- (43) Дата публикации заявки 2024.01.31
- (22) Дата подачи заявки 2020.03.13

(51) Int. Cl. *C12N 15/113* (2010.01) *A61K 48/00* (2006.01) *A61P 25/00* (2006.01) *A61P 25/08* (2006.01)

(54) СОЕДИНЕНИЯ И СПОСОБЫ ДЛЯ СНИЖЕНИЯ ЭКСПРЕССИИ КСМТ1

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (31) 62/819,344; 62/884,501
- (32) 2019.03.15; 2019.08.08
- (33) US
- (62) 202192527; 2020.03.13
- (71) Заявитель: ИОНИС ФАРМАСЬЮТИКАЛЗ, ИІ

ИОНИС ФАРМАСЬЮТИКАЛЗ, ИНК. (US) **(72)** Изобретатель:

Буи Хуинх-Хоа, Фрейер Сьюзан М. (US)

(74) Представитель:Медведев В.Н. (RU)

(57) Предложены соединения, способы и фармацевтические композиции для снижения количества или активности РНК КСNT1 в клетке или у субъекта, и в некоторых случаях для снижения количества белка КСNT1 в клетке или у субъекта. Такие соединения, методы и фармацевтические композиции полезны для облегчения по меньшей мере одного симптома или признака неврологического заболевания. Такие симптомы и отличительные признаки включают судороги, энцефалопатию и поведенческие аномалии. Неограничивающими примерами неврологических заболеваний, при которых полезны эти соединения, способы и фармацевтические композиции, являются эпилепсия младенчества с мигрирующими фокальными припадками (EIMFS), аутосомно-доминантная ночная лобная эпилепсия (ADNFLE), синдром Веста и синдром Охтахара.

СОЕДИНЕНИЯ И СПОСОБЫ ДЛЯ СНИЖЕНИЯ ЭКСПРЕССИИ KCNT1

Список последовательностей

Данная заявка подается вместе с перечнем последовательностей в электронном формате. Перечень последовательностей предоставляется в виде файла под названием ВІОL0358WOSEQ_ST25.txt, созданного 9 марта 2020 г., который имеет размер 716 КБ. Информация в электронном формате перечня последовательностей полностью включена в данный документ посредством ссылки.

Область техники

Предложены соединения, способы И фармацевтические PHK снижения количества калий-натрий-ДЛЯ активируемого канала подсемейства Т-члена 1 (KCNT1) в клетке или субъекте, и в некоторых случаях для снижения количества белка клетке или субъекте. Такие соединения, способы фармацевтические композиции полезны для облегчения по меньшей мере одного симптома или признака неврологического заболевания. Такие симптомы и признаки включают, в частности, энцефалопатию, атрофию коры головного мозга, клонус, судороги (эпилепсию) и поведенческие аномалии, такие как агрессия, кататония, психоз и нарушения интеллекта. Неограничивающими примерами неврологических состояний, которые можно лечить с соединений, способов и фармацевтических композиций, описанных в данном документе, являются эпилепсия младенчества с мигрирующими фокальными припадками (EIMFS), аутосомно-доминантная (ADNFLE) и эпилептические лобная эпилепсия энцефалопатии с ранним началом, включая синдром Уэста и синдром Охтахары.

Предпосылки

Эпилепсия представляет собой неврологическое заболевание, характеризующееся периодическими отклонениями в мозговой деятельности. В качестве неограничивающего примера, часто страдающий эпилепсией, демонстрирует ненормальное поведение, такое как припадки (неконтролируемые подергивания или конечностей), потеря сознания, подергивания кататония, спутанность сознания и психоз. У людей с эпилепсией могут наблюдаться фокальные или генерализованные припадки. Фокальные припадки поражают определенную область мозга. В отличие этого, генерализованные припадки затрагивают все области мозга. сожалению, эпилепсия может начаться в течение первых

нескольких месяцев жизни, как это наблюдается у пациентов с EIMFS и ранней детской эпилептической энцефалопатией (EIEE). EIMFS представляет собой тяжелую фармакорезистентную эпилепсию с высокой частотой внезапной неожиданной смерти при эпилепсии. Начало припадков у пациентов с EIMFS часто происходит в первый месяц жизни.

