18990	19005	TCTTCACTCAGTGCTG	41	1552
915781	1227	1242	19067	19082	GCAGCATTACATAAGA	75	1553
915801	1273	1288	N/A	N/A	AGTCTCTGGACAATCG	0	1554
915821	1346	1361	23751	23766	TCGAGTGAACACCTGT	52	1555
915841	1403	1418	25166	25181	CTGTTGGCTGCTCACT	80	1556
915861	1471	1486	25234	25249	GCTGGACAGCCCTTGG	0	1557
915881	1540	1555	25303	25318	TTATTGCCCAAGAAGA	75	1558
915901	1599	1614	25362	25377	GACTCTTCTCTAGTGA	67	1559
915921	1631	1646	25394	25409	TCTGCTAGACTCGCCT	50	1560
915941	1683	1698	25446	25461	CAATGCGGAGGTAGCT	39	1561
915961	1766	1781	25529	25544	AAGGTTGCTTCCTAGC	71	1562
915981	1786	1801	25549	25564	CTGGACCGCTGCACAG	0	1563
916001	1813	1828	25576	25591	CGCATGCTGATGTATT	73	1564
916021	1840	1855	25603	25618	GTGTCATTTCCCAACC	61	1565
916041	1882	1897	25645	25660	CACGAAACAGTCAGTA	34	1566
916061	1910	1925	25673	25688	GCTGGAACAGTCTGAC	82	1567
916081	1942	1957	25705	25720	CATCCAAACACCTGTC	69	1568
916101	1975	1990	25738	25753	GGCCAGCCTACCCCCC	2	1569
916121	2024	2039	25787	25802	AAGTGGGATCATGCTA	26	1570

916140	2095	2110	25858	25873	CATCTTTGCAGACCAC	92	1571
916160	2137	2152	25900	25915	TGTTACCCCCGCCATG	51	1572
916180	2257	2272	26020	26035	GATTCACATAATACAA	87	1573
916200	2622	2637	26385	26400	CTGCACACTAGATTAT	0	1574
916220	2675	2690	26438	26453	GGCGGAAGCTCCTGCT	0	1575
916240	2705	2720	26468	26483	GGTTCAAGTTGTGTGC	69	1576
916260	2772	2787	26535	26550	TCTCATCGCCACACAT	72	1577
916280	N/A	N/A	4220	4235	TACGGAATCTCATTTC	80	1578
916300	N/A	N/A	4791	4806	GGCCACCTTGGGATAC	17	1579
916320	N/A	N/A	5398	5413	GCCTTAATGCTATCAG	67	1580
916340	N/A	N/A	5650	5665	TGGATATATTGGGCTC	97	1581
916360	N/A	N/A	6603	6618	ACATTCAGGGTTTACA	18	1582
916380	N/A	N/A	7468	7483	GTATTCATTAGCATCA	51	1583
916400	N/A	N/A	7688	7703	AGGTTAATCCATGGGT	29	1584
916560	N/A	N/A	12287	12302	GAGTTTTAGGTCTGGG	95	1585
916580	N/A	N/A	12905	12920	CTTATAAAGCACACGG	95	1586
916600	N/A	N/A	13683	13698	GGGCATGGCTGATCCT	8	1587
916620	N/A	N/A	14099	14114	CAAACTTGTCTAGTGG	67	1588
916640	N/A	N/A	14600	14615	TCGCATCCATGGGTCC	83	1589
916660	N/A	N/A	15429	15444	GCTCTTACAGCATTGG	51	1590
916680	N/A	N/A	15974	15989	CCATCTACCAAACTGC	61	1591
916700	N/A	N/A	17195	17210	GACTTAGTCCGTGTTC	49	1592
916720	N/A	N/A	17883	17898	CAGCATCTATGTTCTC	67	1593
916740	N/A	N/A	19239	19254	ATAGACTGTGAGCTGT	82	1594
916759	N/A	N/A	20354	20369	GACCATTCTGCTCCCC	20	1595
916779	N/A	N/A	20632	20647	GCCCATACCTTTTATC	47	1596
916799	N/A	N/A	20987	21002	GTATTAAACTGCCAAG	81	1597
916819	N/A	N/A	21444	21459	CTAACCAATATACTGA	73	1598
916839	N/A	N/A	22506	22521	GGCTGGTGATGAAACA	0	1599
916859	N/A	N/A	23345	23360	CCTCATGGTTTGCTGT	31	1600
916879	N/A	N/A	24273	24288	CAGTACAACAGAGGGT	81	1601
916899	N/A	N/A	25064	25079	CACATTGCCGGCCAGT	58	1602

Таблица 24 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

TT	SEQ ID	SEQ ID	SEQ ID	SEQ ID	a SEQ ID NO. 1 и 2	%	CEO
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ
соеди-	старто-	стоп-	старто-	стоп-	(5'-3')	ния	ID
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
915362	44	59	2782	2797	CTCAGTGTCTCGGCCA	0	1603
915382	106	121	2844	2859	ATCGGCTCGGGTCCTG	30	1604
915402	189	204	2927	2942	ACAAGCTCCAGCCGCG	24	1605
915422	248	263	2986	3001	GCTCAGGCAGCGGGTC	33	1606
915442	346	361	N/A	N/A	TCCAGCGGGATACCGG	0	1607
915462	385	400	5959	5974	GCCTTCCGCACAAGAT	60	1608
915482	415	430	5989	6004	GGATGGAAGATGCCAA	60	1609
915502	451	466	6025	6040	AGACCCTGTCGGAGGA	75	1610
915522	487	502	6061	6076	ATGAGCTGGTGGACAT	74	1611
915542	509	524	6083	6098	AGAGATGCCTATTTTG	91	1612
915562	558	573	6132	6147	ACCGAAAGTCAGACAC	0	1613
915602	692	707	11910	11925	GGCATCAATGAAGGGT	88	1614
915622	752	767	11970	11985	CTTGACTTTAGGGCAG	86	1615
915642	824	839	12042	12057	GAGAAGGTAGAGGTTC	81	1616
915662	878	893	13614	13629	TCGAAGGCATATCTCT	16	1617
915682	931	946	16051	16066	GGCCTGTTGCAGATGC	0	1618
915702	984	999	16104	16119	GCATGGCGACCTCAGG	24	1619
915722	1036	1051	16156	16171	GCCAAGGCAGCCGACT	0	1620
915742	1123	1138	16243	16258	GGCGAGAGGGTGTCCA	0	1621
915762	1173	1188	19013	19028	TGTATCCACCTTTGTC	85	1622
915782	1228	1243	19068	19083	GGCAGCATTACATAAG	73	1623
915802	1283	1298	N/A	N/A	CCATGTCACCAGTCTC	59	1624
915822	1347	1362	23752	23767	CTCGAGTGAACACCTG	0	1625
915842	1404	1419	25167	25182	CCTGTTGGCTGCTCAC	88	1626
915862	1472	1487	25235	25250	TGCTGGACAGCCCTTG	0	1627
915882	1541	1556	25304	25319	TTTATTGCCCAAGAAG	38	1628

915902	1600	1615	25363	25378	AGACTCTTCTCTAGTG	60	1629
915922	1632	1647	25395	25410	ATCTGCTAGACTCGCC	86	1630
915942	1684	1699	25447	25462	GCAATGCGGAGGTAGC	38	1631
915962	1767	1782	25530	25545	AAAGGTTGCTTCCTAG	77	1632
915982	1787	1802	25550	25565	GCTGGACCGCTGCACA	79	1633
916002	1814	1829	25577	25592	ACGCATGCTGATGTAT	72	1634
916022	1841	1856	25604	25619	GGTGTCATTTCCCAAC	80	1635
916042	1883	1898	25646	25661	CCACGAAACAGTCAGT	87	1636
916062	1912	1927	25675	25690	ATGCTGGAACAGTCTG	78	1637
916082	1943	1958	25706	25721	CCATCCAAACACCTGT	64	1638
916102	1976	1991	25739	25754	GGGCCAGCCTACCCCC	0	1639
916122	2025	2040	25788	25803	GAAGTGGGATCATGCT	71	1640
916141	2097	2112	25860	25875	ATCATCTTTGCAGACC	91	1641
916161	2138	2153	25901	25916	TTGTTACCCCCGCCAT	89	1642
916181	2259	2274	26022	26037	CTGATTCACATAATAC	91	1643
916201	2623	2638	26386	26401	CCTGCACACTAGATTA	59	1644
916221	2676	2691	26439	26454	AGGCGGAAGCTCCTGC	0	1645
916241	2706	2721	26469	26484	AGGTTCAAGTTGTGTG	87	1646
916281	N/A	N/A	4224	4239	AATGTACGGAATCTCA	83	1647
916301	N/A	N/A	4810	4825	GTCCATGTGGGTGTCC	74	1648
916321	N/A	N/A	5399	5414	GGCCTTAATGCTATCA	13	1649
916341	N/A	N/A	5711	5726	TAGTATGAAATATCTC	96	1650
916361	N/A	N/A	6862	6877	ATTGTAACTGCCAGGC	0	1651
916381	N/A	N/A	7471	7486	CCGGTATTCATTAGCA	0	1652
916401	N/A	N/A	7728	7743	GAGCAGGGCAACAAAC	22	1653
916561	N/A	N/A	12315	12330	ATATAACCACAGCCTG	54	1654
916581	N/A	N/A	12906	12921	GCTTATAAAGCACACG	94	1655
916601	N/A	N/A	13702	13717	TAGTAAATGCTTGTCA	95	1656
916621	N/A	N/A	14123	14138	GGCAGAAATGTGCTCT	60	1657
916641	N/A	N/A	14632	14647	CTTCATGCCATCCTGT	83	1658
916661	N/A	N/A	15430	15445	TGCTCTTACAGCATTG	0	1659
916681	N/A	N/A	16262	16277	GGTACCTGTAGCGAGC	0	1660
916701	N/A	N/A	17197	17212	TTGACTTAGTCCGTGT	93	1661
916721	N/A	N/A	18220	18235	AGCTACATCAGGCTGG	0	1662
916741	N/A	N/A	19244	19259	TGCACATAGACTGTGA	0	1663
916760	N/A	N/A	20373	20388	GACTGCTGAGCCAAGC	61	1664
916780	N/A	N/A	20657	20672	AGAAATTGCAGTGCCC	92	1665
916800	N/A	N/A	20988	21003	GGTATTAAACTGCCAA	0	1666
916820	N/A	N/A	21447	21462	TCACTAACCAATATAC	47	1667
916840	N/A	N/A	22602	22617	ATAAATCTGCAAGAGC	62	1668
916860	N/A	N/A	23369	23384	TCTCATGGTCAAGACC	52	1669
916880	N/A	N/A	24305	24320	GACTGCTAGGCTTCAC	54	1670
916900	N/A	N/A	25100	25115	CGCTGCTGCAGTGTGC	34	1671

Набор праймеров и зондов для человека RTS36075 (прямая последовательность TGAGGCTG-GAGGAGATG, обозначенная в данном документе как SEQ ID NO: 14; обратная последовательность GCTCATGTATCCACCTTTGTCT, обозначенная в данном документе как SEQ ID NO: 15; последовательность зонда CTAGACCACCTGCGTCTCAGCATC, обозначенная в данном документе как SEQ ID NO: 16) также использовали для измерения уровней mRNA. Уровни mRNA PNPLA3 корректировали в соответствии с общим содержанием PHK, измеренным с помощью RIBOGREEN®. Результаты представлены в виде процента подавления PNPLA3 относительно необработанных контрольных клеток.

Таблица 25 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID	SEQ ID	SEQ ID	SEQ ID NO: 1 и 2	%	
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ
соеди-	старто-	стоп-	старто-	стоп-	(5'-3')	ния	ID
нения	вый сайт	сайт	вый сайт	сайт	, ,	PNPLA3	NO
898558	581	596	N/A	N/A	GGCATCCACGACTTCG	87	1672
912709	27	42	2765	2780	GGCATTCCCAGCGCGA	0	17
912710	95	110	2833	2848	TCCTGATCCGCAGCAG	0	18
912711	103	118	2841	2856	GGCTCGGGTCCTGATC	0	19
912712	131	146	2869	2884	GTTAGGATCTGGGTCG	76	20
912713	164	179	2902	2917	GTACATGGCGGCGCG	0	21
912714	183	198	2921	2936	TCCAGCCGCGCTCTGC	29	22
912715	196	211	2934	2949	GCGAAGGACAAGCTCC	31	23
912716	197	212	2935	2950	CGCGAAGGACAAGCTC	0	24
912717	272	287	3010	3025	GCGGAGGAGGTGCGGG	0	25
912718	273	288	3011	3026	CGCGGAGGAGGTGCGG	0	26
912719	274	289	3012	3027	TCGCGGAGGAGGTGCG	16	27
912720	290	305	3028	3043	GAACAACATGCGCGCG	0	28
912721	291	306	3029	3044	CGAACAACATGCGCGC	2	29
912722	292	307	3030	3045	CCGAACAACATGCGCG	0	30
912723	293	308	3031	3046	GCCGAACAACATGCGC	0	31
912724	294	309	3032	3047	CGCCGAACAACATGCG	0	32
912725	323	338	3061	3076	GCCGACGCAGTGCAAC	0	33
912726	324	339	3062	3077	CGCCGACGCAGTGCAA	0	34
912727	340	355	3078	3093	GGGATACCGGAGAGGA	32	35
912728	370	385	5944	5959	TCTGAGAGGACCTGCA	31	36
912729	375	390	5949	5964	CAAGATCTGAGAGGAC	60	37
912730	404	419	5978	5993	GCCAATGTTCCGACTC	52	38
912731	410	425	5984	5999	GAAGATGCCAATGTTC	31	39
912732	429	444	6003	6018	TTAAGTTGAAGGATGG	93	40
912733	432	447	6006	6021	TGCTTAAGTTGAAGGA	82	41
912734	478	493	6052	6067	TGGACATTGGCCGGGA	73	42
912735	479	494	6053	6068	GTGGACATTGGCCGGG	44	43
912736	484	499	6058	6073	AGCTGGTGGACATTGG	29	44
912737	528	543	6102	6117	CATCAGACACTCTGGT	0	45
912738	531	546	6105	6120	CCCCATCAGACACTCT	55	46
912739	552	567	6126	6141	AGTCAGACACCAGAAC	23	47
912740	582	597	N/A	N/A	AGGCATCCACGACTTC	40	1673
912741	584	599	N/A	N/A	CAAGGCATCCACGACT	55	1674
912742	591	606	N/A	N/A	AACATACCAAGGCATC	59	1675
912743	593	608	N/A	N/A	GGAACATACCAAGGCA	69	1676
912744	594	609	7824	7839	AGGAACATACCAAGGC	85	1677
912745	625	640	7855	7870	GGGATAAGGCCACTGT	71	1678
912746	626	641	7856	7871	AGGGATAAGGCCACTG	12	1679
912747	630	645	7860	7875	AAGGAGGGATAAGGCC	0	1680

912748	652	667	N/A	N/A	ACATATCGCACGCCTC	35	1681
912749	653	668	N/A	N/A	CACATATCGCACGCCT	3	1682
912750	654	669	N/A	N/A	CCACATATCGCACGCC	27	1683
912751	656	671	N/A	N/A	ATCCACATATCGCACG	24	1684
912752	660	675	11878	11893	CTCCATCCACATATCG	87	1685
912753	689	704	11907	11922	ATCAATGAAGGGTACG	79	1686
912754	690	705	11908	11923	CATCAATGAAGGGTAC	63	1687
912755	693	708	11911	11926	TGGCATCAATGAAGGG	68	48
912756	698	713	11916	11931	TGTTTTGGCATCAATG	88	49
912757	746	761	11964	11979	TTTAGGGCAGATGTCG	75	50
912758	747	762	11965	11980	CTTTAGGGCAGATGTC	82	51
912759	795	810	12013	12028	GTAGACTGAGCTTGGT	96	52
912760	820	835	12038	12053	AGGTAGAGGTTCCCTG	0	53
912761	841	856	12059	12074	GGGACAAAAGCTCTCG	0	54
912762	873	888	13609	13624	GGCATATCTCTCCCAG	0	55
912763	874	889	13610	13625	AGGCATATCTCTCCCA	0	56
912764	886	901	13622	13637	AAATATCCTCGAAGGC	71	57
912765	888	903	13624	13639	CCAAATATCCTCGAAG	37	58
912766	889	904	13625	13640	TCCAAATATCCTCGAA	0	59
912767	894	909	13630	13645	ATGCATCCAAATATCC	42	60
912768	925	940	N/A	N/A	TTGCAGATGCCCTTCT	5	61
912769	968	983	16088	16103	ATCCATCCCTTCTGAG	6	62
912770	986	1001	16106	16121	GGGCATGGCGACCTCA	0	63
912771	1004	1019	16124	16139	ACTCATGTTTGCCCAG	67	64
912782	1195	1210	19035	19050	AGCAAGTTGCAAATCT	71	75
912783	1199	1214	19039	19054	GGGTAGCAAGTTGCAA	37	76
912784	1205	1220	19045	19060	CCTAATGGGTAGCAAG	25	77
912785	1206	1221	19046	19061	TCCTAATGGGTAGCAA	64	78

Таблица 26 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID	SEQ ID	SEQ ID	SEQ ID NO: 1 и 2	%	CEO
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ ID
соеди-	старто-	стоп-	старто-	стоп-	(5'-3')	ния	NO
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NU
912786	1207	1222	19047	19062	ATCCTAATGGGTAGCA	65	79
912787	1211	1226	19051	19066	CATTATCCTAATGGGT	43	80
912788	1212	1227	19052	19067	ACATTATCCTAATGGG	0	81
912789	1213	1228	19053	19068	GACATTATCCTAATGG	59	82
912790	1220	1235	19060	19075	TACATAAGACATTATC	8	83
912791	1224	1239	19064	19079	GCATTACATAAGACAT	86	84
912792	1245	1260	19085	19100	CCACAGGCAGGGTACA	58	85
912793	1246	1261	19086	19101	TCCACAGGCAGGGTAC	5	86
912794	1253	1268	19093	19108	GGCAGATTCCACAGGC	68	87
912795	1259	1274	19099	19114	CGCAATGGCAGATTCC	84	88
912796	1265	1280	19105	19120	GACAATCGCAATGGCA	63	89
912797	1266	1281	19106	19121	GGACAATCGCAATGGC	54	90
912798	1267	1282	19107	19122	TGGACAATCGCAATGG	59	91
912799	1285	1300	23690	23705	AGCCATGTCACCAGTC	51	92
912800	1289	1304	23694	23709	TGGAAGCCATGTCACC	32	93
912801	1290	1305	23695	23710	CTGGAAGCCATGTCAC	44	94
912802	1297	1312	23702	23717	GGCATATCTGGAAGCC	0	95
912803	1298	1313	23703	23718	GGGCATATCTGGAAGC	0	96
912804	1351	1366	23756	23771	AGCACTCGAGTGAACA	6	97
912805	1386	1401	N/A	N/A	GCATTTGGGACCTGGA	54	98
912806	1387	1402	N/A	N/A	GGCATTTGGGACCTGG	33	99
912807	1388	1403	25151	25166	TGGCATTTGGGACCTG	0	100
912808	1394	1409	25157	25172	GCTCACTGGCATTTGG	7	101
912809	1523	1538	25286	25301	GTTCAGGCTGGACCTG	17	102
912810	1547	1562	25310	25325	AGGTACTTTATTGCCC	30	103
912811	1550	1565	25313	25328	AGCAGGTACTTTATTG	55	104
912812	1653	1668	25416	25431	AACTTTAGCACCTCTG	87	105
912813	1655	1670	25418	25433	GAAACTTTAGCACCTC	85	106
912814	1656	1671	25419	25434	GGAAACTTTAGCACCT	26	107
912815	1669	1684	25432	25447	CTGCACAAAGATGGGA	66	108

912816	1671	1686	25434	25449	AGCTGCACAAAGATGG	41	109
912817	1685	1700	25448	25463	AGCAATGCGGAGGTAG	35	110
912818	1740	1755	25503	25518	ACCAACTCAGCTCAGA	76	111
912819	1741	1756	25504	25519	AACCAACTCAGCTCAG	77	112
912820	1757	1772	25520	25535	TCCTAGCTTTTCATAA	18	113
912821	1788	1803	25551	25566	TGCTGGACCGCTGCAC	1	114
912822	1796	1811	25559	25574	GAGTTAAGTGCTGGAC	90	115
912823	1802	1817	25565	25580	GTATTAGAGTTAAGTG	86	116
912824	1803	1818	25566	25581	TGTATTAGAGTTAAGT	79	117
912825	1806	1821	25569	25584	TGATGTATTAGAGTTA	89	118
912826	1808	1823	25571	25586	GCTGATGTATTAGAGT	79	119
912827	1821	1836	25584	25599	TGAATTAACGCATGCT	73	120
912828	1822	1837	25585	25600	CTGAATTAACGCATGC	69	121
912829	1870	1885	25633	25648	AGTAAGGGACCCTCTG	0	122
912830	1871	1886	25634	25649	CAGTAAGGGACCCTCT	44	123
912831	1872	1887	25635	25650	TCAGTAAGGGACCCTC	67	124
912832	1874	1889	25637	25652	AGTCAGTAAGGGACCC	50	125
912833	1893	1908	25656	25671	ATTAATAGGGCCACGA	78	126
912834	1895	1910	25658	25673	CCATTAATAGGGCCAC	72	127
912835	1896	1911	25659	25674	ACCATTAATAGGGCCA	65	128
912836	1906	1921	25669	25684	GAACAGTCTGACCATT	82	129
912837	1908	1923	25671	25686	TGGAACAGTCTGACCA	39	130
912838	1909	1924	25672	25687	CTGGAACAGTCTGACC	84	131
912839	1911	1926	25674	25689	TGCTGGAACAGTCTGA	72	132
912840	1916	1931	25679	25694	CCTCATGCTGGAACAG	84	133
912841	1928	1943	25691	25706	TCATTCTAAGAACCTC	87	134
912842	1945	1960	25708	25723	ACCCATCCAAACACCT	18	135
912843	1982	1997	25745	25760	ACACATGGGCCAGCCT	46	136
912844	1989	2004	25752	25767	CAAGATCACACATGGG	71	137
912845	2057	2072	25820	25835	GGGACGAACTGCACCC	0	138
912846	2098	2113	25861	25876	TATCATCTTTGCAGAC	68	139
912847	2116	2131	25879	25894	GTTTTTAGTAGTCAAG	90	140
912848	2117	2132	25880	25895	CGTTTTTAGTAGTCAA	94	141
912849	2145	2160	25908	25923	TATCATCTTGTTACCC	87	142
912850	2148	2163	25911	25926	GATTATCATCTTGTTA	60	143
912851	2150	2165	25913	25928	TAGATTATCATCTTGT	50	144
912852	2151	2166	25914	25929	GTAGATTATCATCTTG	72	145
912853	2152	2167	25915	25930	AGTAGATTATCATCTT	79	146
912854	2175	2190	25938	25953	GTGAAAAAGGTGTTCT	64	147
912855	2182	2197	25945	25960	TAGTTAGGTGAAAAAG	77	148
912856	2188	2203	25951	25966	TTATTTTAGTTAGGTG	82	149
912857	2190	2205	25953	25968	CATTATTTTAGTTAGG	77	150
912858	2273	2288	26036	26051	CTACTAACATCTCACT	48	151
912859	2274	2289	26037	26052	TCTACTAACATCTCAC	91	152
912860	2278	2293	26041	26056	TTATTCTACTAACATC	37	153
912861	2280	2295	26043	26058	GCTTATTCTACTAACA	77	154
912862	2281	2296	26044	26059	GGCTTATTCTACTAAC	70	155
912863	2632	2647	26395	26410	GGTGAATGCCCTGCAC	42	156
			L	I	l		I

Исследование 2.