KCNT1, также известный как последовательность, подобная активированному кальцием К+каналу (SLACK), КСа4.1 и Slo2.2, представляет собой субъединицу управляемого натрием калиевого которая образует тетрамерный канал KCNT2 опосредования натрий-чувствительного калиевого тока ряде нейронных клеток. В организме человека экспрессируются сплайс-изоформы мРНК КСNT1. Эти изоформы могут продуцировать электрофизическими белки С разными разные свойствами, аналогичные вариантам изоформ SLACK, обнаруживаемым у грызунов.

Мутации с усилением функции в KCNT1 МОГУТ вызывать включая ADNFLE несколько ТИПОВ эпилепсии, И EIMFS. сегодняшний день все мутации KCNT1, обнаруженные у пациентов с эпилепсией, представляют собой миссенс-мутации, которые приводят к усилению функции белка КСNT1. Эти миссенс-мутации приводят к повышению активности калиевого канала и увеличению пикового Примерно 42-50% случаев EIMFS калиевого тока. обусловлены усилением функциональных мутаций КСNT1.

Сущность изобретения

В настоящее время существует недостаток приемлемых вариантов лечения младенческих энцефалопатий и эпилепсий. Таким образом, эти состояния представляют собой высокую неудовлетворенную потребность. Кроме того, существует множество случаев эпилепсии, которые являются фармакорезистентными, в результате чего у пациентов практически нет терапевтических возможностей. Поэтому целью настоящего документа является обеспечение соединений, способов и фармацевтических композиций для лечения таких заболеваний.

документе предложены соединения, способы данном И для фармацевтические снижения композиции количества ИЛИ активности РНК KCNT1 и, в некоторых вариантах осуществления, для снижения количества или активности белка KCNT1 в клетке или у субъекта. В определенных вариантах осуществления, субъектом является ребенок. В определенных вариантах осуществления субъект имеется неврологическое заболевание. В определенных

вариантах осуществления неврологическое заболевание включает В энцефалопатию. определенных вариантах осуществления неврологическое заболевание включает эпилепсию. В определенных вариантах осуществления неврологическое заболевание представляет собой EIMFS. В определенных вариантах осуществления неврологическое заболевание представляет собой ADNFLE. определенных вариантах осуществления соединения, пригодные для снижения количества или активности РНК KCNT1, представляют собой олигомерные соединения. В определенных вариантах осуществления пригодные для экспрессии KCNT1 соединения, снижения RNA, представляют собой модифицированные олигонуклеотиды.

Также в данном документе предложены способы, пригодные для меньшей мере одного симптома или признака заболевания. В неврологического определенных вариантах осуществления неврологическое заболевание представляет собой EIMFS. В определенных вариантах осуществления неврологическое заболевание представляет собой ADNFLE. В определенных вариантах осуществления по меньшей мере один симптом или признак выбирают припадка, повреждения мозга, демиелинизации, гипотонии, тревоги, микроцефалии, депрессии, когнитивной функции. определенных вариантах осуществления способы, предложенные документе, применимы для уменьшения возникновения припадка. В определенных вариантах осуществления способы, настоящем документе, применимы раскрытые В для уменьшения тяжести припадка.

Подробное описание сущности изобретения

Следует понимать, что и предшествующее общее описание, последующее подробное описание являются только примерными не являются ограничительными. пояснительными И В контексте данного документа использование единственного числа множественное число, если специально не указано иное. В данном контексте использование «или» означает «и/или», если не указано иное. Кроме того, использование термина «включая», таких как «включает» и «включенный», не является других форм, ограничивающим. Кроме того, такие термины, как «элемент» или «компонент» охватывают как элементы, так И компоненты, содержащие одну единицу, И элементы и компоненты, содержат более одной субъединицы, если конкретно не указано иное.

Заголовки разделов, используемые в данном описании,

предназначены только для организационных целей и не должны толковаться как ограничивающие описанный предмет. Все документы или части документов, процитированные в данной заявке, включая, но не ограничиваясь, патенты, заявки на патенты, статьи, книги и трактаты, прямо, а также в полном объеме включены в данный документ посредством ссылки в отношении частей документа, обсуждаемых в данном тексте.

Определения

Если не представлены конкретные определения, номенклатура, используемая в связи с описанными здесь процедурами и методиками аналитической химии, синтетической органической химии, а также медицинской и фармацевтической химии, хорошо известна и широко используется в данной области. Там, где это разрешено, все патенты, заявки, опубликованные заявки и другие публикации, а также другие данные, упоминаемые в раскрытии, включены в данный документ посредством ссылки во всей своей полноте.

Если не указано иное, приведенные ниже термины имеют следующие значения:

ОПРЕДЕЛЕНИЯ

В контексте данного документа термин «2'- дезоксинуклеозид» нуклеозид, содержащий 2'-H(H) дезоксирибозильный означает сахарный фрагмент. В определенных вариантах осуществления 2'дезоксинуклеозид представляет собой 2'-β-D-дезоксинуклеозид и содержит фрагмент 2'- β -D-дезоксирибозил сахара, который имеет β как обнаружено в встречающихся в D-конфигурацию, дезоксирибонуклеиновых кислотах (ДНК). В определенных вариантах 2'-дезоксинуклеозид или нуклеозид, включающий осуществления немодифицированный 2'-дезоксирибозильный сахарный фрагмент, может включать модифицированную нуклеотидное основание или может включать нуклеотидное основание РНК (урацил).

В контексте данного документа термин «2'-МОЕ» или «2'-МОЕ- сахарный фрагмент» означает группу 2'-ОСН2СН2ОСН3 вместо 2'-ОН группы фрагмента рибозильного сахара. «МОЕ» означает метоксиэтил.

В контексте данного документа термин «2'- МОЕ нуклеозид» означает нуклеозид, содержащий 2'- МОЕ сахарный фрагмент.

В контексте данного документа термин «2'-OMe» или «2'-O-Me» или фрагмент» означает 2'-OCH3 группу вместо 2'-OH группы рибозильного сахарного фрагмента.

В контексте данного документа термин «2'- ОМе нуклеозид»

означает нуклеозид, содержащий 2'- ОМе сахарный фрагмент.

Используемый в данном документе термин «2'-замещенный нуклеозид» означает нуклеозид, содержащий 2'-замещенный сахарный фрагмент. Используемый в данном документе термин «2'-замещенный» по отношению к сахарному фрагменту означает сахарный фрагмент, содержащий по меньшей мере одну 2'-замещающую группу, отличную от Н или ОН.

В контексте данного документа термин «5-метилцитозин» означает цитозин, модифицированный метильной группой, присоединенной в положении 5. 5-метилцитозин представляет собой модифицированное азотистое основание.

В контексте данного документа термин «введение» означает обеспечение фармацевтического агента субъекту.

Используемый в данном документе термин «антисмысловая означает любое обнаруживаемое и/или активность» изменение, связанное с гибридизацией антисмыслового соединения с его целевой нуклеиновой кислотой. В определенных вариантах осуществления антисмысловая активность представляет уменьшение количества или экспрессии целевой нуклеиновой кислоты или белка, кодируемого такой целевой нуклеиновой кислотой, по сравнению с уровнями целевой нуклеиновой кислоты или уровнями целевого белка в отсутствие антисмыслового соединения.

Используемый в данном документе термин «антисмысловое соединение» означает олигомерное соединение, способное обеспечить по меньшей мере одну антисмысловую активность.

Используемый в данном документе термин «ослабление» применительно к лечению означает облегчение по меньшей мере одного симптома по сравнению с тем же симптомом в отсутствие лечения. В определенных вариантах осуществления ослабление представляет собой уменьшение тяжести или частоты симптома или задержки наступления или замедления прогрессирования тяжести или частоты симптома.