Культивируемые клетки A431 при плотности 5000 клеток на лунку трансфицировали путем свободного поглощения с помощью 1000 нМ антисмыслового олигонуклеотида. После периода обработки, составлявшего примерно 24 ч, РНК выделяли из клеток и измеряли уровни mRNA PNPLA3 с помощью количественной ПЦР в реальном времени. Для измерения уровней mRNA использовали набор праймеров и зондов для человека RTS36070. Уровни mRNA PNPLA3 корректировали в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Результаты представлены в виде процента подавления PNPLA3 относительно необработанных контрольных клеток.

Таблица 27 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID	SEQ ID	SEQ ID	SEQID NO: 1 и 2	%	
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ
соеди-	старто-	стоп-	старто-	стоп-	(5'-3')	ния	ID
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
915609	705	720	11923	11938	TGATGGTTGTTTTGGC	97	702
959270	413	428	5987	6002	ATGGAAGATGCCAATG	32	1688
959280	491	506	6065	6080	GGAGATGAGCTGGTGG	66	1689
959290	793	808	12011	12026	AGACTGAGCTTGGTGA	78	1690
959300	899	914	13635	13650	CCTGAATGCATCCAAA	69	1691
959310	1084	1099	16204	16219	ATGCTGAGACGCAGGT	0	1692
959320	1256	1271	19096	19111	AATGGCAGATTCCACA	25	1693
959330	1642	1657	25405	25420	CTCTGAAAGAATCTGC	75	1694
959340	1659	1674	25422	25437	ATGGGAAACTTTAGCA	77	1695
959350	1839	1854	25602	25617	TGTCATTTCCCAACCA	79	1696
959360	2114	2129	25877	25892	TTTTAGTAGTCAAGGT	88	1697
959370	2223	2238	25986	26001	GCTTCCTTACATTTTT	85	1698
959380	2269	2284	26032	26047	TAACATCTCACTGATT	42	1699
959390	N/A	N/A	4311	4326	CTAGTGAGAAACAAAC	0	1700
959400	N/A	N/A	4761	4776	TTATTGTTGCTAAACC	32	1701
959410	N/A	N/A	4863	4878	ACTTTAGGCTCCTGGG	60	1702
959420	N/A	N/A	5285	5300	AGCCATAAATCTTGGG	24	1703
959430	N/A	N/A	5573	5588	ATGACATCATGGCTTC	93	1704
959440	N/A	N/A	5603	5618	TTATTCAATGTGGCTT	95	1705
959450	N/A	N/A	5640	5655	GGGCTCAATGAAATTA	12	1706
959460	N/A	N/A	5713	5728	CTTAGTATGAAATATC	86	1707
959470	N/A	N/A	5808	5823	TACTGTCTACTATGGG	91	1708
959480	N/A	N/A	6157	6172	CTTACATCCACGACTT	35	1709
959660	N/A	N/A	12153	12168	CAGTAACTGGTAGCTC	74	1710
959670	N/A	N/A	12169	12184	TGTTTGATTGTGCAGA	95	1711
959680	N/A	N/A	12210	12225	CGCCTTTTATTTCCGT	92	1712
959690	N/A	N/A	12313	12328	ATAACCACAGCCTGGG	66	1713
959700	N/A	N/A	12675	12690	ATAAGAATCATCTTAG	7	1714
959710	N/A	N/A	12711	12726	ACTACCGAACGCAGTT	41	1715
959720	N/A	N/A	12757	12772	TAGAGTGGTAAGGCAT	84	1716
959730	N/A	N/A	12793	12808	GGTTGGTGTACATGGT	96	1717
959740	N/A	N/A	12880	12895	TCCTGTTAGACAGCTT	93	1718
959750	N/A	N/A	12902	12917	ATAAAGCACACGGGAA	86	1719
959760	N/A	N/A	12931	12946	TAAGAGCTGTCTCCTC	85	1720
959770	N/A	N/A	12972	12987	CTAACAAACTTTGCAG	79	1721

959780	N/A	N/A	13392	13407	TGTCACCCTTCCACGG	15	1722
959790	N/A	N/A	13526	13541	ATTGGAAGACCGCAGA	43	1723
959800	N/A	N/A	13706	13721	CCGCTAGTAAATGCTT	44	1724
959810	N/A	N/A	13737	13752	AACTAAGGCAAATCTC	77	1725
959820	N/A	N/A	13915	13930	GAGTCATGACATCCCA	89	1726
959830	N/A	N/A	14299	14314	GCAGATAAATACACAT	93	1727
959840	N/A	N/A	14424	14439	TTTCCCATCGACACAG	78	1728
959850	N/A	N/A	14571	14586	GCTCCTACTTATCCCC	76	1729
959860	N/A	N/A	15202	15217	TATTGCCAGGTATCTG	64	1730
959870	N/A	N/A	15599	15614	CAATACATAGCAGAGC	23	1731
959880	N/A	N/A	17192	17207	TTAGTCCGTGTTCAGG	90	1732
959890	N/A	N/A	17222	17237	GTAGCTGGTTTGTGGG	20	1733
959900	N/A	N/A	17295	17310	CATCTCTTAGGGCACC	79	1734
959910	N/A	N/A	18393	18408	GTTTGGAAGTCGCCAT	77	1735
959920	N/A	N/A	20284	20299	AGGAAGCCCAATCAAG	85	1736
959930	N/A	N/A	20512	20527	CAGATTGAGTCTCCTG	10	1737
959940	N/A	N/A	20607	20622	TTTTACGATCATCATT	72	1738
959950	N/A	N/A	20661	20676	GCTTAGAAATTGCAGT	75	1739
959960	N/A	N/A	20812	20827	AGGGTAATATTCAGAC	86	1740
959970	N/A	N/A	20934	20949	TGTAGCAGACAGATCA	74	1741
959980	N/A	N/A	21000	21015	TTTAACAGCTCAGGTA	66	1742
959990	N/A	N/A	21405	21420	ATTCTAGACATGGCCA	51	1743
960000	N/A	N/A	21442	21457	AACCAATATACTGAGA	71	1744
960010	N/A	N/A	21545	21560	AGACATATGACATTTC	91	1745
960020	N/A	N/A	22765	22780	ACATGACAGACTAACT	55	1746
960030	N/A	N/A	24039	24054	CATCAATGCTGCACTC	13	1747
			1	1	l		

Таблица 28 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер	SEQ ID	SEQ ID	SEQ ID	SEQ ID		%	SEQ	l
соеди-	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность (5'-3')	подавле-	ID	
нения	старто-	стоп-	старто-	стоп-	(3-3)	ния	NO	

	вый сайт	сайт	вый сайт	сайт		PNPLA3	
915609	705	720	11923	11938	TGATGGTTGTTTTGGC	98	702
959271	425	440	5999	6014	GTTGAAGGATGGATGG	90	1748
959281	511	526	6085	6100	AGAGAGATGCCTATTT	73	1749
959291	813	828	12031	12046	GGTTCCCTGTGCAGAG	79	1750
959301	904	919	13640	13655	AAGAACCTGAATGCAT	48	1751
959311	1085	1100	16205	16220	GATGCTGAGACGCAGG	0	1752
959321	1602	1617	25365	25380	ACAGACTCTTCTCTAG	45	1753
959331	1643	1658	25406	25421	CCTCTGAAAGAATCTG	81	1754
959341	1673	1688	25436	25451	GTAGCTGCACAAAGAT	69	1755
959351	1842	1857	25605	25620	TGGTGTCATTTCCCAA	19	1756
959361	2115	2130	25878	25893	TTTTTAGTAGTCAAGG	91	1757
959371	2240	2255	26003	26018	ATTCAACAGGTAACAA	69	1758
959381	2271	2286	26034	26049	ACTAACATCTCACTGA	33	1759
959391	N/A	N/A	4313	4328	AGCTAGTGAGAAACAA	47	1760
959401	N/A	N/A	4764	4779	CTTTTATTGTTGCTAA	77	1761
959411	N/A	N/A	4868	4883	AGTGTACTTTAGGCTC	90	1762
959421	N/A	N/A	5286	5301	CAGCCATAAATCTTGG	0	1763
959431	N/A	N/A	5574	5589	AATGACATCATGGCTT	74	1764
959441	N/A	N/A	5604	5619	TTTATTCAATGTGGCT	96	1765
959451	N/A	N/A	5642	5657	TTGGGCTCAATGAAAT	0	1766
959461	N/A	N/A	5714	5729	GCTTAGTATGAAATAT	78	1767
959471	N/A	N/A	5809	5824	GTACTGTCTACTATGG	78	1768
959481	N/A	N/A	6160	6175	CTGCTTACATCCACGA	4	1769
959661	N/A	N/A	12154	12169	ACAGTAACTGGTAGCT	72	1770
959671	N/A	N/A	12170	12185	CTGTTTGATTGTGCAG	50	1771
959681	N/A	N/A	12211	12226	GCGCCTTTTATTTCCG	14	1772
959691	N/A	N/A	12322	12337	CCTGACTATATAACCA	56	1773
959701	N/A	N/A	12689	12704	GACCGTGTTTCCAAAT	97	1774
959711	N/A	N/A	12712	12727	AACTACCGAACGCAGT	48	1775
959721	N/A	N/A	12759	12774	GGTAGAGTGGTAAGGC	95	1776
959731	N/A	N/A	12828	12843	CATAGCCTTCTTTCTT	93	1777
959741	N/A	N/A	12882	12897	AATCCTGTTAGACAGC	90	1778

959751	N/A	N/A	12903	12918	TATAAAGCACACGGGA	82	1779
959761	N/A	N/A	12933	12948	AATAAGAGCTGTCTCC	87	1780
959771	N/A	N/A	12974	12989	CCCTAACAAACTTTGC	62	1781
959781	N/A	N/A	13394	13409	AATGTCACCCTTCCAC	90	1782
959791	N/A	N/A	13527	13542	CATTGGAAGACCGCAG	76	1783
959801	N/A	N/A	13707	13722	ACCGCTAGTAAATGCT	35	1784
959811	N/A	N/A	13740	13755	TAGAACTAAGGCAAAT	65	1785
959821	N/A	N/A	13916	13931	GGAGTCATGACATCCC	42	1786
959831	N/A	N/A	14302	14317	TGAGCAGATAAATACA	75	1787
959841	N/A	N/A	14425	14440	CTTTCCCATCGACACA	79	1788
959851	N/A	N/A	14573	14588	GCGCTCCTACTTATCC	0	1789
959861	N/A	N/A	15203	15218	ATATTGCCAGGTATCT	67	1790
959871	N/A	N/A	15763	15778	GTGTTGGTTTATAACA	13	1791
959881	N/A	N/A	17194	17209	ACTTAGTCCGTGTTCA	45	1792
959891	N/A	N/A	17224	17239	CTGTAGCTGGTTTGTG	42	1793
959901	N/A	N/A	17296	17311	CCATCTCTTAGGGCAC	53	1794
959911	N/A	N/A	18394	18409	TGTTTGGAAGTCGCCA	87	1795
959921	N/A	N/A	20289	20304	ATCAGAGGAAGCCCAA	84	1796
959931	N/A	N/A	20514	20529	ACCAGATTGAGTCTCC	91	1797
959941	N/A	N/A	20613	20628	CTCTAATTTTACGATC	70	1798
959951	N/A	N/A	20662	20677	AGCTTAGAAATTGCAG	0	1799
959961	N/A	N/A	20813	20828	CAGGGTAATATTCAGA	87	1800
959971	N/A	N/A	20936	20951	TTTGTAGCAGACAGAT	18	1801
959981	N/A	N/A	21001	21016	TTTTAACAGCTCAGGT	71	1802
959991	N/A	N/A	21406	21421	AATTCTAGACATGGCC	25	1803
960001	N/A	N/A	21443	21458	TAACCAATATACTGAG	72	1804
960011	N/A	N/A	22023	22038	CGCAAAAAGACAACGA	16	1805
960021	N/A	N/A	22766	22781	GACATGACAGACTAAC	76	1806
960031	N/A	N/A	24040	24055	CCATCAATGCTGCACT	61	1807

Таблица 29 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID	SEQ ID	SEQ ID	SEQID NO. 1 и 2	%	
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ
соеди-	старто-	стоп-	старто-	стоп-	(5'-3')	ния	ID
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
915609	705	720	11923	11938	TGATGGTTGTTTTGGC	97	702
959272	426	441	6000	6015	AGTTGAAGGATGGATG	76	1808
959282	517	532	6091	6106	CTGGTAAGAGAGATGC	64	1809
959292	815	830	12033	12048	GAGGTTCCCTGTGCAG	81	1810
959302	905	920	13641	13656	CAAGAACCTGAATGCA	65	1811
959312	1087	1102	16207	16222	AGGATGCTGAGACGCA	66	1812
959322	1604	1619	25367	25382	TCACAGACTCTTCTCT	50	1813
959332	1644	1659	25407	25422	ACCTCTGAAAGAATCT	69	1814
959342	1675	1690	25438	25453	AGGTAGCTGCACAAAG	78	1815
959352	1903	1918	25666	25681	CAGTCTGACCATTAAT	77	1816
959362	2173	2188	25936	25951	GAAAAAGGTGTTCTAA	85	1817
959372	2242	2257	26005	26020	AAATTCAACAGGTAAC	62	1818
959382	2275	2290	26038	26053	TTCTACTAACATCTCA	80	1819
959392	N/A	N/A	4732	4747	ATGATCATGTGGCGGT	80	1820
959402	N/A	N/A	4765	4780	ACTTTTATTGTTGCTA	86	1821
959412	N/A	N/A	4869	4884	GAGTGTACTTTAGGCT	94	1822
959422	N/A	N/A	5389	5404	CTATCAGGTGCAGGAG	93	1823
959432	N/A	N/A	5575	5590	CAATGACATCATGGCT	90	1824
959442	N/A	N/A	5607	5622	TACTTTATTCAATGTG	0	1825
959452	N/A	N/A	5643	5658	ATTGGGCTCAATGAAA	35	1826
959462	N/A	N/A	5716	5731	TGGCTTAGTATGAAAT	80	1827
959472	N/A	N/A	5864	5879	TTTGGCAAGGCCAGAA	0	1828
959482	N/A	N/A	6960	6975	GCATAGAGGAAGCTCG	32	1829
959662	N/A	N/A	12155	12170	GACAGTAACTGGTAGC	92	1830
959672	N/A	N/A	12172	12187	TTCTGTTTGATTGTGC	97	1831
959682	N/A	N/A	12280	12295	AGGTCTGGGTATATGT	93	1832
959692	N/A	N/A	12323	12338	CCCTGACTATATAACC	32	1833
959702	N/A	N/A	12691	12706	TTGACCGTGTTTCCAA	94	1834
959712	N/A	N/A	12713	12728	AAACTACCGAACGCAG	92	1835
959722	N/A	N/A	12760	12775	TGGTAGAGTGGTAAGG	94	1836

959732	N/A	N/A	12829	12844	GCATAGCCTTCTTTCT	87	1837
959742	N/A	N/A	12883	12898	CAATCCTGTTAGACAG	13	1838
959752	N/A	N/A	12904	12919	TTATAAAGCACACGGG	87	1839
959762	N/A	N/A	12934	12949	CAATAAGAGCTGTCTC	81	1840
959772	N/A	N/A	13370	13385	TGCAGGCACCCCAGCA	0	1841
959782	N/A	N/A	13395	13410	GAATGTCACCCTTCCA	90	1842
959792	N/A	N/A	13528	13543	TCATTGGAAGACCGCA	84	1843
959802	N/A	N/A	13708	13723	GACCGCTAGTAAATGC	57	1844
959812	N/A	N/A	13741	13756	TTAGAACTAAGGCAAA	78	1845
959822	N/A	N/A	13917	13932	TGGAGTCATGACATCC	0	1846
959832	N/A	N/A	14303	14318	CTGAGCAGATAAATAC	74	1847
959842	N/A	N/A	14553	14568	AGTCTTAATGTGGATT	76	1848
959852	N/A	N/A	14667	14682	AGTGTCCCCATCCCCA	54	1849
959862	N/A	N/A	15204	15219	AATATTGCCAGGTATC	56	1850
959872	N/A	N/A	15765	15780	TAGTGTTGGTTTATAA	89	1851
959882	N/A	N/A	17196	17211	TGACTTAGTCCGTGTT	43	1852
959892	N/A	N/A	17225	17240	TCTGTAGCTGGTTTGT	61	1853
959902	N/A	N/A	17298	17313	TCCCATCTCTTAGGGC	24	1854
959912	N/A	N/A	18396	18411	TATGTTTGGAAGTCGC	91	1855
959922	N/A	N/A	20290	20305	AATCAGAGGAAGCCCA	40	1856
959932	N/A	N/A	20515	20530	AACCAGATTGAGTCTC	72	1857
959942	N/A	N/A	20614	20629	TCTCTAATTTTACGAT	23	1858
959952	N/A	N/A	20663	20678	CAGCTTAGAAATTGCA	24	1859
959962	N/A	N/A	20814	20829	CCAGGGTAATATTCAG	87	1860
959972	N/A	N/A	20937	20952	CTTTGTAGCAGACAGA	50	1861
959982	N/A	N/A	21003	21018	TATTTTAACAGCTCAG	94	1862
959992	N/A	N/A	21409	21424	TGCAATTCTAGACATG	12	1863
960002	N/A	N/A	21445	21460	ACTAACCAATATACTG	55	1864
960012	N/A	N/A	22541	22556	CAACAGATTACTGGAC	28	1865
960022	N/A	N/A	22768	22783	AGGACATGACAGACTA	66	1866
960032	N/A	N/A	24041	24056	ACCATCAATGCTGCAC	79	1867

Таблица 30 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

TT	SEQ ID	SEQ ID	SEQ ID	SEQ ID		%	SEQ
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ ID
соеди-	старто-	стоп-	старто-	стоп-	(5'-3')	ния	
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
915609	705	720	11923	11938	TGATGGTTGTTTTGGC	98	702
959273	427	442	6001	6016	AAGTTGAAGGATGGAT	86	1868
959283	694	709	11912	11927	TTGGCATCAATGAAGG	73	1869
959293	816	831	12034	12049	AGAGGTTCCCTGTGCA	80	1870
959303	906	921	13642	13657	CCAAGAACCTGAATGC	65	1871
959313	1090	1105	16210	16225	GGCAGGATGCTGAGAC	43	1872
959323	1605	1620	25368	25383	CTCACAGACTCTTCTC	81	1873
959333	1646	1661	25409	25424	GCACCTCTGAAAGAAT	51	1874
959343	1677	1692	25440	25455	GGAGGTAGCTGCACAA	73	1875
959353	1904	1919	25667	25682	ACAGTCTGACCATTAA	85	1876
959363	2179	2194	25942	25957	TTAGGTGAAAAAGGTG	91	1877
959373	2258	2273	26021	26036	TGATTCACATAATACA	71	1878
959383	2277	2292	26040	26055	TATTCTACTAACATCT	38	1879
959393	N/A	N/A	4733	4748	AATGATCATGTGGCGG	93	1880
959403	N/A	N/A	4767	4782	TGACTTTTATTGTTGC	87	1881
959413	N/A	N/A	4870	4885	TGAGTGTACTTTAGGC	94	1882
959423	N/A	N/A	5392	5407	ATGCTATCAGGTGCAG	0	1883
959433	N/A	N/A	5578	5593	GCACAATGACATCATG	86	1884
959443	N/A	N/A	5608	5623	TTACTTTATTCAATGT	9	1885
959453	N/A	N/A	5644	5659	TATTGGGCTCAATGAA	80	1886
959463	N/A	N/A	5798	5813	TATGGGAGCCACATGT	4	1887
959473	N/A	N/A	5866	5881	CTTTTGGCAAGGCCAG	0	1888
959483	N/A	N/A	7199	7214	TTAAACAGAGGATGCA	31	1889
959663	N/A	N/A	12156	12171	AGACAGTAACTGGTAG	75	1890
959673	N/A	N/A	12199	12214	TCCGTTAACCATCAAG	95	1891
959683	N/A	N/A	12282	12297	TTAGGTCTGGGTATAT	94	1892

959693	N/A	N/A	12324	12339	CCCCTGACTATATAAC	0	1893
959703	N/A	N/A	12692	12707	CTTGACCGTGTTTCCA	97	1894
959713	N/A	N/A	12715	12730	TTAAACTACCGAACGC	95	1895
959723	N/A	N/A	12761	12776	ATGGTAGAGTGGTAAG	77	1896
959733	N/A	N/A	12832	12847	ATTGCATAGCCTTCTT	95	1897
959743	N/A	N/A	12884	12899	CCAATCCTGTTAGACA	83	1898
959753	N/A	N/A	12908	12923	CTGCTTATAAAGCACA	2	1899
959763	N/A	N/A	12935	12950	ACAATAAGAGCTGTCT	85	1900
959773	N/A	N/A	13372	13387	TTTGCAGGCACCCCAG	63	1901
959783	N/A	N/A	13396	13411	TGAATGTCACCCTTCC	53	1902
959793	N/A	N/A	13531	13546	GCATCATTGGAAGACC	86	1903
959803	N/A	N/A	13713	13728	ACCAAGACCGCTAGTA	38	1904
959813	N/A	N/A	13743	13758	TGTTAGAACTAAGGCA	79	1905
959823	N/A	N/A	13919	13934	CCTGGAGTCATGACAT	7	1906
959833	N/A	N/A	14304	14319	TCTGAGCAGATAAATA	39	1907
959843	N/A	N/A	14554	14569	AAGTCTTAATGTGGAT	84	1908
959853	N/A	N/A	14669	14684	TTAGTGTCCCCATCCC	78	1909
959863	N/A	N/A	15205	15220	GAATATTGCCAGGTAT	86	1910
959873	N/A	N/A	15766	15781	TTAGTGTTGGTTTATA	92	1911
959883	N/A	N/A	17198	17213	TTTGACTTAGTCCGTG	86	1912
959893	N/A	N/A	17226	17241	CTCTGTAGCTGGTTTG	82	1913
959903	N/A	N/A	17601	17616	TTGATAGTGAATGTGT	83	1914
959913	N/A	N/A	18397	18412	ATATGTTTGGAAGTCG	91	1915
959923	N/A	N/A	20291	20306	CAATCAGAGGAAGCCC	34	1916
959933	N/A	N/A	20516	20531	TAACCAGATTGAGTCT	66	1917
959943	N/A	N/A	20615	20630	GTCTCTAATTTTACGA	53	1918
959953	N/A	N/A	20664	20679	ACAGCTTAGAAATTGC	89	1919
959963	N/A	N/A	20843	20858	CTGTATTAGCTCAATA	67	1920
959973	N/A	N/A	20938	20953	TCTTTGTAGCAGACAG	84	1921
959983	N/A	N/A	21004	21019	TTATTTTAACAGCTCA	92	1922
959993	N/A	N/A	21410	21425	CTGCAATTCTAGACAT	29	1923
960003	N/A	N/A	21535	21550	CATTTCAGAGTATAAG	46	1924
960013	N/A	N/A	22708	22723	GATGTGAGTGAAATAA	69	1925
960023	N/A	N/A	22769	22784	AAGGACATGACAGACT	68	1926
960033	N/A	N/A	24043	24058	CCACCATCAATGCTGC	58	1927

Таблица 31 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID	SEQ ID	SEQ ID	SEQID NO. 1 H Z	%	
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ
соеди-	старто-	стоп-	старто-	стоп-	(5'-3')	ния	ID
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
915609	705	720	11923	11938	TGATGGTTGTTTTGGC	99	702
959284	695	710	11913	11928	TTTGGCATCAATGAAG	69	1928
959294	817	832	12035	12050	TAGAGGTTCCCTGTGC	83	1929
959314	1091	1106	16211	16226	GGGCAGGATGCTGAGA	22	1930
959324	1606	1621	25369	25384	ACTCACAGACTCTTCT	68	1931
959334	1647	1662	25410	25425	AGCACCTCTGAAAGAA	67	1932
959344	1678	1693	25441	25456	CGGAGGTAGCTGCACA	85	1933
959354	1926	1941	25689	25704	ATTCTAAGAACCTCAT	51	1934
959384	N/A	N/A	4303	4318	AAACAAACCCTCCGTC	10	1935
959394	N/A	N/A	4734	4749	AAATGATCATGTGGCG	94	1936
959404	N/A	N/A	4768	4783	CTGACTTTTATTGTTG	74	1937
959414	N/A	N/A	4871	4886	GTGAGTGTACTTTAGG	98	1938
959424	N/A	N/A	5393	5408	AATGCTATCAGGTGCA	31	1939
959434	N/A	N/A	5579	5594	TGCACAATGACATCAT	88	1940
959444	N/A	N/A	5621	5636	CTACCTGTGTCTTTTA	90	1941
959454	N/A	N/A	5647	5662	ATATATTGGGCTCAAT	81	1942
959474	N/A	N/A	5867	5882	ACTTTTGGCAAGGCCA	17	1943
959484	N/A	N/A	7211	7226	CCGCAAACAAGGTTAA	22	1944
959684	N/A	N/A	12283	12298	TTTAGGTCTGGGTATA	93	1945
959694	N/A	N/A	12325	12340	CCCCCTGACTATATAA	18	1946
959704	N/A	N/A	12693	12708	TCTTGACCGTGTTTCC	97	1947
959734	N/A	N/A	12834	12849	GCATTGCATAGCCTTC	96	1948
959744	N/A	N/A	12886	12901	AACCAATCCTGTTAGA	59	1949
959754	N/A	N/A	12909	12924	TCTGCTTATAAAGCAC	100	1950
959774	N/A	N/A	13373	13388	CTTTGCAGGCACCCCA	72	1951
959784	N/A	N/A	13398	13413	CTTGAATGTCACCCTT	92	1952
959804	N/A	N/A	13715	13730	TTACCAAGACCGCTAG	47	1953
959824	N/A	N/A	14228	14243	ACTTTTAGTATTAAAG	0	1954
959844	N/A	N/A	14555	14570	AAAGTCTTAATGTGGA	88	1955
959854	N/A	N/A	14670	14685	CTTAGTGTCCCCATCC	76	1956
959874	N/A	N/A	15767	15782	GTTAGTGTTGGTTTAT	95	1957
959884	N/A	N/A	17199	17214	GTTTGACTTAGTCCGT	96	1958
959914	N/A	N/A	18398	18413	AATATGTTTGGAAGTC	87	1959
959934	N/A	N/A	20518	20533	AGTAACCAGATTGAGT	96	1960
959954	N/A	N/A	20665	20680	CACAGCTTAGAAATTG	88	1961
959964	N/A	N/A	20844	20859	CCTGTATTAGCTCAAT	92	1962
959974	N/A	N/A	20940	20955	CCTCTTTGTAGCAGAC	84	1963
959984	N/A	N/A	21006	21021	GGTTATTTTAACAGCT	85	1964
959994	N/A	N/A	21412	21427	ACCTGCAATTCTAGAC	61	1965
960014	N/A	N/A	22710	22725	AAGATGTGAGTGAAAT	70	1966
960024	N/A	N/A	22770	22785	AAAGGACATGACAGAC	87	1967

Таблица 32 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEQ ID	SEQ ID	SEQ ID	SEQ ID	SEQID NO. 1 и 2	%	
Номер	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ
соеди-	старто-	стоп-	старто-	стоп-	(5'-3')	ния	ID
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NO
959275	440	455	6014	6029	GAGGAACTTGCTTAAG	81	1968
959285	696	711	11914	11929	TTTTGGCATCAATGAA	62	1969
959305	1066	1081	16186	16201	TCTAGCAGCTCATCTC	64	1970
959335	1649	1664	25412	25427	TTAGCACCTCTGAAAG	72	1971
959345	1804	1819	25567	25582	ATGTATTAGAGTTAAG	77	1972
959355	1927	1942	25690	25705	CATTCTAAGAACCTCA	71	1973
959365	2183	2198	25946	25961	TTAGTTAGGTGAAAAA	81	1974
959375	2261	2276	26024	26039	CACTGATTCACATAAT	70	1975
959395	N/A	N/A	4737	4752	TGCAAATGATCATGTG	66	1976
959405	N/A	N/A	4769	4784	GCTGACTTTTATTGTT	84	1977
959415	N/A	N/A	4872	4887	AGTGAGTGTACTTTAG	94	1978
959425	N/A	N/A	5395	5410	TTAATGCTATCAGGTG	81	1979
959435	N/A	N/A	5580	5595	ATGCACAATGACATCA	86	1980
959445	N/A	N/A	5624	5639	ATTCTACCTGTGTCTT	97	1981
959455	N/A	N/A	5651	5666	TTGGATATATTGGGCT	97	1982
959475	N/A	N/A	5868	5883	TACTTTTGGCAAGGCC	70	1983
959485	N/A	N/A	7697	7712	GCACAGAGTAGGTTAA	72	1984
959655	N/A	N/A	12146	12161	TGGTAGCTCCTGGCAA	55	1985
959675	N/A	N/A	12201	12216	TTTCCGTTAACCATCA	94	1986
959695	N/A	N/A	12667	12682	CATCTTAGTGGCTGGG	93	1987
959705	N/A	N/A	12695	12710	GTTCTTGACCGTGTTT	97	1988
959715	N/A	N/A	12717	12732	GGTTAAACTACCGAAC	11	1989
959725	N/A	N/A	12783	12798	CATGGTCTGCAAATTT	89	1990
959745	N/A	N/A	12887	12902	AAACCAATCCTGTTAG	46	1991
959755	N/A	N/A	12910	12925	ATCTGCTTATAAAGCA	42	1992
959775	N/A	N/A	13374	13389	ACTTTGCAGGCACCCC	87	1993
959785	N/A	N/A	13399	13414	GCTTGAATGTCACCCT	94	1994
959805	N/A	N/A	13716	13731	TTTACCAAGACCGCTA	86	1995
959825	N/A	N/A	14230	14245	CAACTTTTAGTATTAA	0	1996
959835	N/A	N/A	14417	14432	TCGACACAGCATCACC	62	1997
959855	N/A	N/A	14671	14686	TCTTAGTGTCCCCATC	78	1998
959865	N/A	N/A	15209	15224	TTAGGAATATTGCCAG	93	1999
959875	N/A	N/A	15769	15784	GGGTTAGTGTTGGTTT	94	2000
959895	N/A	N/A	17288	17303	TAGGGCACCTCAAGAA	0	2001
959915	N/A	N/A	18400	18415	CAAATATGTTTGGAAG	50	2002
959925	N/A	N/A	20293	20308	CCCAATCAGAGGAAGC	41	2003
959935	N/A	N/A	20599	20614	TCATCATTATTACCTG	91	2004
959955	N/A	N/A	20803	20818	TTCAGACCAGGGTAAT	91	2005
959965	N/A	N/A	20845	20860	GCCTGTATTAGCTCAA	90	2006
959975	N/A	N/A	20941	20956	GCCTCTTTGTAGCAGA	0	2007
959995	N/A	N/A	21434	21449	TACTGAGAGGAAATGA	64	2008
960015	N/A	N/A	22714	22729	TGTAAAGATGTGAGTG	78	2009
960025	N/A	N/A	22772	22787	TCAAAGGACATGACAG	80	2010
960037	N/A	N/A	22590	22605	GAGCAACGAGGAAGGA	68	2011
			I	1		<u> </u>	

Таблица 33 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	SEO ID	SEQ ID	SEQ ID	SEO ID	SLQ ID NO. 1 II 2	%	
Номер соеди-	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ ID
	старто-	стоп-	старто-	стоп-	(5'-3')	ния	NO
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	NU
915609	705	720	11923	11938	TGATGGTTGTTTTGGC	98	702
959276	447	462	6021	6036	CCTGTCGGAGGAACTT	37	2012
959286	699	714	11917	11932	TTGTTTTGGCATCAAT	73	2013
959296	895	910	13631	13646	AATGCATCCAAATATC	0	2014
959306	1069	1084	16189	16204	TGGTCTAGCAGCTCAT	25	2015
959316	1221	1236	19061	19076	TTACATAAGACATTAT	35	2016
959326	1614	1629	25377	25392	CTCAAGTGACTCACAG	85	2017
959336	1650	1665	25413	25428	TTTAGCACCTCTGAAA	24	2018
959346	1834	1849	25597	25612	TTTCCCAACCAGCTGA	60	2019
959356	2096	2111	25859	25874	TCATCTTTGCAGACCA	90	2020
959366	2184	2199	25947	25962	TTTAGTTAGGTGAAAA	57	2021
959376	2262	2277	26025	26040	TCACTGATTCACATAA	86	2022
959386	N/A	N/A	4306	4321	GAGAAACAAACCCTCC	0	2023
959396	N/A	N/A	4738	4753	GTGCAAATGATCATGT	69	2024
959406	N/A	N/A	4771	4786	AAGCTGACTTTTATTG	57	2025
959416	N/A	N/A	5276	5291	TCTTGGGATGCACAGG	49	2026
959426	N/A	N/A	5397	5412	CCTTAATGCTATCAGG	0	2027
959436	N/A	N/A	5581	5596	AATGCACAATGACATC	69	2028
959446	N/A	N/A	5625	5640	AATTCTACCTGTGTCT	82	2029
959456	N/A	N/A	5652	5667	TTTGGATATATTGGGC	95	2030
959466	N/A	N/A	5802	5817	CTACTATGGGAGCCAC	64	2031