Используемый в данном документе термин «бициклический нуклеозид» или «BNA» означает нуклеозид, содержащий бициклический сахарный фрагмент.

Используемый данном документе термин «бициклический В «бициклический сахарный фрагмент» означает модифицированный сахарный фрагмент, содержащий два причем второе кольцо образовано через мостик, соединяющий два атома В первом кольце, тем самым образуя бициклическую структуру. В определенных вариантах осуществления изобретения первое кольцо бициклического сахарного фрагмента представляет собой фуранозильный фрагмент. В определенных вариантах осуществления изобретения бициклический сахарный фрагмент не содержит фуранозильный фрагмент.

В контексте данного документа термин «расщепляемый фрагмент» означает связь или группу атомов, которые расщепляются в физиологических условиях, например, внутри клетки или субъекта.

В контексте данного документа термин «комплементарный» по отношению к олигонуклеотиду означает, что по меньшей мере 70% нуклеотидных оснований олигонуклеотида или одной или более его областей и нуклеотидных оснований другой нуклеиновой кислоты или одной или более ее областей способны образовывать водородные когда последовательность нуклеотидных друг другом, оснований олигонуклеотида и другой нуклеиновой кислоты выровнены в противоположных направлениях. В контексте данного документа «комплементарные нуклеотидные основания» нуклеотидные основания, которые способны образовывать водородные связи друг с другом. Комплементарные пары нуклеотидных оснований включают аденин (A) с тимином (T), аденин (A) с урацилом (U), цитозин (C) с гуанином (G), и 5-метилцитозин (mC) с гуанином (G). Комплементарные олигонуклеотиды и/или нуклеиновые кислоты не должны иметь комплементарные азотистые основания при каждом нуклеозиде. Скорее, допускаются некоторые несоответствия. контексте данного документа термин «полностью комплементарный» или «100% комплементарный» по отношению к олигонуклеотиду или что олигонуклеотид означает, или комплементарны другому олигонуклеотиду или нуклеиновой кислоте в каждом нуклеотидном основании олигонуклеотида.

В контексте данного документа термин «конъюгатная группа» означает группу атомов, которая непосредственно или косвенно присоединена к олигонуклеотиду. Конъюгатные группы включают фрагмент конъюгата и линкер конъюгата, который присоединяет конъюгатный фрагмент к олигонуклеотиду.

В контексте данного документа термин «линкер конъюгата » означает одинарную связь или группу атомов, содержащую по меньшей мере одну связь, которая соединяет фрагмент конъюгата с олигонуклеотидом.

Используемый в данном документе термин «фрагмент конъюгата»

означает группу атомов, которая присоединена к олигонуклеотиду через линкер конъюгата.

термин Используемый данном документе «смежный» контексте олигонуклеотида относится к нуклеозидам, азотистым основаниям, сахарным фрагментам или межнуклеозидным связям, которые непосредственно примыкают друг K другу. Например, «смежные азотистые основания» означает азотистые основания, расположенные непосредственно рядом друг с другом.

В контексте данного документа термин «ограниченный этил», или «сЕt», или «сЕt-модифицированный сахар» означает фрагмент β - D-рибозил бициклического сахарного фрагмента, в котором второе кольцо бициклического сахара образуется через мостик, соединяющий 4'-углерод и 2'-углерод β -D-рибозильного сахарного фрагмента, где мостик имеет формулу 4'-CH(CH3)-O-2', а метильная группа мостика находится в S-конфигурации.

В контексте данного документа термин « cEt нуклеозид» означает нуклеозид, содержащий модифицированный сахарный фрагмент cEt.