959486 N/A N/A 7784 7799 TTATAGGCGAGAGCAC 0 2033 959656 N/A N/A 12147 12162 CTGGTAGCTCCTGGCA 44 2034 2034 2034 203666 N/A N/A 12164 12179 GATTGTGCAGACAGTA 95 2035 2036 203666 N/A N/A 12202 12217 ATTTCCGTTAACCATC 93 2036								1
959656 N/A N/A 12147 12162 CTGGTAGCTCCTGGCA 44 2034 2059666 N/A N/A 12164 12179 GATTGTGCAGACAGTA 95 2035 2059676 N/A N/A 12202 12217 ATTTCCGTTAACCATC 93 2036 2059666 N/A N/A 12288 12303 TGAGTTTTAGGTCTGG 96 2037 2059666 N/A N/A 12288 12303 TGAGTTTTAGCTGTGG 96 2037 205966 N/A N/A 12669 12684 ATCATCTTAGTGGTG 91 2038 2059 2059716 N/A N/A 12719 12734 AAGGTTAAACTACCGA 6 2044 2059726 N/A N/A 12719 12734 AAGGTTAAACTACCGA 6 2044 2059736 N/A N/A 12888 12853 CATTGCATTGCATAGC 96 2042 2059746 N/A N/A 12888 12903 AAAACCAATCCTGTTA 47 2043 2059746 N/A N/A 12911 12926 CATCTGCTATAAAGC 81 2044 2059766 N/A N/A 12376 13391 AGACTTTGCAGCACC 90 2046 2059766 N/A N/A 13376 13391 AGACTTTGCAGCACC 90 2046 2059766 N/A N/A 13400 13415 GGCTTGAAAGGCACC 90 2046 2059866 N/A N/A 13400 13415 GGCTTGAAAGGCACC 90 2046 2059866 N/A N/A 13717 13732 CTTTACCAAGACCGCT 82 2045 2059816 N/A N/A 141371 13762 TAAGTGTTAGAACTAA 30 2050 2059866 N/A N/A 14419 14434 CATCGACACAGCACC 59 2045 2059846 N/A N/A 14557 14572 CCAAAGTCTTAGTACC 87 2055 2059866 N/A N/A 14570 15785 AGGGTTGAATGTGCC 87 2055 2059866 N/A N/A 14419 14434 CATCGACACAGCATCA 59 2055 2059866 N/A N/A 14570 15785 AGGGTTGAGTTGGTT 89 2050 2059866 N/A N/A 14570 15785 AGGGTTGAGTTGGTT 89 2050 2059866 N/A N/A 14557 14572 CCAAAGTCTTAGTGTC 88 2054 2059866 N/A N/A 14557 14572 CCAAGGCACCACACACACACACACACACACACACACACA	959476	N/A	N/A	5871	5886	TAATACTTTTGGCAAG	29	2032
959666 N/A N/A 12164 12179 GATTGTGCAGACAGTA 95 2033 959676 N/A N/A 12202 12217 ATTTCCGTTAACCATC 93 2036 959676 N/A N/A 12288 12303 TGAGTTTTAGGTCTGG 96 2037 95966 N/A N/A 12286 12684 ATCATCTTAGGCTGT 91 2038 959706 N/A N/A 12696 12711 TGTTGACCGTGTT 98 2035 959716 N/A N/A 12719 12734 AAGGTTAACTACCGA 6 2044 959736 N/A N/A 12785 12800 TACATGCTTGCAAAT 90 2041 959736 N/A N/A 12888 12903 AAAACCATGCTGTAA 90 2042 959746 N/A N/A 12981 12982 AAACTTIGCAGCACCT 91 2042 959766 N/A N/A 13766 13391 AGACTTGCAGCC 90 2044 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2033</td>								2033
959676 N/A N/A 12202 12217 ATTTCCGTTAACCATC 93 2036 959686 N/A N/A 12288 12303 TGAGTTTTAGGTCTGG 96 2037 959696 N/A N/A 12669 12684 ATCATCTTAGTGGCTG 91 2038 959706 N/A N/A 12696 12711 TGTTCTTGACCGTGTT 98 2035 959716 N/A N/A 12719 12734 AAGGTTAACTACCGA 6 2044 959726 N/A N/A 12785 12800 TACATGGTCTGCAAAT 90 2041 959736 N/A N/A 12838 12853 CATTGCATGCATAGC 96 2042 959736 N/A N/A 12838 12853 CATTGCATGCATAGC 96 2043 959746 N/A N/A 12888 12903 AAAACCAATCCTGTTA 47 2043 959766 N/A N/A 12911 12926 CATCTGCTTATAAAGC 81 2044 959766 N/A N/A 13376 13391 AGACTTTGCAGGCACC 90 2046 959786 N/A N/A 13400 13415 GGCTTGATGCAAGG 69 2047 959786 N/A N/A 13697 13712 AATGCTGTCAAAGG 70 2048 959816 N/A N/A 13717 13732 CTTTACCAAGACCGCT 82 2045 959816 N/A N/A 14419 14434 CATCGACAGACCGCT 82 2045 959826 N/A N/A 14419 14434 CATCGACAGACCATCA 59 2052 959866 N/A N/A 14419 14434 CATCGACATGTTAGTATT 79 2051 959856 N/A N/A 14557 14572 CCAAAGTCTTAATGTG 53 2053 959866 N/A N/A 14557 14572 CCAAAGTCTTAATGTGC 87 2055 959866 N/A N/A 14700 17200 17217 TCTGTTGAGGACTAA 30 2056 959866 N/A N/A 14557 14572 CCAAAGTCTTAATGTGC 87 2055 959866 N/A N/A 14570 15788 AGGGTTAGTGTTGGTT 89 2056 959866 N/A N/A 17750 15788 AGGGTTAGTGTAGTCC 70 2057 959866 N/A N/A 17750 15788 AGGGTTAGTGTATAGTG 43 2055 959966 N/A N/A 17750 17750 CTTAGGGACATAG 0 2066 959966 N/A N/A 20472 20487 CTCTAGAGAGGAATAT 66 2067 959966 N/A N/A 20472 20487 CTCTAGAGAGGAATAG 0 2066 959966 N/A N/A 20472 20487 CTCTAGAGAGGAATAG 0 2066 959966 N/A N/A 20472 20487 CTCTAGAGAGGAAATG 68 2066 959966 N/A N/A 20472 20487 CTCTAGAGAGGAAATG 68 2066 959966								2034
959686 N/A N/A 12288 12303 TGAGTTTTAGGTCTGG 96 2037 959696 N/A N/A 12669 12684 ATCATCTTAGTGGCTG 91 2038 959706 N/A N/A 12696 12711 TGTTCTTGACCGTGTT 98 2035 959716 N/A N/A 12719 12734 AAGGTTAAACTACCGA 6 2046 2047 2047 2047 2047 2047 2047 2047 2047 2047 2047 2047 2047 2047 2047 2047 2048 2047 2048 2047 2048 2047 2048 2047 2048 20	959666	N/A	N/A	12164	12179		95	2035
959696 N/A N/A 12669 12684 ATCATCTTAGTGGCTG 91 2038 959706 N/A N/A 12696 12711 TGTTCTTGACCGTGTT 98 2038 959716 N/A N/A 12719 12734 AAGGTTAAACTACCGA 6 2040 959726 N/A N/A 12785 12800 TACATGGTCTGCAAAT 90 2041 959736 N/A N/A 12838 12853 CATTGCATTGCATAGC 96 2042 959736 N/A N/A 12888 12903 AAAACCAATCCTGTA 47 2043 959736 N/A N/A 12888 12903 AAAACCAATCCTGTA 47 2043 959766 N/A N/A 12911 12926 CATCTGCTTATAAAGC 81 2044 959766 N/A N/A 12367 12982 AAACTTGCAGCCTAT 93 2045 959776 N/A N/A 13376 13391 AGACTTGCAGGCACC 90 2040 959786 N/A N/A 13400 13415 GGCTTGAATGTCACCC 69 2047 959806 N/A N/A 13717 13732 CTTTACCAAGACCGCT 82 2045 959816 N/A N/A 13747 13762 TAAGTGTTAGAACTAA 30 205	959676	N/A	N/A	12202	12217	ATTTCCGTTAACCATC	93	2036
959706 N/A N/A 12696 12711 TGTTCTTGACCGTGTT 98 2036 959716 N/A N/A 12719 12734 AAGGTTAAACTACCGA 6 2040 959726 N/A N/A 12785 12800 TACATGGTCTGCAAAT 90 2041 959736 N/A N/A 12838 12853 CATTGCATGCATAGC 96 2042 959746 N/A N/A 12888 12903 AAAACCAATCCTGTTA 47 2043 959756 N/A N/A 12911 12926 CATCTGCTATAAAGC 81 2044 959766 N/A N/A 13376 13391 AGACTTTGCAGCACC 90 2046 959776 N/A N/A 13400 13415 GGCTTGAATGTCACC 69 2047 959786 N/A N/A 13413 GGCTTGAATGCACCC 69 2045 959816 N/A N/A 13717 13732 CTTTACCAAGACCGCT 82 2049	959686	N/A	N/A	12288	12303	TGAGTTTTAGGTCTGG	96	2037
959716	959696	N/A	N/A	12669	12684	ATCATCTTAGTGGCTG	91	2038
959726 N/A N/A 12785 12800 TACATGGTCTGCAAAT 90 2041 959736 N/A N/A 12838 12853 CATTGCATTGCATAGC 96 2042 959746 N/A N/A 12888 12903 AAAACCAATCCTGTTA 47 2043 959756 N/A N/A 12911 12926 CATCTGCTTATAAGC 81 2044 959766 N/A N/A 12967 12982 AAACTTTGCAGCCTAT 93 2045 959776 N/A N/A 13376 13391 AGACTTTGCAGCACC 90 2046 959786 N/A N/A 13400 13415 GGCTTGAATGTCACCC 69 2047 959796 N/A N/A 13697 13712 AATGCTTGCAAAAGG 70 2048 959806 N/A N/A 13717 13732 CTTTACCAAGACCGCT 82 2045 959816 N/A N/A 13747 13762 TAAGTGTTAGAACTAA 30 2056 959826 N/A N/A 14419 14434 CATCGACACAGCACTCA 59 2052 959846 N/A N/A 14557 14572 CCAAAGTCTTAATGTG 53 2053 959866 N/A N/A 15210 15225 CTTAGGAATATTGCCA 87 2055 959866 N/A N/A 15770 15785 AGGGTTAGTTGTGTC 88 2054 959866 N/A N/A 17202 17217 TCTGTTTGACTTAGTC 70 2057 959896 N/A N/A 17735 17750 TATCTGTTGATATGG 43 2055 959966 N/A N/A 14445 18460 TGCTTAGGGCACTAGG 43 2055 959966 N/A N/A 17735 17750 TATCTGTTAGTGCC 31 2061 959966 N/A N/A 18445 18460 TGCTTAGGGCACTAGG 43 2055 959966 N/A N/A 18445 18460 TGCTTAGGGCACTAGG 43 2055 959966 N/A N/A 20472 20487 CTCTAGGGCACTAGG 43 2055 959966 N/A N/A 20472 20487 CTCTAGGGCACTAGG 5 2066 959966 N/A N/A 20804 20819 ATTCAGGGGAAGCT 31 2061 959966 N/A N/A 20804 20819 ATTCAGGGGAAGATG 6 2066 959966 N/A N/A 20804 20819 ATTCAGACCAGGGTAA 87 2065 959966 N/A N/A 20472 20487 CTCTAGAGCGGAAGCT 31 2061 959966 N/A N/A 20472 20487 CTCTAGAGCGGAAAGCT 31 2061 959966 N/A N	959706	N/A	N/A	12696	12711	TGTTCTTGACCGTGTT	98	2039
959736	959716	N/A	N/A	12719	12734	AAGGTTAAACTACCGA	6	2040
959746 N/A N/A 12888 12903 AAAACCAATCCTGTTA 47 2043 959756 N/A N/A 12911 12926 CATCTGCTTATAAAGC 81 2044 959766 N/A N/A 12967 12982 AAACTTTGCAGCCTAT 93 2045 959776 N/A N/A 13376 13391 AGACTTTGCAGCCACC 90 2046 959786 N/A N/A 13400 13415 GGCTTGAATGTCACCC 69 2047 959786 N/A N/A 13667 13712 AATGCTTGCAAAAGG 70 2048 959806 N/A N/A 13747 13732 CTTACCAAGACCGCT 82 2049 959816 N/A N/A 14232 14247 ACCAACTTTAGTATT 79 2051 959826 N/A N/A 14419 14434 CATCGACAGGCATCA 59 2052 959846 N/A N/A 14572 CCAAAGTCTTAGTGTC 82 2054	959726	N/A	N/A	12785	12800	TACATGGTCTGCAAAT	90	2041
959756 N/A N/A 12911 12926 CATCTGCTTATAAAGC 81 2044 959766 N/A N/A 12967 12982 AAACTTTGCAGCCTAT 93 2045 959776 N/A N/A 13376 13391 AGACTTTGCAGCCACC 90 2046 959786 N/A N/A 13400 13415 GGCTTGAATGTCACCC 69 2047 959786 N/A N/A 13697 13712 AATGCTTGCAAAAGG 70 2048 959806 N/A N/A 13717 13732 CTTACCAAGACCGCT 82 2049 959816 N/A N/A 13747 13762 TAAGTGTTAGAACTAA 30 2052 959826 N/A N/A 14419 14434 CACAACTTTAGTATT 79 2051 959846 N/A N/A 14457 14572 CCAAAGTCTAATGTG 53 2052 959866 N/A N/A 15210 15225 CTTAGGAATATTGCCA 87 <t< td=""><td>959736</td><td>N/A</td><td>N/A</td><td>12838</td><td>12853</td><td>CATTGCATTGCATAGC</td><td>96</td><td>2042</td></t<>	959736	N/A	N/A	12838	12853	CATTGCATTGCATAGC	96	2042
959766 N/A N/A 12967 12982 AAACTTTGCAGCCTAT 93 2045 959776 N/A N/A 13376 13391 AGACTTTGCAGGCACC 90 2046 959786 N/A N/A 13400 13415 GCTTGAATGTCACCC 69 2047 959796 N/A N/A 13697 13712 AATGCTTGTCAAAAGG 70 2048 959806 N/A N/A 13717 13732 CTTTACCAAGACCGCT 82 2049 959816 N/A N/A 13747 13762 TAAGTGTTAGAACTAA 30 2050 959826 N/A N/A 14232 14247 ACCAACTTTAGTATT 79 2051 959836 N/A N/A 14434 CATCGACACAGCATCA 59 2052 959846 N/A N/A 14572 CCAAAGTCTTAGTGT 88 2054 959866 N/A N/A 14676 14691 CCATCTCTAGTGTCC 88 2054 959	959746	N/A	N/A	12888	12903	AAAACCAATCCTGTTA	47	2043
959776 N/A N/A 13376 13391 AGACTTTGCAGGCACC 90 2046 959786 N/A N/A 13400 13415 GCTTGAATGTCACCC 69 2047 959796 N/A N/A 13697 13712 AATGCTTGTCAAAAGG 70 2048 959806 N/A N/A 13717 13732 CTTTACCAAGACCGCT 82 2049 959816 N/A N/A 13747 13762 TAAGTGTTAGAACTAA 30 2050 959826 N/A N/A 14232 14247 ACCAACTTTAGTATT 79 2051 959836 N/A N/A 14419 14434 CATCGACACAGCATCA 59 2052 959846 N/A N/A 14572 CCAAAGTCTTAGTGT 88 2054 959866 N/A N/A 14676 14691 CCATCTTAGTGTCC 88 2054 959876 N/A N/A 15770 15785 AGGGTTAGTGTTGGTT 89 2056	959756	N/A	N/A	12911	12926	CATCTGCTTATAAAGC	81	2044
959786 N/A N/A 13400 13415 GGCTTGAATGTCACCC 69 2047 959796 N/A N/A 13697 13712 AATGCTTGTCAAAAGG 70 2048 959806 N/A N/A 13717 13732 CTTTACCAAGACCGCT 82 2049 959816 N/A N/A 13747 13762 TAAGTGTTAGAACTAA 30 2050 959826 N/A N/A 14232 14247 ACCAACTTTAGTATT 79 2051 959836 N/A N/A 14419 14434 CATCGACACAGCATCA 59 2052 959846 N/A N/A 14557 14572 CCAAAGTCTTAATGTG 53 2053 959866 N/A N/A 15210 15225 CTTAGGAATATTGCA 87 2055 959876 N/A N/A 17202 17217 TCTGTTTGACTTAGTC 70 2057 959886 N/A N/A 17202 17217 TCTGTTTGACTTAGTC 70	959766	N/A	N/A	12967	12982	AAACTTTGCAGCCTAT	93	2045
959796 N/A N/A 13697 13712 AATGCTTGTCAAAAGG 70 2048 959806 N/A N/A 13717 13732 CTTTACCAAGACCGCT 82 2048 959816 N/A N/A 13747 13762 TAAGTGTTAGAACTAA 30 2050 959826 N/A N/A 14232 14247 ACCAACTTTAGTATT 79 2051 959836 N/A N/A 14419 14434 CATCGACACAGCATCA 59 2052 959846 N/A N/A 14557 14572 CCAAAGTCTTAATGTG 53 2053 959856 N/A N/A 14676 14691 CCATCTCTTAGTGTC 88 2054 959866 N/A N/A 15770 15785 AGGGTTAGTGTTGGTT 89 2056 959876 N/A N/A 17202 17217 TCTGTTTGACTTAGTC 70 2057 959886 N/A N/A 17735 17750 TAATCTGGTCATATGG 43	959776	N/A	N/A	13376	13391	AGACTTTGCAGGCACC	90	2046
959806 N/A N/A 13717 13732 CTTTACCAAGACCGCT 82 2049 959816 N/A N/A 13747 13762 TAAGTGTTAGAACTAA 30 2050 959826 N/A N/A 14232 14247 ACCAACTTTTAGTATT 79 2051 959836 N/A N/A 14419 14434 CATCGACACAGCATCA 59 2052 959846 N/A N/A 14557 14572 CCAAAGTCTTAATGTG 53 2053 959856 N/A N/A 14676 14691 CCATCTCTTAGTGTC 88 2054 959866 N/A N/A 15210 15225 CTTAGGAATATTGCCA 87 2053 959876 N/A N/A 15770 15785 AGGGTTAGTGTTGGTT 89 2056 959886 N/A N/A 17290 17305 CTTAGGGCACCTCAAG 30 2058 959906 N/A N/A 17735 17750 TAATCTGGTCATATGG 43	959786	N/A	N/A	13400	13415	GGCTTGAATGTCACCC	69	2047
959816 N/A N/A 13747 13762 TAAGTGTTAGAACTAA 30 2050 959826 N/A N/A 14232 14247 ACCAACTTTTAGTATT 79 2051 959836 N/A N/A 14419 14434 CATCGACACAGCATCA 59 2052 959846 N/A N/A 14557 14572 CCAAAGTCTTAATGTG 53 2053 959856 N/A N/A 14676 14691 CCATCTCTTAGTGTC 88 2054 959866 N/A N/A 15210 15225 CTTAGGAATATTGCCA 87 2055 959876 N/A N/A 15770 15785 AGGGTTAGTGTTGGTT 89 2056 959886 N/A N/A 17202 17217 TCTGTTTGACTTAGTC 70 2057 959886 N/A N/A 17730 17305 CTTAGGGCACCTCAAG 30 2058 959916 N/A N/A 18445 18460 TGCTTACGGAGCATAG 0	959796	N/A	N/A	13697	13712	AATGCTTGTCAAAAGG	70	2048
959826 N/A N/A 14232 14247 ACCAACTTTTAGTATT 79 2051 959836 N/A N/A 14419 14434 CATCGACACAGCATCA 59 2052 959846 N/A N/A 14557 14572 CCAAAGTCTTAATGTG 53 2053 959856 N/A N/A 14676 14691 CCATCTCTTAGTGTCC 88 2054 959866 N/A N/A 15210 15225 CTTAGGAATATTGCCA 87 2053 959876 N/A N/A 15770 15785 AGGGTTAGTGTTGGTT 89 2056 959886 N/A N/A 17290 17305 CTTAGGGCACCTCAAG 30 2058 959896 N/A N/A 17735 17750 TAATCTGGTCATATGG 43 2059 959906 N/A N/A 18445 18460 TGCTTACGGAGCATAG 0 2066 959926 N/A N/A 20472 20487 CTCTAGACGGGAAGCT 31	959806	N/A	N/A	13717	13732	CTTTACCAAGACCGCT	82	2049
959836 N/A N/A 14419 14434 CATCGACACAGCATCA 59 2052 959846 N/A N/A 14557 14572 CCAAAGTCTTAATGTG 53 2053 959856 N/A N/A 14676 14691 CCATCTCTTAGTGTCC 88 2054 959866 N/A N/A 15210 15225 CTTAGGAATATTGCCA 87 2055 959876 N/A N/A 15770 15785 AGGGTTAGTGTTGGTT 89 2056 959886 N/A N/A 17202 17217 TCTGTTTGACTTAGTC 70 2057 959896 N/A N/A 17730 17305 CTTAGGGCACCTCAAG 30 2058 959906 N/A N/A 17735 17750 TAATCTGGTCATATGG 43 2059 959916 N/A N/A 18445 18460 TGCTTACGGAGCATAG 0 2060 959926 N/A N/A 20472 20487 CTCTAGACGGGAAGCT 31	959816	N/A	N/A	13747	13762	TAAGTGTTAGAACTAA	30	2050
959846 N/A N/A 14557 14572 CCAAAGTCTTAATGTG 53 2053 959856 N/A N/A 14676 14691 CCATCTCTTAGTGTCC 88 2054 959866 N/A N/A 15210 15225 CTTAGGAATATTGCCA 87 2053 959876 N/A N/A 15770 15785 AGGGTTAGTGTTGGTT 89 2056 959886 N/A N/A 17202 17217 TCTGTTTGACTTAGTC 70 2057 959896 N/A N/A 17290 17305 CTTAGGGCACCTCAAG 30 2058 959906 N/A N/A 17735 17750 TAATCTGGTCATATGG 43 2059 959916 N/A N/A 18445 18460 TGCTTACGGAGCATAG 0 2060 959926 N/A N/A 20472 20487 CTCTAGACGGGAAGCT 31 2061 959936 N/A N/A 20601 GATCATCATTATTACC 71 2062 <td>959826</td> <td>N/A</td> <td>N/A</td> <td>14232</td> <td>14247</td> <td>ACCAACTTTTAGTATT</td> <td>79</td> <td>2051</td>	959826	N/A	N/A	14232	14247	ACCAACTTTTAGTATT	79	2051
959856 N/A N/A 14676 14691 CCATCTCTTAGTGTCC 88 2054 959866 N/A N/A 15210 15225 CTTAGGAATATTGCCA 87 2055 959876 N/A N/A 15770 15785 AGGGTTAGTGTTGGTT 89 2056 959886 N/A N/A 17202 17217 TCTGTTTGACTTAGTC 70 2057 959896 N/A N/A 17290 17305 CTTAGGGCACCTCAAG 30 2058 959906 N/A N/A 17735 17750 TAATCTGGTCATATGG 43 2059 959916 N/A N/A 18445 18460 TGCTTACGGAGCATAG 0 2060 959926 N/A N/A 20472 20487 CTCTAGACGGGAAGCT 31 2061 959936 N/A N/A 20612 20667 TTGCAGTGCCCTGGCC 31 2062 959946 N/A N/A 20804 20819 ATTCAGACCAGGGTAA 87	959836	N/A	N/A	14419	14434	CATCGACACAGCATCA	59	2052
959866 N/A N/A 15210 15225 CTTAGGAATATTGCCA 87 2055 959876 N/A N/A 15770 15785 AGGGTTAGTGTTGGTT 89 2056 959886 N/A N/A 17202 17217 TCTGTTTGACTTAGTC 70 2057 959896 N/A N/A 17290 17305 CTTAGGGCACCTCAAG 30 2058 959906 N/A N/A 17735 17750 TAATCTGGTCATATGG 43 2059 959916 N/A N/A 18445 18460 TGCTTACGGAGCATAG 0 2066 959926 N/A N/A 20472 20487 CTCTAGACGGGAAGCT 31 2061 959936 N/A N/A 20616 GATCATCATTATTACC 71 2062 959956 N/A N/A 20652 20667 TTGCAGTGCCCTGGCC 31 2063 959966 N/A N/A 20842 20819 ATTCAGACCAGGGTAA 87 2064 <td>959846</td> <td>N/A</td> <td>N/A</td> <td>14557</td> <td>14572</td> <td>CCAAAGTCTTAATGTG</td> <td>53</td> <td>2053</td>	959846	N/A	N/A	14557	14572	CCAAAGTCTTAATGTG	53	2053
959876 N/A N/A 15770 15785 AGGGTTAGTGTTGGTT 89 2056 959886 N/A N/A 17202 17217 TCTGTTTGACTTAGTC 70 2057 959896 N/A N/A 17290 17305 CTTAGGGCACCTCAAG 30 2058 959906 N/A N/A 17735 17750 TAATCTGGTCATATGG 43 2059 959916 N/A N/A 18445 18460 TGCTTACGGAGCATAG 0 2060 959926 N/A N/A 20472 20487 CTCTAGACGGGAAGCT 31 2061 959936 N/A N/A 20601 20616 GATCATCATTATTACC 71 2062 959946 N/A N/A 20652 20667 TTGCAGTGCCCTGGCC 31 2063 959956 N/A N/A 20804 20819 ATTCAGACCAGGGTAA 87 2064 959966 N/A N/A 20847 20862 ATGCCTCTTTTGTAGCAG 5	959856	N/A	N/A	14676	14691	CCATCTCTTAGTGTCC	88	2054
959886 N/A N/A 17202 17217 TCTGTTTGACTTAGTC 70 2057 959896 N/A N/A 17290 17305 CTTAGGGCACCTCAAG 30 2058 959906 N/A N/A 17735 17750 TAATCTGGTCATATGG 43 2059 959916 N/A N/A 18445 18460 TGCTTACGGAGCATAG 0 2060 959926 N/A N/A 20472 20487 CTCTAGACGGGAAGCT 31 2061 959936 N/A N/A 20601 20616 GATCATCATTATTACC 71 2062 959946 N/A N/A 20652 20667 TTGCAGTGCCCTGGCC 31 2063 959956 N/A N/A 20804 20819 ATTCAGACCAGGTAA 87 2064 959966 N/A N/A 20847 20862 ATGCCTCTTTGTAGCTC 65 2065 959976 N/A N/A 21008 21023 GAGGTTATTTTAACAG 69	959866	N/A	N/A	15210	15225	CTTAGGAATATTGCCA	87	2055
959896 N/A N/A 17290 17305 CTTAGGGCACCTCAAG 30 2058 959906 N/A N/A 17735 17750 TAATCTGGTCATATGG 43 2059 959916 N/A N/A 18445 18460 TGCTTACGGAGCATAG 0 2060 959926 N/A N/A 20472 20487 CTCTAGACGGGAAGCT 31 2061 959936 N/A N/A 20601 20616 GATCATCATTATTACC 71 2062 959946 N/A N/A 20652 20667 TTGCAGTGCCCTGGCC 31 2063 959956 N/A N/A 20804 20819 ATTCAGACCAGGGTAA 87 2064 959966 N/A N/A 20847 20862 ATGCCTGTATTAGCTC 65 2065 959976 N/A N/A 21038 21023 GAGGTTATTTTAACAG 69 2067 959986 N/A N/A 21435 21450 ATACTGAGAGGAAATG 68	959876	N/A	N/A	15770	15785	AGGGTTAGTGTTGGTT	89	2056
959906 N/A N/A 17735 17750 TAATCTGGTCATATGG 43 2059 959916 N/A N/A 18445 18460 TGCTTACGGAGCATAG 0 2060 959926 N/A N/A 20472 20487 CTCTAGACGGGAAGCT 31 2061 959936 N/A N/A 20601 20616 GATCATCATTATTACC 71 2062 959946 N/A N/A 20652 20667 TTGCAGTGCCCTGGCC 31 2063 959956 N/A N/A 20804 20819 ATTCAGACCAGGGTAA 87 2064 959966 N/A N/A 20847 20862 ATGCCTGTATTAGCTC 65 2065 959976 N/A N/A 20942 20957 AGCCTCTTTGTAGCAG 5 2066 959986 N/A N/A 21033 GAGGTTATTTTAACAG 69 2067 959996 N/A N/A 21435 21450 ATACTGAGAGGAAATG 68 2068	959886	N/A	N/A	17202	17217	TCTGTTTGACTTAGTC	70	2057
959916 N/A N/A 18445 18460 TGCTTACGGAGCATAG 0 2060 959926 N/A N/A 20472 20487 CTCTAGACGGGAAGCT 31 2061 959936 N/A N/A 20601 20616 GATCATCATTATTACC 71 2062 959946 N/A N/A 20652 20667 TTGCAGTGCCCTGGCC 31 2063 959956 N/A N/A 20804 20819 ATTCAGACCAGGGTAA 87 2064 959966 N/A N/A 20847 20862 ATGCCTGTATTAGCTC 65 2063 959976 N/A N/A 20942 20957 AGCCTCTTTGTAGCAG 5 2066 959986 N/A N/A 21008 21023 GAGGTTATTTTAACAG 69 2067 959996 N/A N/A 21435 21450 ATACTGAGAGGAAATG 68 2068 960006 N/A N/A 21435 21554 ATGACATTTCAGAGTA 88	959896	N/A	N/A	17290	17305	CTTAGGGCACCTCAAG	30	2058
959926 N/A N/A 20472 20487 CTCTAGACGGGAAGCT 31 2061 959936 N/A N/A 20601 20616 GATCATCATTATTACC 71 2062 959946 N/A N/A 20652 20667 TTGCAGTGCCCTGGCC 31 2063 959956 N/A N/A 20804 20819 ATTCAGACCAGGGTAA 87 2064 959966 N/A N/A 20847 20862 ATGCCTGTATTAGCTC 65 2065 959976 N/A N/A 20942 20957 AGCCTCTTTGTAGCAG 5 2066 959986 N/A N/A 21008 21023 GAGGTTATTTTAACAG 69 2067 959996 N/A N/A 21435 21450 ATACTGAGAGGAAATG 68 2068 960006 N/A N/A 21539 21554 ATGACATTTCAGAGTA 88 2069 960016 N/A N/A 24033 24048 TGCTGCACTCAAAGAG 0	959906	N/A	N/A	17735	17750	TAATCTGGTCATATGG	43	2059
959936 N/A N/A 20601 20616 GATCATCATTATTACC 71 2062 959946 N/A N/A 20652 20667 TTGCAGTGCCCTGGCC 31 2063 959956 N/A N/A 20804 20819 ATTCAGACCAGGGTAA 87 2064 959966 N/A N/A 20847 20862 ATGCCTGTATTAGCTC 65 2065 959976 N/A N/A 20942 20957 AGCCTCTTTGTAGCAG 5 2066 959986 N/A N/A 21008 21023 GAGGTTATTTTAACAG 69 2067 959996 N/A N/A 21435 21450 ATACTGAGAGGAAATG 68 2068 960006 N/A N/A 21539 21554 ATGACATTTCAGAGTA 88 2069 960016 N/A N/A 24033 24048 TGCTGCACTCAAAGAG 0 2071 960026 N/A N/A 24033 24048 TGCTGCACTCAAAGAG 0 <	959916	N/A	N/A	18445	18460	TGCTTACGGAGCATAG	0	2060
959946 N/A N/A 20652 20667 TTGCAGTGCCCTGGCC 31 2063 959956 N/A N/A 20804 20819 ATTCAGACCAGGGTAA 87 2064 959966 N/A N/A 20847 20862 ATGCCTGTATTAGCTC 65 2065 959976 N/A N/A 20942 20957 AGCCTCTTTGTAGCAG 5 2066 959986 N/A N/A 21008 21023 GAGGTTATTTTAACAG 69 2067 959996 N/A N/A 21435 21450 ATACTGAGAGGAAATG 68 2068 960006 N/A N/A 21539 21554 ATGACATTTCAGAGTA 88 2069 960016 N/A N/A 24033 24048 TGCTGCACTCAAAGAG 0 2071	959926	N/A	N/A	20472	20487	CTCTAGACGGGAAGCT	31	2061
959956 N/A N/A 20804 20819 ATTCAGACCAGGGTAA 87 2064 959966 N/A N/A 20847 20862 ATGCCTGTATTAGCTC 65 2065 959976 N/A N/A 20942 20957 AGCCTCTTTGTAGCAG 5 2066 959986 N/A N/A 21008 21023 GAGGTTATTTAACAG 69 2067 959996 N/A N/A 21435 21450 ATACTGAGAGGAAATG 68 2068 960006 N/A N/A 21539 21554 ATGACATTTCAGAGTA 88 2069 960016 N/A N/A 22715 22730 GTGTAAAGATGTGAGT 84 2070 960026 N/A N/A 24033 24048 TGCTGCACTCAAAGAG 0 2071	959936	N/A	N/A	20601	20616	GATCATCATTATTACC	71	2062
959966 N/A N/A 20847 20862 ATGCCTGTATTAGCTC 65 2065 959976 N/A N/A 20942 20957 AGCCTCTTTGTAGCAG 5 2066 959986 N/A N/A 21008 21023 GAGGTTATTTTAACAG 69 2067 959996 N/A N/A 21435 21450 ATACTGAGAGGAAATG 68 2068 960006 N/A N/A 21539 21554 ATGACATTTCAGAGTA 88 2069 960016 N/A N/A 22715 22730 GTGTAAAGATGTGAGT 84 2070 960026 N/A N/A 24033 24048 TGCTGCACTCAAAGAG 0 2071	959946	N/A	N/A	20652	20667	TTGCAGTGCCCTGGCC	31	2063
959976 N/A N/A 20942 20957 AGCCTCTTTGTAGCAG 5 2066 959986 N/A N/A 21008 21023 GAGGTTATTTTAACAG 69 2067 959996 N/A N/A 21435 21450 ATACTGAGAGGAAATG 68 2068 960006 N/A N/A 21539 21554 ATGACATTTCAGAGTA 88 2069 960016 N/A N/A 22715 22730 GTGTAAAGATGTGAGT 84 2070 960026 N/A N/A 24033 24048 TGCTGCACTCAAAGAG 0 2071	959956	N/A	N/A	20804	20819	ATTCAGACCAGGGTAA	87	2064
959986 N/A N/A 21008 21023 GAGGTTATTTTAACAG 69 2067 959996 N/A N/A 21435 21450 ATACTGAGAGGAAATG 68 2068 960006 N/A N/A 21539 21554 ATGACATTTCAGAGTA 88 2069 960016 N/A N/A 22715 22730 GTGTAAAGATGTGAGT 84 2070 960026 N/A N/A 24033 24048 TGCTGCACTCAAAGAG 0 2071	959966	N/A	N/A	20847	20862	ATGCCTGTATTAGCTC	65	2065
959996 N/A N/A 21435 21450 ATACTGAGAGGAAATG 68 2068 960006 N/A N/A 21539 21554 ATGACATTTCAGAGTA 88 2069 960016 N/A N/A 22715 22730 GTGTAAAGATGTGAGT 84 2070 960026 N/A N/A 24033 24048 TGCTGCACTCAAAGAG 0 2071	959976	N/A	N/A	20942	20957	AGCCTCTTTGTAGCAG	5	2066
960006 N/A N/A 21539 21554 ATGACATTTCAGAGTA 88 2069 960016 N/A N/A 22715 22730 GTGTAAAGATGTGAGT 84 2070 960026 N/A N/A 24033 24048 TGCTGCACTCAAAGAG 0 2071	959986	N/A	N/A	21008	21023	GAGGTTATTTTAACAG	69	2067
960016 N/A N/A 22715 22730 GTGTAAAGATGTGAGT 84 2070 960026 N/A N/A 24033 24048 TGCTGCACTCAAAGAG 0 2071	959996	N/A	N/A	21435	21450	ATACTGAGAGGAAATG	68	2068
960026 N/A N/A 24033 24048 TGCTGCACTCAAAGAG 0 2071	960006	N/A	N/A	21539	21554	ATGACATTTCAGAGTA	88	2069
960026 N/A N/A 24033 24048 TGCTGCACTCAAAGAG 0 2071	960016	N/A	N/A	22715	22730	GTGTAAAGATGTGAGT	84	2070
	960026	N/A	N/A	24033	24048	TGCTGCACTCAAAGAG	0	2071
960038 N/A N/A 19377 19392 TCACAAGAGACTGGAC 31 2072	960038	N/A	N/A	19377	19392	TCACAAGAGACTGGAC	31	2072

Таблица 34 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Harran	SEQ ID	SEQ ID	SEQ ID	SEQ ID		%	SEQ
Номер соеди-	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	SEQ ID
нения	старто-	стоп-	старто-	стоп-	(5'-3')	ния	NO NO
нения	вый сайт	сайт	вый сайт	сайт		PNPLA3	110
915609	705	720	11923	11938	TGATGGTTGTTTTGGC	98	702
959277	481	496	6055	6070	TGGTGGACATTGGCCG	5	2073
959287	707	722	11925	11940	GGTGATGGTTGTTTTG	85	2074
959297	896	911	13632	13647	GAATGCATCCAAATAT	0	2075
959307	1070	1085	16190	16205	GTGGTCTAGCAGCTCA	66	2076
959317	1223	1238	19063	19078	CATTACATAAGACATT	46	2077
959327	1615	1630	25378	25393	CCTCAAGTGACTCACA	83	2078
959337	1651	1666	25414	25429	CTTTAGCACCTCTGAA	71	2079
959347	1835	1850	25598	25613	ATTTCCCAACCAGCTG	49	2080
959357	2099	2114	25862	25877	TTATCATCTTTGCAGA	48	2081
959367	2185	2200	25948	25963	TTTTAGTTAGGTGAAA	43	2082
959377	2263	2278	26026	26041	CTCACTGATTCACATA	79	2083
959387	N/A	N/A	4307	4322	TGAGAAACAAACCCTC	0	2084
959397	N/A	N/A	4739	4754	TGTGCAAATGATCATG	82	2085
959407	N/A	N/A	4859	4874	TAGGCTCCTGGGACCT	0	2086
959417	N/A	N/A	5277	5292	ATCTTGGGATGCACAG	89	2087
959427	N/A	N/A	5567	5582	TCATGGCTTCCAGTGT	78	2088

959437	N/A	N/A	5600	5615	TTCAATGTGGCTTCTA	96	2089
959447	N/A	N/A	5627	5642	TTAATTCTACCTGTGT	72	2090
959457	N/A	N/A	5706	5721	TGAAATATCTCATTAG	77	2091
959467	N/A	N/A	5805	5820	TGTCTACTATGGGAGC	83	2092
959477	N/A	N/A	5875	5890	ATGGTAATACTTTTGG	75	2093
959657	N/A	N/A	12148	12163	ACTGGTAGCTCCTGGC	78	2094
959667	N/A	N/A	12165	12180	TGATTGTGCAGACAGT	97	2095
959677	N/A	N/A	12203	12218	TATTTCCGTTAACCAT	91	2096
959687	N/A	N/A	12289	12304	CTGAGTTTTAGGTCTG	96	2097
959697	N/A	N/A	12671	12686	GAATCATCTTAGTGGC	94	2098
959707	N/A	N/A	12697	12712	TTGTTCTTGACCGTGT	98	2099
959717	N/A	N/A	12753	12768	GTGGTAAGGCATACTA	35	2100
959727	N/A	N/A	12789	12804	GGTGTACATGGTCTGC	97	2101
959737	N/A	N/A	12839	12854	GCATTGCATTGCATAG	92	2102
959747	N/A	N/A	12890	12905	GGAAAACCAATCCTGT	69	2103
959757	N/A	N/A	12927	12942	AGCTGTCTCCTCTACT	70	2104
959767	N/A	N/A	12968	12983	CAAACTTTGCAGCCTA	95	2105
959777	N/A	N/A	13377	13392	GAGACTTTGCAGGCAC	88	2106
959787	N/A	N/A	13402	13417	TCGGCTTGAATGTCAC	67	2107
959797	N/A	N/A	13700	13715	GTAAATGCTTGTCAAA	91	2108
959807	N/A	N/A	13720	13735	AGTCTTTACCAAGACC	0	2109
959817	N/A	N/A	13911	13926	CATGACATCCCAGTTC	29	2110
959827	N/A	N/A	14233	14248	AACCAACTTTTAGTAT	27	2111
959837	N/A	N/A	14420	14435	CCATCGACACAGCATC	89	2112
959847	N/A	N/A	14567	14582	CTACTTATCCCCAAAG	16	2113
959857	N/A	N/A	14677	14692	GCCATCTCTTAGTGTC	36	2114
959867	N/A	N/A	15211	15226	CCTTAGGAATATTGCC	75	2115
959877	N/A	N/A	15771	15786	GAGGGTTAGTGTTGGT	93	2116
959887	N/A	N/A	17218	17233	CTGGTTTGTGGGTTCT	75	2117
959897	N/A	N/A	17291	17306	TCTTAGGGCACCTCAA	53	2118
959907	N/A	N/A	17736	17751	TTAATCTGGTCATATG	0	2119
959917	N/A	N/A	18852	18867	ACAAAAGCGACAAGGT	33	2120
959927	N/A	N/A	20508	20523	TTGAGTCTCCTGACCA	65	2121
959937	N/A	N/A	20602	20617	CGATCATCATTATTAC	87	2122
959947	N/A	N/A	20653	20668	ATTGCAGTGCCCTGGC	69	2123
959957	N/A	N/A	20805	20820	TATTCAGACCAGGGTA	89	2124
959967	N/A	N/A	20848	20863	GATGCCTGTATTAGCT	72	2125
959977	N/A	N/A	20944	20959	GCAGCCTCTTTGTAGC	0	2126
959987	N/A	N/A	21010	21025	CTGAGGTTATTTTAAC	40	2127
959997	N/A	N/A	21436	21451	TATACTGAGAGGAAAT	47	2128
960007	N/A	N/A	21541	21556	ATATGACATTTCAGAG	91	2129
960017	N/A	N/A	22716	22731	CGTGTAAAGATGTGAG	87	2130
960027	N/A	N/A	24035	24050	AATGCTGCACTCAAAG	31	2131
960039	N/A	N/A	20215	20230	TAACAAACTATGCCTA	44	2132

Таблица 35 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

	CEO ID				SEQ ID NO: 1 и 2	0/	
Номер	SEQ ID	SEQ ID	SEQ ID	SEQ ID		%	SEQ
соеди-	NO: 1,	NO: 1,	NO: 2,	NO: 2,	Последовательность	подавле-	ID
нения	старто-	стоп-	старто-	стоп-	(5'-3')	ния	NO
017600	вый сайт	сайт	вый сайт	сайт	TO 1 TO 0	PNPLA3	700
915609	705	720	11923	11938	TGATGGTTGTTTTGGC	98	702
959274	439	454	6013	6028	AGGAACTTGCTTAAGT	73	2133
959284	695	710	11913	11928	TTTGGCATCAATGAAG	60	1928
959294	817	832	12035	12050	TAGAGGTTCCCTGTGC	77	1929
959304	1063	1078	16183	16198	AGCAGCTCATCTCCCT	62	2134
959314	1091	1106	16211	16226	GGGCAGGATGCTGAGA	13	1930
959324	1606	1621	25369	25384	ACTCACAGACTCTTCT	72	1931
959334	1647	1662	25410	25425	AGCACCTCTGAAAGAA	65	1932
959344	1678	1693	25441	25456	CGGAGGTAGCTGCACA	86	1933
959354	1926	1941	25689	25704	ATTCTAAGAACCTCAT	54	1934
959364	2181	2196	25944	25959	AGTTAGGTGAAAAAGG	92	2135
959374	2260	2275	26023	26038	ACTGATTCACATAATA	78	2136
959384	N/A	N/A	4303	4318	AAACAAACCCTCCGTC	2	1935
959394	N/A	N/A	4734	4749	AAATGATCATGTGGCG	94	1936
959404	N/A	N/A	4768	4783	CTGACTTTTATTGTTG	72	1937
959414	N/A	N/A	4871	4886	GTGAGTGTACTTTAGG	97	1938
959424	N/A	N/A	5393	5408	AATGCTATCAGGTGCA	31	1939
959434	N/A	N/A	5579	5594	TGCACAATGACATCAT	87	1940
959444	N/A	N/A	5621	5636	CTACCTGTGTCTTTTA	90	1941
959454	N/A	N/A	5647	5662	ATATATTGGGCTCAAT	80	1942
959464	N/A	N/A	5799	5814	CTATGGGAGCCACATG	24	2137
959474	N/A	N/A	5867	5882	ACTTTTGGCAAGGCCA	23	1943
959484	N/A	N/A	7211	7226	CCGCAAACAAGGTTAA	0	1944
959664	N/A	N/A	12157	12172	CAGACAGTAACTGGTA	96	2138
959674	N/A	N/A	12200	12215	TTCCGTTAACCATCAA	97	2139
959684	N/A	N/A	12283	12298	TTTAGGTCTGGGTATA	93	1945
959694	N/A	N/A	12325	12340	CCCCCTGACTATATAA	26	1946
959704	N/A	N/A	12693	12708	TCTTGACCGTGTTTCC	98	1947
959714	N/A	N/A	12716	12731	GTTAAACTACCGAACG	35	2140
959724	N/A	N/A	12763	12778	CTATGGTAGAGTGGTA	93	2141
959734	N/A	N/A	12834	12849	GCATTGCATAGCCTTC	97	1948
959744	N/A	N/A	12886	12901	AACCAATCCTGTTAGA	55	1949
959754	N/A	N/A	12909	12924	TCTGCTTATAAAGCAC	0	1950
959764	N/A	N/A	12937	12952	GGACAATAAGAGCTGT	91	2142
959774	N/A	N/A	13373	13388	CTTTGCAGGCACCCCA	72	1951
959784	N/A	N/A	13398	13413	CTTGAATGTCACCCTT	92	1952
959794	N/A	N/A	13532	13547	AGCATCATTGGAAGAC	92	2143
959804	N/A	N/A	13715	13730	TTACCAAGACCGCTAG	57	1953
959814	N/A	N/A	13744	13759	GTGTTAGAACTAAGGC	94	2144
959824	N/A	N/A	14228	14243	ACTTTTAGTATTAAAG	0	1954
959834	N/A	N/A	14306	14321	TTTCTGAGCAGATAAA	66	2145
959844	N/A	N/A	14555	14570	AAAGTCTTAATGTGGA	87	1955
959854	N/A	N/A	14670	14685	CTTAGTGTCCCCATCC	77	1956
959864	N/A	N/A	15208	15223	TAGGAATATTGCCAGG	89	2146
959874	N/A	N/A	15767	15782	GTTAGTGTTGGTTTAT	94	1957
959884	N/A N/A	N/A N/A	17199	17214	GTTTGACTTAGTCCGT	95	1957
959884	N/A N/A	N/A N/A	17199	17214	AACTCTGTAGCTGGTT		
909894	IN/A	IN/A	1/228	17243	AACICIOIAGCIGGII	41	2147

959904	N/A	N/A	17603	17618	TCTTGATAGTGAATGT	73	2148
959914	N/A	N/A	18398	18413	AATATGTTTGGAAGTC	89	1959
959924	N/A	N/A	20292	20307	CCAATCAGAGGAAGCC	58	2149
959934	N/A	N/A	20518	20533	AGTAACCAGATTGAGT	81	1960
959944	N/A	N/A	20617	20632	CTGTCTCTAATTTTAC	75	2150
959954	N/A	N/A	20665	20680	CACAGCTTAGAAATTG	87	1961
959964	N/A	N/A	20844	20859	CCTGTATTAGCTCAAT	92	1962
959974	N/A	N/A	20940	20955	CCTCTTTGTAGCAGAC	83	1963
959984	N/A	N/A	21006	21021	GGTTATTTTAACAGCT	85	1964
959994	N/A	N/A	21412	21427	ACCTGCAATTCTAGAC	54	1965
960004	N/A	N/A	21537	21552	GACATTTCAGAGTATA	93	2151
960014	N/A	N/A	22710	22725	AAGATGTGAGTGAAAT	69	1966
960024	N/A	N/A	22770	22785	AAAGGACATGACAGAC	75	1967
960034	N/A	N/A	24613	24628	GCAAATCGGATCTTTG	32	2152

Таблица 36 Подавление mRNA PNPLA3 с помощью cEt-гэпмеров 3-10-3, нацеливающихся на SEQ ID NO: 1 и 2

Номер соеди- нения	SEQ ID NO: 1, старто- вый сайт	SEQ ID NO: 1, cton- caŭt	SEQ ID NO: 2, старто- вый сайт	SEQ ID NO: 2, cton- caŭt	Последовательность (5'-3')	% подавле- ния PNPLA3	SEQ ID NO
915609	705	720	11923	11938	TGATGGTTGTTTTGGC	98	702
959275	440	455	6014	6029	GAGGAACTTGCTTAAG	80	1968
959285	696	711	11914	11929	TTTTGGCATCAATGAA	63	1969
959295	823	838	12041	12056	AGAAGGTAGAGGTTCC	48	2153
959305	1066	1081	16186	16201	TCTAGCAGCTCATCTC	66	1970
959315	1093	1108	16213	16228	CAGGGCAGGATGCTGA	2	2154
959325	1608	1623	25371	25386	TGACTCACAGACTCTT	60	2155
959335	1649	1664	25412	25427	TTAGCACCTCTGAAAG	54	1971
959345	1804	1819	25567	25582	ATGTATTAGAGTTAAG	79	1972
959355	1927	1942	25690	25705	CATTCTAAGAACCTCA	68	1973
959365	2183	2198	25946	25961	TTAGTTAGGTGAAAAA	69	1974

959375	2261	2276	26024	26039	CACTGATTCACATAAT	73	1975
959385	N/A	N/A	4305	4320	AGAAACAAACCCTCCG	70	2156
959395	N/A	N/A	4737	4752	TGCAAATGATCATGTG	69	1976
959405	N/A	N/A	4769	4784	GCTGACTTTTATTGTT	83	1977
959415	N/A	N/A	4872	4887	AGTGAGTGTACTTTAG	94	1978
959425	N/A	N/A	5395	5410	TTAATGCTATCAGGTG	82	1979
959435	N/A	N/A	5580	5595	ATGCACAATGACATCA	84	1980
959445	N/A	N/A	5624	5639	ATTCTACCTGTGTCTT	95	1981
959455	N/A	N/A	5651	5666	TTGGATATATTGGGCT	97	1982
959465	N/A	N/A	5800	5815	ACTATGGGAGCCACAT	26	2157
959475	N/A	N/A	5868	5883	TACTTTTGGCAAGGCC	69	1983
959485	N/A	N/A	7697	7712	GCACAGAGTAGGTTAA	70	1984
959655	N/A	N/A	12146	12161	TGGTAGCTCCTGGCAA	50	1985
959665	N/A	N/A	12162	12177	TTGTGCAGACAGTAAC	87	2158
959675	N/A	N/A	12201	12216	TTTCCGTTAACCATCA	95	1986
959685	N/A	N/A	12284	12299	TTTTAGGTCTGGGTAT	81	2159
959695	N/A	N/A	12667	12682	CATCTTAGTGGCTGGG	91	1987
959705	N/A	N/A	12695	12710	GTTCTTGACCGTGTTT	97	1988
959715	N/A	N/A	12717	12732	GGTTAAACTACCGAAC	26	1989
959725	N/A	N/A	12783	12798	CATGGTCTGCAAATTT	89	1990
959735	N/A	N/A	12837	12852	ATTGCATTGCATAGCC	95	2160
959745	N/A	N/A	12887	12902	AAACCAATCCTGTTAG	54	1991
959755	N/A	N/A	12910	12925	ATCTGCTTATAAAGCA	43	1992
959765	N/A	N/A	12964	12979	CTTTGCAGCCTATCCC	95	2161
959775	N/A	N/A	13374	13389	ACTTTGCAGGCACCCC	86	1993
959785	N/A	N/A	13399	13414	GCTTGAATGTCACCCT	95	1994
959795	N/A	N/A	13534	13549	TCAGCATCATTGGAAG	60	2162
959805	N/A	N/A	13716	13731	TTTACCAAGACCGCTA	82	1995
959815	N/A	N/A	13745	13760	AGTGTTAGAACTAAGG	93	2163
959825	N/A	N/A	14230	14245	CAACTTTTAGTATTAA	9	1996
959835	N/A	N/A	14417	14432	TCGACACAGCATCACC	59	1997
959845	N/A	N/A	14556	14571	CAAAGTCTTAATGTGG	84	2164
959855	N/A	N/A	14671	14686	TCTTAGTGTCCCCATC	78	1998
959865	N/A	N/A	15209	15224	TTAGGAATATTGCCAG	91	1999
959875	N/A	N/A	15769	15784	GGGTTAGTGTTTGGTTT	93	2000
959885	N/A	N/A	17200	17215	TGTTTGACTTAGTCCG	96	2165
959895	N/A	N/A	17288	17303	TAGGGCACCTCAAGAA	0	2001
959905	N/A	N/A	17734	17749	AATCTGGTCATATGGT	42	2166
959915	N/A	N/A	18400	18415	CAAATATGTTTGGAAG	55	2002
959925	N/A	N/A	20293	20308	CCCAATCAGAGGAAGC	57	2003
959935	N/A	N/A	20599	20614	TCATCATTATTACCTG	93	2004
959945	N/A	N/A	20651	20666	TGCAGTGCCCTGGCCT	40	2167
959955	N/A	N/A	20803	20818	TTCAGACCAGGGTAAT	93	2005
959965	N/A	N/A	20845	20860	GCCTGTATTAGCTCAA	88	2006
959975	N/A	N/A	20941	20956	GCCTCTTTGTAGCAGA	0	2007
959985	N/A	N/A	21007	21022	AGGTTATTTTAACAGC	94	2168
959995	N/A	N/A	21434	21449	TACTGAGAGGAAATGA	65	2008
960005	N/A	N/A	21538	21553	TGACATTTCAGAGTAT	87	2169
960015	N/A	N/A	22714	22729	TGTAAAGATGTGAGTG	75	2009
960025	N/A	N/A	22772	22787	TCAAAGGACATGACAG	78	2010
960037	N/A	N/A	22590	22605	GAGCAACGAGGAAGGA	64	2011

Пример 2. Дозозависимое антисмысловое подавление PNPLA3 человека в клетках A431.