В документе Используемый данном термин «хирально обогащенная популяция» означает множество молекул с идентичной молекулярной формулой, в котором количество или процентное содержание молекул В популяции, которые имеют конкретную стереохимическую конфигурацию в конкретном хиральном центре, количество или процент ожидаемых молекул, которые имеют ту же конкретную стереохимическую конфигурацию в том же конкретном хиральном центре в популяции, если конкретный хиральный центр был стереослучайным. Хирально обогащенные популяции молекул, имеющих несколько хиральных центров внутри каждой молекулы, МОГУТ содержать ОДИН ИЛИ несколько стереослучайных хиральных центров. В определенных вариантах осуществления молекулы представляют собой модифицированные олигонуклеотиды. В определенных вариантах осуществления молекулы представляют собой соединения, содержащие модифицированные олигонуклеотиды.

Используемый в данном документе термин «гэпмер» означает модифицированный олигонуклеотид, содержащий внутреннюю область, имеющую множество нуклеозидов, которые способствуют расщеплению с помощью РНКазы Н, расположенную между внешними областями, содержащими один или более нуклеозидов, причем содержащиеся во внутренней области нуклеозиды химически отличаются от нуклеозида

нуклеозидов, которые содержатся во внешних областях. ИЛИ Внутренняя область может называться «гэп», а внешние области могут называться «крыльями». Если не указано иное, «гэпмер» относится к сахарному мотиву. Если не указано иное, сахарный фрагмент каждого нуклеозида разрыва представляет собой 2'-β-Dдезоксирибозильный сахарный фрагмент. Таким образом, «МОЕ-гэпмер» означает гэпмер, имеющий разрыв, содержащий 2'- β -Dдезоксинуклеозиды, и крылья, содержащие 2'-МОЕ нуклеозиды. Если не указано иное, гэпмер МОЕ может содержать одну или несколько модифицированных межнуклеозидных связей и/или модифицированных нуклеотидных оснований, И такие модификации не обязательно следуют гэпмерному образцу модификаций сахара.

В контексте данного документа термин «область горячей точки» представляет собой диапазон нуклеотидных оснований в нуклеиновой кислоте мишени, который поддается снижению количества или активности нуклеиновой кислоты-мишени под действием олигомерного соединения.

Используемый данном документе термин «пибридизация» В означает спаривание или отжиг комплементарных олигонуклеотидов и/или нуклеиновых кислот. Не ограничиваясь конкретным распространенный механизм гибридизации наиболее механизмом, включает водородную связь, которая может быть водородной связью Уотсона - Крика, Хугстина или обратной водородной Хугстина, между комплементарными азотистыми основаниями.

контексте данного документа термин «межнуклеозидная связь» означает ковалентную связь между смежными нуклеозидами в олигонуклеотиде. Используемый В данном документе термин «модифицированная межнуклеозидная СВЯЗЬ» означает любую фосфодиэфирной межнуклеозидную связь, ОТЛИЧНУЮ \circ T межнуклеозидной связи. «Фосфоротиоатная межнуклеозидная связь» представляет собой модифицированную межнуклеозидную связь, в которой один из немостиковых атомов кислорода фосфодиэфирной межнуклеозидной связи замещает атом серы.

Используемый в данном документе термин «линкер-нуклеозид» означает нуклеозид, который прямо или косвенно связывает олигонуклеотид с фрагментом конъюгата. Линкер-нуклеозиды расположены внутри линкера конъюгата олигомерного соединения. Линкер-нуклеозиды не считаются частью олигонуклеотидной части олигомерного соединения, даже если они являются смежными с олигонуклеотидом.

Используемый в данном документе термин «небициклический модифицированный сахарный фрагмент» означает модифицированный сахарный фрагмент, который содержит модификацию, такую как заместитель, которая не образует мостик между двумя атомами сахара с образованием второго кольца.

В контексте данного документа термин «несовпадение» или «некомплементарный» означает нуклеотидное основание первого олигонуклеотида, которое не комплементарно соответствующему нуклеиновому основанию второго олигонуклеотида или нуклеиновой кислоты-мишени, когда первый и второй олигонуклеотид выровнены.