Гэпмеры из примера 1, демонстрирующие in vitro значительное подавление mRNA PNPLA3 отбирали и тестировали в различных дозах в клетках A431. Антисмысловые олигонуклеотиды тестировали в серии экспериментов, в которых были сходные условия культивирования. Результаты каждого эксперимента представлены в показанных ниже отдельных таблицах. Клетки высевали при плотности 10000 кле-

ток на лунку и трансфицировали путем свободного поглощения с помощью различных концентраций антисмыслового олигонуклеотида, как указано в приведенных ниже таблицах. После периода обработки, составлявшего примерно 16 ч, РНК выделяли из клеток и измеряли уровни mRNA PNPLA3 с помощью количественной ПЦР в реальном времени. Для измерения уровней mRNA использовали набор праймеров и зондов для человека RTS36070. Уровни mRNA PNPLA3 корректировали в соответствии с общим содержанием РНК, измеренным с помощью RIBOGREEN®. Результаты представлены в виде процента подавления PNPLA3 относительно необработанных контрольных клеток.

Также представлена концентрация полу максимального ингибирования (IC_{50}) для каждого олигонуклеотида. Уровни mRNA PNPLA3 значимо снижались дозозависимым образом в клетках, обработанных антисмысловыми олигонуклеотидами.

Таблица 37 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

в клетках А431							
Номер		% подавл	ения PNPLA	3	IC50		
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ)		
912712	27	67	76	74	0,2		
912732	54	78	88	87	< 0,1		
912733	45	74	85	88	< 0,1		
912734	33	64	80	83	0,1		
912756	46	72	89	92	< 0,1		
912757	31	62	78	86	0,2		
912758	38	70	85	90	0,1		
912759	66	92	97	98	< 0,1		
912772	46	63	79	88	0,1		
912795	40	64	83	84	0,1		
912812	43	81	88	88	< 0,1		
912822	81	83	92	86	< 0,1		
912823	67	80	91	86	< 0,1		
912825	58	80	86	88	< 0,1		
912834	37	75	81	84	0,1		
912841	17	62	79	69	0,3		
912847	70	83	90	91	< 0,1		
912848	80	89	90	90	< 0,1		
912855	48	62	77	80	0,1		

Таблица 38 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

Номер		IC ₅₀			
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ)
912759	68	94	94	98	< 0,1
912813	57	84	90	87	< 0,1
912856	60	81	91	88	< 0,1
912859	48	79	81	72	< 0,1
912864	60	88	90	90	< 0,1
912870	67	81	91	94	< 0,1
912871	21	67	84	89	0,2
912872	18	73	90	92	0,2
912876	43	70	87	92	0,1
912933	68	89	90	90	< 0,1
912940	86	91	95	96	< 0,1
912941	87	94	96	96	< 0,1
912952	68	85	90	91	< 0,1
912953	80	90	95	93	< 0,1
912964	59	78	88	91	< 0,1
912973	53	70	87	91	< 0,1
912980	54	77	84	88	< 0,1
912985	23	61	81	87	0,2
912988	65	83	86	89	< 0,1

Таблица 39 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

Номер		% подавления PNPLA3					
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ		
912759	72	95	97	99	< 0,1		
912874	78	90	96	97	< 0,1		
912875	64	83	92	94	< 0,1		
912886	49	78	85	92	< 0,1		
912931	68	88	94	95	< 0,1		
912934	57	83	90	92	< 0,1		
912936	50	78	89	89	< 0,1		
912938	57	73	85	87	< 0,1		
912943	64	84	90	93	< 0,1		
912954	80	92	93	94	< 0,1		
912970	44	73	86	90	< 0,1		
912986	56	78	91	92	< 0,1		
912987	79	90	92	88	< 0,1		
912992	21	59	74	81	0,3		
915603	50	88	96	98	< 0,1		
915623	81	96	98	98	< 0,1		
915643	67	89	94	96	< 0,1		
916602	79	92	95	96	< 0,1		
916642	44	83	91	93	< 0,1		

Таблица 40 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

Номер		% подавл	ения PNPLA	3	IC ₅₀
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ)
912759	73	94	98	99	< 0,1
915484	67	87	93	95	< 0,1
915543	34	69	87	90	0,1
915604	54	78	91	95	< 0,1
915763	63	80	87	87	< 0,1
915904	50	83	92	94	< 0,1
915923	63	74	82	87	< 0,1
916183	33	78	89	91	0,1
916303	58	73	84	91	< 0,1
916343	15	72	76	87	0,2
916563	46	74	90	95	< 0,1
916582	48	74	89	91	< 0,1
916623	64	81	91	94	< 0,1
916702	45	70	78	79	< 0,1
916761	46	75	85	88	< 0,1
916781	55	79	86	87	< 0,1
916782	62	87	91	93	< 0,1
916802	66	88	94	91	< 0,1
916822	29	72	83	87	0,1

Таблица 41 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках А431

Номер	% подавления PNPLA3						
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ		
912759	72	95	98	99	< 0,1		
915525	51	76	88	84	< 0,1		
915546	39	79	90	94	0,1		
915605	59	84	96	96	< 0,1		
915606	74	94	99	98	< 0,1		
915625	72	82	91	95	< 0,1		
915944	36	71	75	83	0,1		
916065	36	62	78	79	0,1		
916144	71	86	90	92	< 0,1		
916163	36	67	81	74	0,1		
916164	82	88	89	92	< 0,1		
916184	60	79	87	89	< 0,1		
916304	46	65	80	84	0,1		
916324	57	77	87	92	< 0,1		
916344	41	70	83	88	0,1		
916564	38	66	88	94	0,1		
916604	67	87	95	96	< 0,1		
916624	43	59	79	87	0,1		
916803	67	84	93	92	< 0,1		

Таблица 42

Номер		IC ₅₀			
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ)
912759	70	94	98	99	< 0,1
915486	35	64	82	90	0,1
915487	62	89	94	95	< 0,1
915626	67	83	92	94	< 0,1
915786	65	84	88	88	< 0,1
916145	53	66	85	87	< 0,1
916146	62	77	86	86	< 0,1
916165	71	86	89	88	< 0,1
916166	71	83	87	88	< 0,1
916305	57	86	90	92	< 0,1
916306	86	96	98	98	< 0,1
916325	59	78	83	86	< 0,1
916345	21	47	67	73	0,4
916545	63	88	95	94	< 0,1
916546	66	85	92	95	< 0,1
916625	47	71	84	92	< 0,1
916706	22	65	80	85	0,2
916765	67	85	92	93	< 0,1
916845	38	71	80	87	0,1

Таблица 43

Многодозовый анализ сЕт-гэпмеров 3-10-3 в клетках А431

Номер	% подавления PNPLA3				
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ)
912759	97	99	100	100	< 0,1
915608	66	91	97	97	< 0,1

915609	71	97	99	99	< 0,1
915627	0	26	53	62	1,3
915768	39	69	86	91	0,1
915908	49	70	80	85	< 0,1
915987	47	60	75	78	0,1
916008	45	69	84	83	< 0,1
916187	71	82	88	92	< 0,1
916247	34	72	83	84	0,1
916287	31	70	90	91	0,1
916547	79	93	97	97	< 0,1
916566	8	45	73	81	0,5
916586	47	67	89	91	< 0,1
916587	48	81	90	94	< 0,1
916606	18	64	87	90	0,2
916607	72	94	94	95	< 0,1
916627	18	51	82	79	0,3
916805	18	65	78	81	0,2

Таблица 44

Номер		% подавл	ения PNPLA3	3	IC ₅₀ (мкМ)
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	
912759	64	92	97	99	< 0,1
915610	74	94	98	99	< 0,1
915789	35	72	82	85	0,1
915909	52	69	82	86	< 0,1
915929	13	32	60	59	1,0
915969	39	54	74	74	0,2
915989	46	67	81	86	0,1
916069	24	59	75	56	0,3
916148	42	71	85	80	< 0,1
916168	28	54	74	68	0,3
916188	22	42	72	70	0,4
916309	30	77	91	96	0,1
916348	41	57	65	73	0,1
916549	64	85	94	96	< 0,1
916568	54	66	81	87	< 0,1
916569	60	86	92	95	< 0,1
916728	22	50	68	73	0,4
916788	60	89	94	96	< 0,1
916848	49	75	89	95	< 0,1

Таблица 45 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

Номер	% подавления PNPLA3						
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ		
912759	81	93	98	100	< 0,1		
915390	9	40	67	77	0,6		
915611	46	80	93	88	< 0,1		
915630	52	69	81	82	< 0,1		
915910	44	64	79	80	0,1		
915931	83	88	89	86	< 0,1		
916149	73	87	89	83	< 0,1		
916150	51	68	77	84	< 0,1		
916189	60	73	77	79	< 0,1		
916310	45	77	88	95	< 0,1		
916330	48	67	84	86	< 0,1		
916550	62	85	94	97	< 0,1		
916570	89	96	98	98	< 0,1		
916629	26	53	73	86	0,3		
916630	52	68	87	91	< 0,1		
916670	43	77	78	85	< 0,1		
916730	61	74	82	86	< 0,1		
916768	35	57	67	72	0,2		
916789	79	92	96	96	< 0,1		

Таблица 46

Номер	% подавления PNPLA3					
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ)	
912759	76	94	96	99	< 0,1	
915532	31	66	82	92	0,1	
915612	54	77	86	90	< 0,1	
915732	42	63	80	84	0,1	
915932	45	71	88	89	< 0,1	
915951	26	58	71	74	0,3	
915991	67	84	85	85	< 0,1	
915992	54	78	86	87	< 0,1	
916112	35	67	76	78	0,1	
916151	51	79	87	90	< 0,1	
916311	36	70	81	87	0,1	
916331	56	85	93	95	< 0,1	
916332	82	91	94	96	< 0,1	
916390	30	41	68	64	0,5	
916552	79	93	96	97	< 0,1	
916571	53	78	90	94	< 0,1	
916631	48	77	86	90	< 0,1	
916651	81	89	94	95	< 0,1	
916711	37	66	85	91	0,1	

Таблица 47 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

Номер		IC ₅₀			
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ)
912759	58	90	98	99	< 0,1
915474	51	79	90	93	< 0,1
915493	48	58	83	80	0,1
915494	46	73	86	90	< 0,1
915674	49	72	89	93	< 0,1
915933	40	63	75	79	0,1
916153	68	86	89	91	< 0,1
916172	85	89	87	87	< 0,1
916173	81	90	91	88	< 0,1
916292	64	83	92	92	< 0,1
916312	60	84	91	92	< 0,1
916333	75	92	96	96	< 0,1
916572	29	62	79	88	0,2
916592	52	74	89	90	< 0,1
916593	25	67	83	93	0,2
916613	46	75	89	92	< 0,1
916652	65	83	91	88	< 0,1
916672	73	89	93	90	< 0,1
916772	50	61	83	89	< 0,1

Таблица 48 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

Номер		IC ₅₀			
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ)
912759	50	89	96	99	< 0,1
915534	0	33	66	57	1,1
915535	51	81	92	96	< 0,1
915634	18	67	79	84	0,2
915635	44	72	86	91	0,1
915675	36	68	82	90	0,1
915735	45	68	73	84	0,1
915936	36	67	78	83	0,1
915995	78	87	90	89	< 0,1
915996	83	91	93	92	< 0,1
916174	80	84	86	81	< 0,1
916175	55	82	86	89	< 0,1
916334	50	82	92	94	< 0,1
916335	52	76	89	93	< 0,1
916575	62	88	93	93	< 0,1
916753	49	69	76	74	< 0,1
916774	49	72	86	91	< 0,1
916794	26	64	85	85	0,2
916873	16	49	72	82	0,4
		·		·	

Таблица 49 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

Номер		IC ₅₀			
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ)
912759	57	90	97	99	< 0,1
915477	47	65	88	93	0,1
915478	47	78	90	95	< 0,1
915497	63	68	79	86	< 0,1
915637	67	91	97	98	< 0,1
916037	15	47	70	61	0,6
916236	80	87	90	88	< 0,1
916336	52	67	81	87	< 0,1
916576	50	76	89	93	< 0,1
916596	55	82	93	94	< 0,1
916636	42	71	87	90	0,1
916637	56	85	90	93	< 0,1
916715	27	38	68	68	0,5
916716	35	77	89	93	0,1
916796	14	62	84	89	0,3
916814	22	44	70	79	0,4
916815	56	79	87	89	< 0,1
916816	33	72	83	93	0,1
916874	5	34	61	70	0,8

Таблица 50

Номер	% подавления PNPLA3					
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ)	
912759	56	91	97	100	< 0,1	
915479	38	70	89	94	0,1	
915618	42	63	75	85	0,1	
915619	65	87	96	97	< 0,1	
915638	31	64	80	82	0,2	
915639	33	78	88	93	0,1	
915778	41	50	78	87	0,2	
916058	26	34	73	81	0,4	
916177	38	55	83	82	0,1	
916238	84	91	93	93	< 0,1	
916298	79	87	92	94	< 0,1	
916318	59	71	91	94	< 0,1	
916338	71	91	94	92	< 0,1	
916558	73	89	94	94	< 0,1	
916577	41	66	78	82	0,1	
916578	69	85	91	93	< 0,1	
916638	46	84	90	92	< 0,1	
916757	33	60	82	88	0,2	
916817	31	67	82	87	0,1	

Таблица 51 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

Номер	JBBITI GITGSTFI	IC ₅₀			
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ)
841947	50	78	89	92	< 0,1
912759	75	50	85	99	< 0,1
912986	54	78	90	95	< 0,1
915480	61	87	94	97	< 0,1
915519	47	77	86	85	< 0,1
915620	46	75	88	91	< 0,1
915780	24	76	92	94	0,1
915920	23	65	79	82	0,2
916020	45	80	85	81	< 0,1
916299	59	87	92	93	< 0,1
916339	88	95	97	97	< 0,1
916340	83	96	97	98	< 0,1
916559	41	68	83	89	0,1
916579	71	86	96	96	< 0,1
916580	59	90	95	96	< 0,1
916618	10	47	70	78	0,5
916639	38	58	80	86	0,1
916778	68	87	92	94	< 0,1
916818	60	77	90	91	< 0,1
	<u> </u>				-

Таблица 52 Многодозовый анализ cEt-гэпмеров 3-10-3 в клетках A431

Номер		IC ₅₀			
соединения	62,5 нМ	250 нМ	1000 нМ	4000 нМ	(мкМ)
912759	60	0	85	99	0,3
915541	48	71	89	91	< 0,1
915542	50	72	86	93	< 0,1
915601	8	53	84	84	0,3
915602	1	56	77	91	0,4
915621	21	54	75	80	0,3
915622	0	44	73	84	0,5
915922	27	64	79	85	0,2
916042	6	57	89	88	0,3
916140	43	82	90	89	< 0,1
916141	72	88	93	91	< 0,1
916180	33	62	69	83	0,2
916181	53	80	89	92	< 0,1
916341	0	78	94	94	0,3
916560	72	91	95	94	< 0,1
916581	38	76	91	91	0,1
916601	44	80	88	90	< 0,1
916701	61	83	91	93	< 0,1
916780	75	91	93	94	< 0,1

Таблица 53 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

Номер		% подавления PNPLA3					
соединения	15,6 нМ	62,5 нМ	250 нМ	1000 нМ	(мкМ)		
915609	52	86	96	99	< 0,01		
959430	42	76	90	95	< 0,01		
959440	39	73	92	98	0,02		
959470	46	73	89	94	< 0,01		
959670	52	90	96	98	< 0,01		
959680	50	75	91	96	< 0,01		
959730	83	96	98	98	< 0,01		
959740	50	70	90	96	< 0,01		
959820	40	69	85	92	0,02		
959830	46	69	93	97	0,02		
959880	34	62	85	93	0,03		
960010	48	78	92	95	< 0,01		

Таблица 54 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

Номер	% подавления PNPLA3					
соединения	15,6 нМ	62,5 нМ	250 нМ	1000 нМ	(мкМ)	
915609	53	87	98	99	< 0,01	
959271	55	74	91	91	< 0,01	
959360	7	43	79	85	0,1	
959361	60	87	93	94	< 0,01	
959411	56	76	91	94	< 0,01	
959441	50	81	93	97	< 0,01	
959460	0	29	75	90	0,2	
959701	62	91	97	98	< 0,01	
959721	80	94	97	97	< 0,01	
959731	25	64	82	91	0,05	
959741	41	65	83	91	0,02	
959750	0	26	65	87	0,2	
959761	28	60	84	91	0,05	
959781	39	58	75	87	0,04	
959911	20	54	78	90	0,1	
959921	37	61	83	91	0,03	
959931	48	72	89	92	< 0,01	
959960	11	51	79	90	0,1	
959961	38	64	85	92	0,03	

Таблица 55 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

Номер		% подавл	ения PNPLA	3	IC ₅₀
соединения	15,6 нМ	62,5 нМ	250 нМ	1000 нМ	(мкМ)

915609	11	71	93	98	0,1
959412	52	77	90	94	< 0,01
959413	34	82	95	97	0,02
959422	15	50	80	87	0,1
959432	33	60	86	95	0,04
959662	0	53	84	92	0,1
959672	54	85	95	97	< 0,01
959673	18	62	88	95	0,1
959682	46	77	90	91	< 0,01
959702	39	71	91	96	0,02
959703	81	96	99	99	< 0,01
959712	4	30	75	92	0,1
959713	0	53	86	96	0,1
959722	33	80	90	94	0,02
959733	31	68	92	96	0,03
959782	35	63	86	94	0,03
959872	29	64	77	89	0,04
959912	25	69	89	92	0,04
959982	21	61	83	91	0,1

Таблица 56 Многодозовый анализ cEt-гэпмеров 3-10-3 в клетках A431

Номер	Номер % подавления PNPLA3				
соединения	15,6 нМ	62,5 нМ	250 нМ	1000 нМ	(мкМ)
915609	2	73	93	98	0,1
959363	49	82	91	91	< 0,01
959393	38	71	87	95	0,02
959394	27	73	91	97	0,03
959414	69	94	98	99	< 0,01
959664	51	77	95	98	< 0,01
959674	43	74	95	98	0,02
959683	14	71	90	96	0,05
959704	57	92	98	99	< 0,01
959724	0	68	90	95	0,1
959734	71	93	98	98	< 0,01
959814	24	76	90	95	0,03
959873	38	53	83	90	0,04
959874	51	82	95	97	< 0,01
959884	44	77	94	97	< 0,01
959913	18	50	85	92	0,1
959953	6	51	85	92	0,1
959983	22	54	81	92	0,1
960004	10	71	92	96	0,1

Таблица 57 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

Номер	% подавления PNPLA3			IC ₅₀	
соединения	15,6 нМ	62,5 нМ	250 нМ	1000 нМ	(мкМ)
915609	12	69	93	98	0,1
959364	32	72	89	91	0,03
959415	21	70	91	96	0,04
959444	6	47	82	91	0,1
959445	32	70	92	97	0,03
959455	61	87	95	97	< 0,01
959675	20	56	80	94	0,1
959684	8	47	83	86	0,1
959705	77	95	98	99	< 0,01
959735	12	67	90	95	0,1
959764	4	32	80	92	0,1
959765	1	59	88	93	0,1
959784	3	35	75	90	0,1
959785	27	72	92	96	0,03
959794	0	0	53	83	0,3
959864	26	61	84	91	0,05
959885	49	81	95	96	< 0,01
959914	7	43	76	89	0,1
959964	17	55	83	91	0,1

Таблица 58 Многодозовый анализ cEt-гэпмеров 3-10-3 в клетках A431

Номер	% подавления PNPLA3			IC ₅₀	
соединения	15,6 нМ	62,5 нМ	250 нМ	1000 нМ	(мкМ)
915609	0	73	95	97	0,1
959456	66	90	97	98	< 0,01
959666	29	60	89	97	0,04
959676	15	44	81	93	0,1
959686	71	92	97	97	< 0,01
959695	40	75	91	93	0,02
959696	21	81	90	92	0,03
959706	81	95	98	98	< 0,01
959725	8	55	76	84	0,1
959726	0	59	88	91	0,1
959736	46	84	94	98	< 0,01
959766	22	57	83	94	0,1
959776	1	53	87	93	0,1
959815	31	67	89	91	0,03
959865	6	49	84	91	0,1
959875	34	74	91	92	0,02
959935	22	55	84	94	0,1
959955	0	55	83	89	0,1
959985	29	71	88	93	0,03

Таблица 59 Многодозовый анализ сЕt-гэпмеров 3-10-3 в клетках A431

Номер	% подавления PNPLA3			IC ₅₀	
соединения	15,6 нМ	62,5 нМ	250 нМ	1000 нМ	(мкМ)
915609	37	80	96	99	0,02
959356	40	71	87	88	0,02
959417	25	58	83	92	0,1
959437	65	88	94	95	< 0,01
959667	37	69	90	95	0,02
959677	29	56	82	92	0,05
959687	51	79	93	97	< 0,01
959697	51	75	93	95	< 0,01
959707	81	94	98	98	< 0,01
959727	71	92	96	96	< 0,01
959737	45	75	89	94	< 0,01
959767	47	76	93	96	< 0,01
959797	32	59	87	94	0,04
959856	13	35	67	80	0,1
959876	38	75	89	90	0,02
959877	40	81	89	94	< 0,01
959956	25	25	66	85	0,1
960006	13	40	68	83	0,1
960007	24	59	88	91	0,05

Пример 3. Переносимость модифицированных олигонуклеотидов, нацеливающихся на PNPLA3 человека, у мышей линии BALB/c.