В контексте данного документа термин «мотив» означает структуру немодифицированных и/или модифицированных сахарных фрагментов, нуклеотидных оснований и/или межнуклеозидных связей в олигонуклеотиде.

В контексте данного документа термин «неврологическое заболевание» означает заболевание мозга, центральной нервной системы, периферической нервной системы или их комбинацию. Неврологическое заболевание может быть отмечено по меньшей мере одним из нарушения функции нейронов, повреждения нейронов и гибели нейронов. Неврологическое заболевание может включать снижение двигательной функции. Неврологическое заболевание может включать снижение регуляции моторики.

Используемый В данном документе термин «азотистое основание» означает немодифицированное азотистое основание или модифицированное азотистое основание. В контексте документа «немодифицированное нуклеиновое основание» означает аденин (A), тимин (T), цитозин (C), урацил (U) или гуанин (G). В документа термин «модифицированное данного представляет группу нуклеотидное основание» собой отличных от немодифицированных A, T, C, U или G, способных образовывать пары по меньшей мере с одним немодифицированным нуклеотидным основанием. «5-метилцитозин» представляет модифицированное азотистое основание. Универсальное основание представляет собой модифицированное азотистое основание, которое может спариваться с любым из пяти немодифицированных азотистых Используемый оснований. В данном документе термин «последовательность азотистых оснований» означает смежных азотистых оснований в нуклеиновой кислоте олигонуклеотиде, не зависящий от какой-либо модификации сахара или модификации межнуклеозидной связи.

Используемый в данном документе термин «нуклеозид» означает соединение, содержащее азотистое основание и сахарный фрагмент. Азотистое основание и сахарный фрагмент, каждый независимо, являются немодифицированными или модифицированными. В контексте данного документа термин «модифицированный нуклеозид» означает нуклеозид, содержащий модифицированное нуклеотидное основание и/или модифицированный сахарный фрагмент. Модифицированные нуклеозиды включают нуклеозиды, в которых отсутствует азотистое основание. «Связанные нуклеозиды» представляют собой нуклеозиды, которые соединены в непрерывную последовательность (т.е. между связанными нуклеозидами нет дополнительных нуклеозидов).

контексте данного документа термин «олигомерное соединение» означает олигонуклеотид и, необязательно, один или более дополнительных элементов, таких как конъюгатная группа или концевая группа. Олигомерное соединение может быть спарено со вторым олигомерным соединением, которое комплементарно первому ИЛИ олигомерному соединению тэжом быть не спарено. «Одноцепочечное олигомерное соединение» представляет неспаренное олигомерное соединение. Термин «олигомерный дуплекс» означает дуплекс, образованный двумя олигомерными соединениями, имеющими комплементарные последовательности азотистых оснований. Каждое олигомерное соединение олигомерного дуплекса называться «дуплексным олигомерным соединением».

Используемый в данном документе термин «олигонуклеотид» означает цепь связанных нуклеозидов, связанных межнуклеозидные связи, где каждый нуклеозид и межнуклеозидная связь могут быть модифицированными или немодифицированными. Если не указано иное, олигонуклеотилы состоят из 8-50 связанных Используемый В нуклеозидов. данном документе термин «модифицированный олигонуклеотид» означает олигонуклеотид, где меньшей мере один нуклеозид или межнуклеозидная связь ПО модифицированы. Используемый В данном документе «немодифицированный олигонуклеотид» означает олигонуклеотид, содержит каких-либо модификаций нуклеозидов не ИЛИ модификаций межнуклеозидных связей.

В контексте данного документа термин «фармацевтически приемлемый носитель или разбавитель» означает любое вещество, подходящее для применения при введении животному. Некоторые такие носители позволяют составлять фармацевтические композиции в виде, например, таблеток, пилюль, драже, капсул, жидкостей,

гелей, сиропов, взвесей, суспензии и пастилки для перорального приема субъектом. В определенных вариантах осуществления фармацевтически приемлемый носитель или разбавитель представляет собой стерильную воду, стерильный физиологический раствор, стерильный буферный раствор или стерильную искусственную цереброспинальную жидкость.

Используемый в данном документе термин «фармацевтически приемлемые соли» означает физиологически и фармацевтически приемлемые соли соединений. Фармацевтически приемлемые соли сохраняют желаемую биологическую активность исходного соединения и не оказывают на него нежелательного токсического воздействия.

Используемый в данном документе термин «фармацевтическая означает смесь веществ, хишкдохдоп для субъекту. Например, фармацевтическая композиция может содержать соединение И стерильный водный олигомерное определенных вариантах осуществления фармацевтическая композиция анализе а свободного проявляет активность В поглощения В определенных клеточных линиях.

В контексте данного документа термин «пролекарство» означает терапевтический агент в форме вне организма, который превращается в другую форму внутри субъекта или его клеток. Обычно, преобразование пролекарства в организме субъект облегчается действием ферментов (например, эндогенного или вирусного фермента) или химических веществ, присутствующих в клетках или тканях, и/или физиологическими условиями.

контексте данного документа термин «снижении ИЛИ ингибирование количества или активности» относится к снижению блокированию транскрипционной экспрессии ИЛИ активности относительно транскрипционной экспрессии ИЛИ активности или контрольном образце необработанном И не обязательно указывает на полное устранение транскрипционной экспрессии или активности.

В контексте данного документа термин «РНК» означает транскрипт РНК, и включает пре-мРНК и зрелую мРНК, если не указано иное.

Используемый в данном документе термин «соединение РНКи» означает антисмысловое соединение, которое действует, по меньшей мере частично, через RISC или Ago2 для модуляции целевой нуклеиновой кислоты и/или белка, кодируемого целевой нуклеиновой кислотой. Соединения РНКи включают, но не ограничиваются ими,

двухцепочечную миРНК, одноцепочечную РНК (оцРНК) и микроРНК, включая имитаторы микроРНК. В определенных вариантах осуществления соединение РНКи модулирует количество, активность и/или сплайсинг нуклеиновой кислоты-мишени. Термин соединение РНКи исключает антисмысловые соединения, которые действуют через РНКазу Н.

Используемый в данном документе термин «самокомплементарный» по отношению к олигонуклеотиду означает олигонуклеотид, который по меньшей мере частично гибридизируется с самим собой.

Используемый в данном документе термин «стандартный клеточный анализ» означает анализ, описанный в Примере 1, и его подходящие варианты.

Используемый в данном документе термин «стереослучайный» в контексте совокупности молекул идентичной молекулярной формулы означает хиральный центр, имеющий случайную стереохимическую Например, в конфигурацию. популяции молекул, содержащих стереослучайный хиральный центр, число молекул, имеющих конфигурацию стереослучайного хирального центра, может быть, но не обязательно, таким же, как число молекул, имеющих (R)конфигурацию стереослучайного хирального центра. Стереохимическая конфигурация хирального центра считается случайной, если она является результатом метода синтеза, который не предназначен для контроля стереохимической конфигурации. В определенных вариантах осуществления стереослучайный хиральный представляет собой стереослучайную фосфоротиоатную центр межнуклеозидную связь.

В контексте данного документа термин «субъект» означает человека или животное, не являющееся человеком. В некоторых вариантах осуществления, субъектом является человек.

Используемый в данном документе термин «сахарный фрагмент» немодифицированный сахарный фрагмент ИЛИ фрагмент. модифицированный сахарный В контексте документа термин «немодифицированный сахарный фрагмент» означает рибозильный фрагмент, встречающийся 2'-OH(H) («немодифицированный сахарный фрагмент РНК»), или 2 '-H(H) фрагмент, встречающийся дезоксирибозильный («немодифицированный сахарный фрагмент ДНК»). Немодифицированные фрагменты имеют по одному водороду в каждом положений 1', 3' и 4', кислород в положении 3' и два атома

водорода в положении 5'. В контексте данного документа термин «модифицированный сахарный фрагмент» или «модифицированный сахар» означает модифицированный фуранозильный сахарный фрагмент или заменитель сахара.