Мыши линии BALB/с представляют собой многоцелевую модель на мышах, часто применяемую для тестирования безопасности и эффективности. Мышей обрабатывали антисмысловыми олигонуклеотидами, отобранными после проведения исследований, описанных выше, и оценивали в отношении изменений уровней различных биохимических маркеров плазмы крови.

Олигонуклеотиды Ionis, отобранные после проведения вышеприведенных исследований, конъюгировали с концевой кэп-структурой 3'-THA- C_6 -GalNAc₃-(3R,5S)-5-(гидроксиметил)пирролидин-3-олфосфатом (в дальнейшем называемой 3'-THA).

Обработка.

Группам самцов мышей в возрасте от 6 до 7 недель однократно вводили путем инъекции подкожно 200 мг/кг модифицированных олигонуклеотидов. Одной группе самцов мышей BALB/с вводили путем инъекции PBS. Мышей подвергали эвтаназии через 72-96 ч после однократной дозы и плазму крови собирали для дальнейшего анализа.

Для оценки эффекта модифицированных олигонуклеотидов в отношении функции печени, измеряли уровни трансаминаз в плазме крови с помощью автоматического биохимического анализатора (Beckman Coulter AU480, Брея, Калифорния). Из дальнейших исследований исключали модифицированные олигонуклеотиды, которые обуславливали изменения уровней трансаминаз, выходящие за пределы ожидаемого диапазона для антисмысловых олигонуклеотидов. Олигонуклеотиды, которые считались переносимыми в данном исследовании и были отобраны для дальнейшей оценки, представлены в приведенной ниже таблице. 'Исходный олигонуклеотид' указывает на олигонуклеотид Ionis, который был описан в вышеприведенных исследованиях и который конъюгировали с 3'-ТНА и тестировали в данном исследовании.

Таблица 60 Антисмысловые олигонуклеотиды, которые использовали в исследовании на мышах ВАLВ/с

Пр присходного

ID	ID ID исходного	
соединения	олигонуклеотида	
975746	916339	
975747	912941	
975748	916306	
975755	916332	
975760	912848	
975764	916298	
975766	916552	
975767	916789	
975768	916602	
975770	912874	
975771	916333	
975772	916780	
975775	916672	
975777	916558	
975780	916607	
975783	916338	
975788	912847	
975790	916778	
975792	912870	
975794	916802	
975797	916637	
975799	912732	
975800	912733	
975803	912813	
975804	912823	
975805	912834	
975806	912855	
975807	912856	
975808	912864	
975809	912871	
975810	912872	
975811	912875	
975813	912931	
975814	912934	
975815	912936	
975816	912938	
975817	912943	
975820	912988	

975822	915486
975829	915619
975836	915780
975840	915989
975844	916151
975849	916292
975850	916299
975851	916303
975852	916309
975853	916310
975854	916312
975855	916318
975856	916324
975857	916331
975858	916334
975859	916335
975860	916336
975861	916549
975862	916550
975864	916563
975865	916564
975866	916568
975868	916571
975869	916575
975870	916580
975871	916581
975873	916586
975875	916601
975878	916624
975879	916625
975880	916636
975881	916638
975883	916670
975886	916711
975887	916716
975888	916774
975889	916781
975890	916782
975891	916788
975893	916815
975894	916816
975895	916817
975896	916818
975897	916822
975898	916845
994288	959455
994289	960010
994290	959361
994291	959271
о полавлен	ия PNPLA3 в м

Пример 4. Эффект антисмыслового подавления PNPLA3 в модели на трансгенных мышах Применяли модель на мышах, трансгенных по PNPLA3, созданную Калифорнийским университетом, Ирвайн, на основе мышей C57BL/6 дикого типа. Модель на мышах предусматривала геномную конструкцию, содержащую фосмиду с полным геном PNPLA3, любезно предоставленную Вашингтонским

университетом. В данной модели оценивали эффективность олигонуклеотидов Ionis.

Обработка

Трансгенных мышей выдерживали в условиях цикла чередования 12 ч света и темноты и кормили стандартным кормом для мышей Purina без ограничений. Животных акклиматизировали в течение по меньшей мере 7 дней в исследовательской лаборатории перед началом эксперимента. Антисмысловые олигонуклеотиды (ASO) получали в забуференном солевом растворе (PBS) и стерилизовали путем фильтрации через фильтр с диаметром пор 0,2 мкм. Олигонуклеотиды растворяли в 0,9% PBS для инъекций.

Мышей, трансгенных по hPNPLA3, разделяли на группы по 2 мыши в каждой. Группы получали подкожные инъекции олигонуклеотида Ionis в дозе 2,5 мг/кг в дни 1 и 8. Одна группа из 4 мышей получала подкожные инъекции PBS в дни 1 и 8. Группа, которой вводили путем инъекции физиологический раствор, служила в качестве контрольной группы, с которой сравнивали группы, обработанные олигонуклеотидами.

Анализ РНК.

В день 10 РНК экстрагировали из печени для ПЦР-анализа в реальном времени с целью измерения экспрессии mRNA PNPLA3. Оба набора праймеров и зондов RTS36070 и RTS36075 применяли для измерения уровней mRNA PNPLA3. Результаты представлены в виде процентного изменения уровня mRNA по сравнению с PBS-контролем, нормализованного с помощью RIBOGREEN®. Как представлено в приведенной ниже таблице, обработка с помощью антисмысловых олигонуклеотидов Ionis приводила к значительному снижению уровня mRNA PNPLA3 по сравнению с PBS-контролем. '0' указывает на то, что олигонуклеотиды не подавляли экспрессию mRNA.

Таблица 61 Процент подавления mRNA PNPLA3 в печени трансгенных мышей по сравнению с PBS-контролем

ID	Подавление (%), измеренное	Подавление (%), измеренное
соединения	с помощью RTS36070	с помощью RTS36075
975746	99	99
975747	99	99
975748	98	98
975755	99	99
975760	96	97
975764	75	83
975766	99	99
975767	98	98
975768	98	98
975770	97	97

975771	98	99
975772	96	96
975775	90	91
975777	85	89
975780	44	63
975783	87	90
975788	0	26
975790	0	0
975792	9	34
975794	44	50
975797	0	0
975799	0	0
975800	0	5
975803	68	68
975804	11	38
975805	0	0
975806	0	0
975807	0	0
975808	47	58
975809	0	19
975810	12	22
975811	19	32
975813	36	39
975814	48	54
975815	78	77
975816	56	56
975817	84	86
975820	35	45
975822	0	0
975829	98	98
975836	85	91

975840	19	44
975844	21	31
975849	88	89
975850	41	48
975851	5	18
975852	24	41
975853	0	0
975854	0	0
975855	0	0
975856	45	31
975857	73	67
975858	58	40
975860	92	92
975861	66	49
975862	46	36
975864	16	21
975865	0	0
975866	40	41
975868	56	48
975869	30	19
975870	0	14
975871	0	0
975875	75	73
975878	18	12
975879	7	0
975880	0	0
975881	54	54
975883	77	80
975886	18	28
975887	49	57
975888	10	9
975889	90	91
975890	96	98
975891	97	98
975893	95	95
975894	85	87
975895	89	89
975896	91	89
975898	94	95
975897	96	97
975873	99	99
994288	99	99
994289	98	99
1 00.4000	98	99
994290		
994290 994291 975859	95 95	95 96

Пример 5. Переносимость модифицированных олигонуклеотидов, нацеливающихся на PNPLA3 человека, у мышей CD1.

Мыши CD1® (Charles River, Массачусетс) представляют собой многоцелевую мышиную модель, часто применяемую для тестирования безопасности и эффективности. Мышей обрабатывали антисмысловыми олигонуклеотидами Ionis, отобранными после проведения исследований, описанных выше, и оценивали в отношении изменений уровней различных биохимических маркеров плазмы крови.

Олигонуклеотиды Ionis, отобранные после проведения вышеприведенных исследований, конъюгировали с концевой кэп-структурой 5'-трисгексиламино-(THA)- C_6 GalNAC₃ (в дальнейшем называемой 5'-THA). Тестируемые олигонуклеотиды Ionis представлены в приведенной ниже таблице. '№ ION неконъюгированного исходного соединения' относится к олигонуклеотиду Ionis, описанному в вышеприведенных исследованиях in vitro, который имеет такую же последовательность. "'№ ION аналога, конъюгированного с 3'-THA" относится к олигонуклеотиду, конъюгированному с 3'-THA, который имеет такую же последовательность и оценивался выше в исследованиях на мышах.

Таблица 62 5'-ТНА-олигонуклеотиды, тестируемые в исследовании переносимости у мышей CD1

ID	№ ION	№ ION аналога,		SEQ
	неконъюгированного	конъюгированного	Последовательность	ID
соединения	исходного соединения	c 3'-THA		NO
975591	916339	975746	GGATATATTGGGCTCA	1512
975592	912941	975747	TTGCATTGCATAGCCT	182
975593	916306	975748	GTGTACTTTAGGCTCC	598
975600	916332	975755	CACAATGACATCATGG	1020
975605	912848	975760	CGTTTTTAGTAGTCAA	141
975611	916552	975766	CCTTTTATTTCCGTTA	1024
975612	916789	975767	GTAATATTCAGACCAG	899
975613	916602	975768	CTAGTAAATGCTTGTC	330
975615	912874	975770	ATACTTTTGGCAAGGC	217
975616	916333	975771	CTTTATTCAATGTGGC	1089
975617	916780	975772	AGAAATTGCAGTGCCC	1665
975674	915619	975829	GACTTTAGGGCAGATG	1400
975704	916335	975859	TAATTCTACCTGTGTC	1227
975718	916586	975873	AACTTTGCAGCCTATC	605
975735	916782	975890	CTTAGAAATTGCAGTG	408
975736	916788	975891	TAATATTCAGACCAGG	830
975738	916815	975893	CAATTCTAGACATGGC	1313
975742	916822	975897	TATGACATTTCAGAGT	410
975743	916845	975898	GTAAAGATGTGAGTGA	618
994282	959455	994288	TTGGATATATTGGGCT	1982
994283	960010	994289	AGACATATGACATTTC	1745
994284	959361	994290	TTTTTAGTAGTCAAGG	1757
994285	959271	994291	GTTGAAGGATGGATGG	1748

Обработка.

Группам по четыре мыши CD1 в каждой в течение 6 недель еженедельно вводили путем подкожной инъекции олигонуклеотиды Ionis в количестве 15 мг/кг, предусматривая при этом одну нагрузочную дозу в день 4 (в общей сложности 8 доз). Одной группе самцов мышей CD1 в течение 6 недель вводили путем инъекции подкожно PBS. Мышей подвергали эвтаназии через 48 ч после последней дозы и собирали органы и плазму крови для дополнительного анализа.

Биохимические маркеры плазмы крови.

Для оценки эффекта олигонуклеотидов Ionis в отношении функции печени и почек измеряли уровни трансаминаз (ALT и AST), альбумина, общего билирубина и креатинина в плазме крови в неделю 3 с помощью автоматического биохимического анализатора (Beckman Coulter AU480, Брея, Калифорния). Результаты представлены в приведенной ниже таблице. Из дальнейших исследований исключали олигонуклеотиды Ionis, которые обуславливали изменения уровней любого из маркеров функции печени или почек, выходящие за пределы ожидаемого диапазона для антисмысловых олигонуклеотидов.

Таблица 63 Уровни различных биохимических маркеров плазмы крови у мышей CD1 в неделю 3

	Альбумин (г/дл)	ALT (МЕ/л)	AST (ME/л)	Общий билирубин (мг/дл)	Креатинин (мг/дл)
PBS	2,9	31	64	0,4	0,1
975611	2,7	640	385	0,3	0,1
994282	2,4	76	83	0,3	0,1
975592	3,0	786	942	0,5	0,1
975600	2,7	334	431	0,3	0,1
975591	2,6	62	115	0,4	0,1
975718	2,4	1717	2183	1,2	0,1
994284	2,7	41	97	0,3	0,1
994283	2,8	216	154	0,3	0,1
975616	3,0	69	137	0,3	0,1
975612	2,7	47	218	0,4	0,1
975674	2,9	134	114	0,4	0,1
975613	2,8	60	277	0,3	0,1
975593	2,7	429	405	0,4	0,1
975736	2,9	46	63	0,2	0,2
975735	2,5	46	79	0,2	0,1
975742	2,6	152	96	0,2	0,1
975615	2,9	207	189	0,4	0,1
975617	2,9	65	70	0,3	0,1
975605	2,9	67	92	0,3	0,1
975704	2,4	33	61	0,2	0,1
975738	2,6	43	67	0,2	0,1
975743	2,9	119	126	0,4	0,1
994285	2,8	400	353	0,2	0,1

Гематологические анализы.

Кровь, полученную от выбранных групп мышей в неделю 6, отправляли в IDEXX BioResearch для измерения числа тромбоцитов. Результаты представлены в приведенных ниже таблицах. Из дальнейших исследований исключали олигонуклеотиды Ionis, которые обусловливали изменения числа тромбоцитов, выходящие за пределы ожидаемого диапазона для антисмысловых олигонуклеотидов.

Таблица 64 Число тромбоцитов у мышей CD1

	Тромбоциты (х10 ³ /мкл)
PBS	1067
975605	1202
975612	1200
975613	1417
975616	1178
975617	922
975674	618
975591	941
975743	1127
994282	1384
994284	1255
975704	939

975735	1039
975736	1116
975738	1126
975742	808

Пример 6. Переносимость модифицированных олигонуклеотидов, нацеливающихся на PNPLA3 человека, у крыс линии Спрег-Доули.

Крысы линии Спрег-Доули представляют собой многоцелевую модель, используемую для оценивания безопасности и эффективности. Крыс обрабатывали антисмысловыми олигонуклеотидами Ionis из исследований, описанных в примерах выше, и оценивали в отношении изменений уровней различных биохимических маркеров плазмы крови.

Обработка.

Крыс линии Спрег-Доули выдерживали в условиях цикла чередования 12 ч света и темноты и кормили стандартным кормом для крыс Purina, рационом 5001, без ограничений. Группам по 4 крысы линии Спрег-Доули в каждой в течение 6 недель еженедельно вводили путем подкожной инъекции олигонуклеотиды Ionis в количестве 15 мг/кг, предусматривая при этом одну нагрузочную дозу в день 4 (в общей сложности 8 доз). Через 48 ч после последней дозы крыс подвергали эвтаназии, а органы и плазму крови собирали для дальнейшего анализа.

Биохимические маркеры плазмы крови.

Для оценки эффекта олигонуклеотидов Ionis в отношении функции печени измеряли уровни трансаминаз в плазме крови с помощью автоматического биохимического анализатора (Beckman Coulter AU480, Брея, Калифорния). Измеряли уровни ALT (аланинтрансаминазы) и AST (аспартаттрансаминазы) в плазме крови, и результаты, выраженные в МЕ/л, представлены в приведенной ниже таблице. Также измеряли уровни билирубина, креатинина, альбумина и BUN в плазме крови с помощью того же самого клинико-биохимического анализатора, и результаты, выраженные в мг/дл, также представлены в приведенной ниже таблице. Из дальнейших исследований исключали олигонуклеотиды Ionis, которые обуславливали изменения уровней каких-либо маркеров функции печени, выходящие за пределы ожидаемого диапазона для антисмысловых олигонуклеотидов.

> Таблица 65 Биохимических маркеры плазмы крови у крыс линии Спрег-Лоули

	Альбумин	ALT	AST	Общий билирубин	Креатинин	BUN
	(г/дл)	(МЕ/л)	(МЕ/л)	(мг/дл)	(мг/дл)	(мг/дл)
PBS	3	35	81	0,2	0,2	12
975591	3	57	161	0,2	0,3	14
975605	4	62	176	0,3	0,2	14
975612	3	106	153	0,2	0,3	13
975613	3	32	94	0,2	0,2	12
975616	4	31	106	0,2	0,3	13
975617	3	49	263	0,2	0,2	12
975735	3	44	128	0,2	0,2	14
975736	3	73	293	0,3	0,3	14
994282	3	41	135	0,1	0,3	12
994284	3	32	95	0,1	0,2	13

Функция почек.

Для оценки эффекта олигонуклеотидов Ionis в отношении функции почек измеряли уровни белка и креатинина в моче с помощью автоматического биохимического анализатора (Beckman Coulter AU480, Брея, Калифорния). Значения соотношения общего белка и креатинина представлены в приведенной ниже таблице. Из дальнейших исследований исключали олигонуклеотиды Ionis, которые обуславливали изменения уровней соотношения, выходящие за пределы ожидаемого диапазона для антисмысловых олигонуклеотидов.

Таблица 66 Соотношение общего белка и креатинина у крыс линии Спрег-Доули

PBS	1,5
975591	2,0
975605	1,6
975612	1,9
975613	2,3
975616	2,0
975617	1,4
975735	2,2
975736	1,1
994282	2,1
994284	2,1

Значения массы органов.

В конце исследования измеряли значения массы печени, сердца, селезенки и почек, и они представлены в приведенной ниже таблице. Из дальнейших исследований исключали олигонуклеотиды Ionis, которые обуславливали любые изменения значений массы органов, выходящие за пределы ожидаемого диапазона для антисмысловых олигонуклеотидов.

Таблица 67 Показатели массы опганов (г)

	Печень	Почка	Селезенка
Физиологический раствор	16	3	1
975591	16	4	1
975605	21	3	1
975612	12	3	1
975613	16	3	1
975616	15	3	1
975617	19	4	2
975735	14	4	1
975736	15	3	1
994282	14	3	1
994284	15	3	1

Пример 7. Эффект антисмыслового подавления PNPLA3 в модели на трансгенных мышах. Олигонуклеотиды Ionis тестировали в трансгенной по hPNPLA3 модели в ходе многодозового анализа

Обработка.

Трансгенных мышей выдерживали в условиях цикла чередования 12 ч света и темноты и кормили стандартным кормом для мышей Purina без ограничений. Животных акклиматизировали в течение по меньшей мере 7 дней в исследовательской лаборатории перед началом эксперимента. Антисмысловые олигонуклеотиды (ASO) получали в забуференном солевом растворе (PBS) и стерилизовали путем фильтрации через фильтр с диаметром пор 0,2 микрона. Олигонуклеотиды растворяли в 0,9% PBS для инъекций.

Исследование 1.

Мышей, трансгенных по hPNPLA3, разделяли на группы по 4 мыши в каждой. Группы получали подкожные инъекции олигонуклеотида Ionis в недельной дозе 5, 1 или 0,25 мг/кг, вводимые в дни 1, 5, 8, 15 и 23. Одна группа из 4 мышей получала подкожные инъекции PBS в дни 1, 5, 8, 15 и 23. Группа, которой вводили путем инъекции физиологический раствор, служила в качестве контрольной группы, с которой сравнивали группы, обработанные олигонуклеотидами.

Анализ РНК

В день 26 РНК экстрагировали из печени для ПЦР-анализа в реальном времени с целью измерения экспрессии mRNA PNPLA3. Оба набора праймеров и зондов RTS36070 и RTS36075 применяли для измерения уровней mRNA PNPLA3. Результаты представлены в виде процентного изменения уровня mRNA по сравнению с PBS-контролем, нормализованного с помощью RIBOGREEN®. Как представлено в приведенной ниже таблице, обработка с помощью антисмысловых олигонуклеотидов Ionis приводила к значительному дозозависимому снижению уровня mRNA PNPLA3 по сравнению с PBS-контролем.

Таблица 68 Процент подавления mRNA PNPLA3 в печени трансгенных мышей по сравнению с PBS-контролем

	мг/кг/неделя	Подавление, измеренное	Подавление, измеренное	EC50
	мі/кі/неделя	с помощью RTS36070	с помощью RTS36075	(мкг/г)
	5	93	90	
975605	1	66	57	2,2
	0,25	45	46	
975612	5	98	99	3,1
	1	89	88	
	0,25	34	44	
	5	98	97	
975613	1	87	85	1,0
	0,25	58	56	
	5	93	93	
975616	1	85	87	0,5
	0,25	60	63	
	5	97	97	
975617	1	76	78	0,3
	0,25	55	53	
	5	97	98	
975735	1	74	75	1,5
	0,25	29	33	
	5	98	98	
975736	1	73	71	0,9
	0,25	44	45	
	5	98	98	
994282	1	91	80	0,2
	0,25	62	58]
	5	99	100	
994284	1	89	88	0,3
	0,25	53	47	1

Исследование 2.

Мышей, трансгенных по hPNPLA3, разделяли на группы по 4 мыши в каждой. Группы получали подкожные инъекции олигонуклеотида Ionis в недельной дозе 5, 2,5, 1, 0,5 или 0,25 мг/кг, вводимые в дни 1, 5, 8, 15 и 23. Одна группа из 4 мышей получала подкожные инъекции PBS в дни 1, 5, 8, 15 и 23. Группа, которой вводили путем инъекции физиологический раствор, служила в качестве контрольной группы, с которой сравнивали группы, обработанные олигонуклеотидами.

Анализ РНК.

В день 26 РНК экстрагировали из печени для ПЦР-анализа в реальном времени с целью измерения экспрессии mRNA PNPLA3. Оба набора праймеров и зондов RTS36070 и RTS36075 применяли для измерения уровней mRNA PNPLA3. Результаты представлены в виде процентного изменения уровня mRNA по сравнению с PBS-контролем, нормализованного с помощью RIBOGREEN®. Как представлено в приведенной ниже таблице, обработка с помощью антисмысловых олигонуклеотидов Ionis приводила к значительному дозозависимому снижению уровня mRNA PNPLA3 по сравнению с PBS-контролем.

Таблица 69 Процент подавления mRNA PNPLA3 в печени трансгенных мышей по сравнению с PBS-контролем

	мг/кг/неделя	Подавление, измеренное с	Подавление, измеренное с	EC50	EC90
		помощью RTS36070	помощью RTS36075	(мкг/г)	(мкг/г)
	5	96	97		
	2,5	98	98		
975612	1	95	96	1,0	8,6
	0,5	82	83		
	0,25	43	44		
	5	99	99		
	2,5	99	99		
975613	1	91	91	0,9	7,7
	0,5	82	83		
	0,25	69	74		
	5	96	96		
975616	2,5	94	93		
	1	89	89	1,0	9,4
	0,5	81	81		
	0,25	73	60		

Пример 8. Эффект модифицированных олигонуклеотидов, нацеливающихся на PNPLA3 человека, у макаков-крабоедов.

Макаков-крабоедов обрабатывали антисмысловыми олигонуклеотидами Ionis, отобранными после исследований, описанных в примерах выше. Оценивали переносимость антисмысловых олигонуклеотидов.

Обработка.

До начала исследования обезьян содержали на карантине, в течение которого проводили ежедневное обследование общего состояния здоровья у животных. Обезьяны имели возраст 2-4 года и массу тела 2-4 кг. Девяти группам по 5 случайным образом распределенных самцов макаков-крабоедов в каждой вводили путем подкожной инъекции олигонуклеотиды Ionis или PBS в четыре разных участка на спине в направлении вращения часовой стрелки. Обезьянам два раза в неделю (дни 1, 5, 9 и 14) в течение первых 2 недель, а затем один раз в неделю в течение 10 недель вводили олигонуклеотид Ionis в дозе 10 мг/кг в дни 21, 28, 35, 42, 49, 56, 63, 70, 77 и 84. Контрольная группа из 5 макаков-крабоедов получала инъекции PBS аналогичным образом и служила в качестве контрольной группы.

В течение периода исследования обезьян обследовали два раза в день в отношении признаков заболевания или дистресса. Любое животное, у которого проявлялись более чем кратковременные или слабые боль или дистресс вследствие обработки, повреждение или болезнь, получало от сотрудниковветеринаров лечение одобренными обезболивающими или болеутоляющими средствами после консультации с руководителем исследования. Любое животное, имеющее неудовлетворительное состояние здоровья или находящееся в возможном агональном состоянии, определяли для дополнительного контроля и возможной эвтаназии. Запланированную эвтаназию животных проводили в день 86 примерно через 48 ч после введения последней дозы путем кровопускания в условиях глубокой анестезии. Протоколы, описанные в данном примере, были одобрены Институциональным комитетом по уходу за животными и их использованию (IACUC).

Измерения массы тела и органов.

Для оценки эффекта олигонуклеотидов Ionis в отношении общего состояния здоровья животных измеряли значения массы тела и органов. Значения массы тела и органов измеряли в день 86, и данные представлены в приведенной ниже таблице. Результаты указывают на то, что эффект обработки антисмысловыми олигонуклеотидами в отношении значений массы тела и органов находился в пределах ожидаемого диапазона для антисмысловых олигонуклеотидов. В частности, обработка с помощью ION 945616 хорошо переносилась с точки зрения значений массы тела и органов обезьян.

Таблица 70 Конечные показатели массы тела и органов v макаков-крабоедов

конечные показатели массы тела и органов у макаков-краоосдов					
	Масса тела (кг)	Селезенка (г)	Почка (г)	Печень с желчным пузырем (г)	
PBS-контроль	2797	2,6	13,1	53	
994284	2789	3,3	14,7	69	
975605	2685	4,1	12,2	58	
975616	2868	3,1	12,9	63	
994282	2782	4,4	12,1	62	
975613	2704	3,0	13,5	60	
975617	2761	3,8	14,1	61	
975735	2765	4,1	15,5	67	
975736	2844	3,0	14,1	66	
975612	2711	2,8	13,2	60	

Функция печени.

Для оценки эффекта олигонуклеотидов Ionis в отношении функции печени образцы крови отбирали у всех исследуемых групп в день 86. Обезьяны не получали пищи в течение ночи перед отбором крови. Кровь собирали в пробирки без антикоагулянта для отделения сыворотки крови. Пробирки выдерживали при комнатной температуре в течение не менее 90 мин, а затем центрифугировали при 3000 об/мин в течение 10 мин для получения сыворотки крови. Уровни различных маркеров функции печени измеряли с помощью биохимического анализатора Toshiba 200FR NEO (Toshiba Co., Япония). Измеряли уровни ALT и AST в плазме крови, и результаты, выраженные в МЕ/л, представлены в приведенной ниже таблице. Сходным образом измеряли уровни билирубина, маркера функции печени, и результаты, выраженные в мг/дл, представлены в приведенной ниже таблице. Результаты указывают на то, что антисмысловые олигонуклеотиды не оказывают эффекта в отношении функции печени, выходящего за пределы ожидаемого диапазона для антисмысловых олигонуклеотидов.

Таблица 71 Маркеры функции печени в плазме крови

у макака-крабоеда				
	ALT	AST	Билирубин	Альбумин
	(МЕ/л)	(МЕ/л)	(мг/дл)	(г/дл)
PBS-контроль	38	55	0,2	4,3
994284	64	48	0,2	3,7
975605	48	54	0,3	4,0
975616	54	57	0,3	3,9
994282	89	53	0,3	4,0
975613	60	71	0,4	4,0
975617	65	61	0,3	4,0
975735	59	79	0,3	4,1
975736	70	56	0,3	3,9
975612	61	66	0,3	3,9

Функция почек.

Для оценки эффекта олигонуклеотидов Ionis в отношении функции почек образцы крови отбирали у всех исследуемых групп в день 86. Обезьяны не получали пищи в течение ночи перед отбором крови. Кровь собирали в пробирки без антикоагулянта для отделения сыворотки крови. Пробирки выдерживали при комнатной температуре в течение не менее 90 мин, а затем центрифугировали при 3000 об/мин в течение 10 мин для получения сыворотки крови. Уровни BUN и креатинина измеряли с помощью биохимического анализатора Toshiba 200FR NEO (Toshiba Co., Япония). Результаты, выраженные в мг/дл, представлены в приведенной ниже таблице.

Данные биохимического анализа плазмы крови указывают на то, что большинство олигонуклеотидов Ionis не оказывали какой-либо эффект в отношении функции почек, выходящий за пределы ожидаемого диапазона для антисмысловых олигонуклеотидов.

Таблица 72 Уровни BUN и креатинина в плазме крови (мг/дл) у макаков-крабоедов

	BUN	Креатинин
PBS-контроль	23	0,8
994284	24	0,8
975605	27	0,7
975616	21	0,8
994282	24	0,8
975613	23	0,9
975617	21	0,7
975735	20	0,8
975736	23	0,8
975612	20	0,8

Гематология.

Для оценки наличия у макаков-крабоедов каких-либо эффектов олигонуклеотидов Ionis в отношении гематологических параметров, у каждого из доступных исследуемых животных в день 86 отбирали образцы, составляющие примерно по $0.5\,$ мл крови. Образцы отбирали в пробирки, содержащие K_2 -EDTA. Образцы анализировали в отношении числа эритроцитов (RBC), числа лейкоцитов (WBC), числа отдельных разновидностей лейкоцитов, как например моноцитов, нейтрофилов, лимфоцитов, а также в отношении числа тромбоцитов, содержания гемоглобина и гематокрита с помощью гематологического анализатора ADVIA2120i (Siemens, CIIIA).

Данные указывают на то, что олигонуклеотиды не вызывали каких-либо изменений гематологических параметров, выходящих за пределы ожидаемого диапазона для антисмысловых олигонуклеотидов в такой дозе.

Таблица 73 Значения числа клеток крови у макаков-крабоелов

	RBC	Тромбоциты	WBC	Нейтрофилы	Лимфоциты	Моноциты
	(х 10 ⁶ /мкл)	(x 10 ³ /мкл)	(х 10 ³ /мкл)	(x 10 ³ /мкл)	(х 10 ³ /мкл)	(х 10 ³ /мкл)
PBS- контроль	6,0	342	12	3,2	7,8	0,3
994284	6,0	410	10	2,7	6,7	0,3
975605	5,8	326	10	4,8	4,5	0,4
975616	6,0	362	10	3,4	5,8	0,3
994282	5,8	359	10	3,9	5,5	0,3
975613	5,5	327	8	2,6	5,5	0,2
975617	6,1	358	10	3,1	6,4	0,3
975735	5,9	241	13	5,4	6,6	0,4
975736	5,8	360	10	3,5	6,4	0,2
975612	6,2	421	11	5,1	5,7	0,2

Таблица 74 Гематологические параметры у макаков-крабоедов

	Гемоглобин (г/дл)	HCT (%)
PBS-контроль	14	49
994284	14	48
975605	14	46
975616	14	49
994282	14	47
975613	13	46
975617	14	49
975735	14	48
975736	14	48
975612	14	49

Анализ провоспалительных белков.

Для оценки любого воспалительного эффекта олигонуклеотидов Ionis у макаков-крабоедов, проводили отбор образцов крови для анализа. Обезьяны не получали пищи в течение ночи перед отбором крови. У каждого животного отбирали примерно 1,5 мл крови в пробирки без антикоагулянта для отделения сыворотки крови. Пробирки выдерживали при комнатной температуре в течение минимум 90 мин и затем центрифугировали при 3000 об/мин в течение 10 мин при комнатной температуре для получения сыворотки крови. Уровни С-реактивного белка (CRP), который синтезируется в печени и который служит маркером воспаления, и компонента системы комплемента СЗ измеряли с помощью химического анализатора Toshiba 200FR NEO (Toshiba Co., Япония).

Пример 9. Измерение вязкости антисмысловых олигонуклеотидов, нацеливающихся на PNPLA3 человека.

Вязкость антисмысловых олигонуклеотидов, отобранных после исследований, описанных выше, измеряли с целью отсеивания антисмысловых олигонуклеотидов, которые обладают вязкостью более 40 сП. Олигонуклеотиды, обладающие вязкостью более 40 сП, будут характеризоваться менее чем оптимальной вязкостью.

Олигонуклеотиды (32-35 мг) отвешивали в стеклянный флакон, добавляли 120 мкл воды, а антисмысловой олигонуклеотид растворяли в растворе путем нагревания флакона при 50°С. Часть (75 мкл) предварительно нагретого образца отмеряли пипеткой в микровискозиметр (Cambridge). Температуру в микровискозиметре устанавливали на 25°С и измеряли вязкость образца. Другую часть (20 мкл) предварительно нагретого образца отмеряли пипеткой в 10 мл воды для считывания показаний в UV-диапазоне при 260 нм и 85°С (прибор Cary UV). Результаты представлены в приведенной ниже таблице, где концентрация каждого антисмыслового олигонуклеотида составляла 200 мг/мл, и указывают на то, что большинство растворов антисмысловых олигонуклеотидов обладают оптимальной вязкостью в соответствии с критерием, приведенным выше.

Таблица 75 Вязкость антисмысловых олигонуклеотидов при 200 мг/мл

-	Вязкость (сП)
994284	21
975605	19
975616	20
994282	30
975613	24
975617	22
975735	15
975736	49
975612	25

Пример 10. Конструкция олигонуклеотидов в области сайта ION 975616.

Конструировали дополнительный антисмысловые олигонуклеотиды, нацеливающиеся на нуклеиновую кислоту PNPLA3, которые перекрывают сайт-мишень ION 916333, который является неконьюги-

рованной версией ION 975616, и характеризующиеся различающимися химическими модификациями и мотивами.

Новые сконструированные химерные антисмысловые олигонуклеотиды в приведенных ниже таблицах обозначены как сЕt-гэпмеры 3-10-3 или дезокси-, МОЕ- и сЕt-олигонуклеотиды. сЕt-гэпмеры 3-10-3 имеют длину 16 нуклеозидов, при этом центральный гэп-сегмент содержит десять 2'-дезоксинуклеозидов и фланкирован фланговыми сегментами в 5'-направлении и в 3'-направлении, каждый из которых содержит по три нуклеозида. Каждый нуклеозид в 5'-концевом фланговом сегменте и каждый нуклеозид в 3'-концевом фланговом сегменте имеет сЕt-модификацию сахара. Все межнуклеозидные связи в каждом гэпмере являются фосфотиоатными (P=S) связями. Все цитозиновые остатки в каждом гэпмере представляют собой 5-метилцитозин. Дезокси-, МОЕ- и (S)-сЕt-олигонуклеотиды составляют 16 нуклеозидов в длину, при этом нуклеозид имеет либо МОЕ-модификацию сахара, либо (S)-сЕt-модификацию сахара, либо дезокси-модификацию. В столбце "Химические характеристики" описаны модификации сахара в каждом олигонуклеотиде. "k" обозначает (S)-cEt-модификацию сахара; "d" обозначает дезоксирибозу; число после "d" обозначает число дезоксирибозных остатков; и "е" обозначает ет МОЕ-модификацию. Все межнуклеозидные связи в каждом гэпмере являются фосфотиоатными (P=S) связями. Все цитозиновые остатки в каждом гэпмере представляют собой 5-метилцитозин. "Стартовый сайт" указывает на нуклеозид, наиболее близкий к 5'-концу в последовательности гена человека (SEQ ID NO: 2), на которую нацелен гэпмер.

1 аолица /о Модифицированные олигонуклеотиды, нацеливающихся на PNPLA3 человека

Стартовый	1	олигонуклеотиды, наце.		Химические	SEQ
•	Стоп-сайт	Последовательность	Номер		ID
сайт			соединения	характеристики	NO
5599	5614	TCAATGTGGCTTCTAG	995553	kkk-d10-kkk	2170
5600	5615	TTCAATGTGGCTTCTA	959437	kkk-d10-kkk	2089
5601	5616	ATTCAATGTGGCTTCT	959438	kkk-d10-kkk	2171
5602	5617	TATTCAATGTGGCTTC	959439	kkk-d10-kkk	2172
5603	5618	TTATTCAATGTGGCTT	959440	kkk-d10-kkk	1705
5603	5618	TTATTCAATGTGGCTT	995696	k-d10-kekek	1705
5603	5618	TTATTCAATGTGGCTT	995906	kk-d9-eeekk	1705
5603	5618	TTATTCAATGTGGCTT	996116	kk-d9-ekeke	1705
5604	5619	TTTATTCAATGTGGCT	959441	kkk-d10-kkk	1765
5604	5619	TTTATTCAATGTGGCT	995697	k-d10-kekek	1765
5604	5619	TTTATTCAATGTGGCT	995907	kk-d9-eeekk	1765
5604	5619	TTTATTCAATGTGGCT	996117	kk-d9-ekeke	1765
5605	5620	CTTTATTCAATGTGGC	916333	kkk-d10-kkk	1089
5605	5620	CTTTATTCAATGTGGC	995698	k-d10-kekek	1089
5605	5620	CTTTATTCAATGTGGC	995908	kk-d9-eeekk	1089
5605	5620	CTTTATTCAATGTGGC	996118	kk-d9-ekeke	1089
5605	5620	CTTTATTCAATGTGGC	996277	kek-d9-eekk	1089
5606	5621	ACTTTATTCAATGTGG	916334	kkk-d10-kkk	1158
5606	5621	ACTTTATTCAATGTGG	995699	k-d10-kekek	1158
5606	5621	ACTTTATTCAATGTGG	995909	kk-d9-eeekk	1158
5606	5621	ACTTTATTCAATGTGG	996119	kk-d9-ekeke	1158
5607	5622	TACTTTATTCAATGTG	959442	kkk-d10-kkk	1825
5608	5623	TTACTTTATTCAATGT	959443	kkk-d10-kkk	1885

Олигонуклеотиды тестировали в ходе серии экспериментов. Культивируемые клетки A-431 при плотности 10000 клеток на лунку обрабатывали модифицированными олигонуклеотидами, разбавленными до разных концентраций, при свободном поглощении. После периода обработки, составляющего примерно 48 ч, измеряли уровни mRNA PNPLA3 с применением набора праймеров и зондов для PNPLA3 человека RTS36070, как описано ранее. Уровни mRNA PNPLA3 корректировали в соответствии с общим содержанием PHK, измеренным с помощью RJBOGREEN®. Значения соотношения IC_{50} , полученные в ходе анализов, представлены в таблицах ниже, которые представляют собой соотношение значения IC_{50}

олигонуклеотида для сопоставления и значения IC_{50} олигонуклеотида. Таким образом, более высокое значение соотношения указывает на то, что олигонуклеотид является более активным, чем олигонуклеотид для сопоставления.

Таблица 77 Эффективность модифицированных олигонуклеотидов, нацеливающихся на PNPLA3 человека

нацеливающихся на РМРLАЗ человека				
Стартовый		Номер	Химические	Соотношение
сайт	Стоп-сайт	соединения	характеристики	IC50
5600	5615	959437	kkk-d10-kkk	1,42
5601	5616	959438	kkk-d10-kkk	0,49
5602	5617	959439	kkk-d10-kkk	0,36
5603	5618	959440	kkk-d10-kkk	0,55
5603	5618	995906	kk-d9-eeekk	1,42
5604	5619	959441	kkk-d10-kkk	1,66
5605	5620	916333	kkk-d10-kkk	1,96
5605	5620	995908	kk-d9-eeekk	0,70
5606	5621	916334	kkk-d10-kkk	0,95
5606	5621	995909	kk-d9-eeekk	1,47

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Соединение, анионная форма которого характеризуется следующей формулой (SEQ ID NO: 1089):

в виде его фармацевтически приемлемой соли.

2. Соединение, содержащее модифицированный олигонуклеотид и конъюгированную группу, где модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов и состоит из последовательности нуклеиновых оснований под SEQ ID NO: 1089, при этом модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

при этом гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, при этом каждый нуклеозид каждого флангового сегмента содержит сЕt-сахар; при этом каждая межнуклеозидная связь представляет собой фосфотиоатную связь; при этом каждый цитозин представляет собой 5-метилцитозин; и при этом конъюгированная группа расположена на 5'-конце модифицированного олигонуклеотида и представляет собой:

3. Соединение, анионная форма которого характеризуется следующей формулой (SEQ ID NO: 1089):

в виде его фармацевтически приемлемой соли.

4. Соединение, содержащее модифицированный олигонуклеотид и конъюгированную группу, где модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов и состоит из последовательности нуклеиновых оснований под SEQ ID NO: 1089, при этом модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

при этом гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, при этом каждый нуклеозид каждого флангового сегмента содержит сЕt-сахар; при этом по меньшей мере одна межнуклеозидная связь представляет собой фосфотиоатную связь; при этом каждый цитозин представляет собой 5-метилцитозин; и при этом конъюгированная группа содержит кластер GalNAc, содержащий 1-3 GalNAc-лиганда.

5. Соединение, содержащее модифицированный олигонуклеотид и конъюгированную группу, где модифицированный олигонуклеотид имеет длину 16 связанных нуклеозидов и имеет последовательность нуклеиновых оснований под SEQ ID NO: 1089, где модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и

3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

при этом гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом; при этом каждый нуклеозид каждого флангового сегмента содержит сЕt-сахар; при этом каждая межнуклеозидная связь представляет собой фосфотиоатную связь; при этом каждый цитозин представляет собой 5-метилцитозин; и при этом конъюгированная группа содержит кластер GalNAc, со-

держащий 1-3 GalNAc-лиганда.

6. Модифицированный олигонуклеотид, состоящий из 16 связанных нуклеозидов и имеющий последовательность нуклеиновых оснований под SEQ ID NO: 1089, при этом модифицированный олигонуклеотид содержит:

гэп-сегмент, состоящий из десяти связанных дезоксинуклеозидов;

- 5'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов; и
- 3'-концевой фланговый сегмент, состоящий из трех связанных нуклеозидов;

при этом гэп-сегмент расположен между 5'-концевым фланговым сегментом и 3'-концевым фланговым сегментом, при этом каждый нуклеозид каждого флангового сегмента содержит сЕt-сахар; при этом каждая межнуклеозидная связь представляет собой фосфотиоатную связь; при этом каждый цитозин представляет собой 5-метилцитозин.

- 7. Соединение по любому из пп.1-3, где фармацевтически приемлемая соль представляет собой натриевую соль.
- 8. Соединение по любому из пп.1-3, где фармацевтически приемлемая соль представляет собой калиевую соль.
- 9. Фармацевтическая композиция, содержащая соединение по любому из пп.1-5 или модифицированный олигонуклеотид по п.6 и фармацевтически приемлемый носитель.

Евразийская патентная организация, ЕАПВ

Россия, 109012, Москва, Малый Черкасский пер., 2