Используемый в данном документе термин «заменитель сахара» означает модифицированный сахарный фрагмент, отличающийся фуранозильного фрагмента, который может связывать азотистое основание с другой группой, такой как межнуклеозидная связь, группа конъюгата или концевая группа в олигонуклеотиде. Модифицированные нуклеозиды, содержащие сахарные МОГУТ быть включены В ОДНО ИЛИ более положений олигонуклеотида, И такие олигонуклеотиды способны гибридизоваться с комплементарными олигомерными соединениями или нуклеиновыми кислотами.

В контексте данного документа термин «симптом или признак» означает любую физическую особенность или результат теста, указывающий на наличие или степень заболевания или нарушения. В определенных вариантах осуществления симптом является очевидным для субъекта или для профессионального медицинского работника, осматривающего или тестирующего указанного субъекта. В определенных вариантах осуществления признак является очевидным при инвазивном диагностическом тестировании, включая, но не ограничиваясь, посмертные тесты.

В контексте данного документа термин «нуклеиновая кислотамишень» и «РНК-мишень» означают нуклеиновую кислоту, для воздействия на которую создано антисмысловое соединение.

В контексте данного документа термин «целевая область» означает часть нуклеиновой кислоты-мишени, с которой гибридизуется олигомерное соединение.

Используемый в данном документе термин «концевая группа» означает химическую группу или группу атомов, которые ковалентно связаны с концом олигонуклеотида.

В контексте данного документа термин «терапевтически эффективное количество» означает количество фармацевтического агента, которое обеспечивает терапевтический эффект субъекту. Например, терапевтически эффективное количество ослабляет симптом или признак заболевания.

Некоторые варианты осуществления

Данное описание обеспечивает следующие неограничивающие пронумерованные варианты осуществления:

Вариант осуществления 1. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 12-50 связанных где последовательность нуклеотидных оснований 90% модифицированного олигонуклеотида по меньшей мере на комплементарна равной по длине части нуклеиновой кислоты KCNT1, и где модифицированный олигонуклеотид содержит по меньшей мере одну модификацию, выбранную ИЗ модифицированного сахарного фрагмента и модифицированной межнуклеозидной связи.

Вариант осуществления 2. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 12-50 связанных нуклеозидов и имеющий последовательность нуклеотидных оснований, содержащую по меньшей мере 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, или 20 смежных нуклеотидных оснований любой из SEQ ID NO: 21-2939.

Вариант осуществления 3. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 12-50 связанных нуклеозидов и имеющий последовательность нуклеотидных оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 смежных нуклеотидных оснований комплементарных:

имеющей эквивалентную длину части из нуклеооснований 24523-24561 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 27568-27603 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 30772-30811 SEO ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 54372-54428 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 55785-55818 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 56048-56073 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 56319-56349 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 57683-57710 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 61117-61153 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 71033-71060 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 87135-87174 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 92109-92149 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 94221-94280 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 94352-94380 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 94993-95036 SEQ ID NO: 2, или

имеющей эквивалентную длину части из нуклеооснований 95074-95144 SEQ ID NO: 2.

Вариант осуществления 4. Олигомерное соединение, содержащее модифицированный олигонуклеотид, состоящий из 12-50 связанных нуклеозидов и имеющий последовательность нуклеотидных оснований, содержащую по меньшей мере 8, по меньшей мере 9, по меньшей мере 10, по меньшей мере 11, по меньшей мере 12, по меньшей мере 13, по меньшей мере 14, по меньшей мере 15, по меньшей мере 16, по меньшей мере 17, по меньшей мере 18, по меньшей мере 19 или по меньшей мере 20 смежных нуклеотидных оснований комплементарных:

имеющей эквивалентную длину части из нуклеооснований 16586-16649 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 16586-17823 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 16586-18663 SEO ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 19220-20568 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 23003-25391 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 27095-29908 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 30452-30891 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 31773-34427 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 38458-47003 SEQ ID NO: 2,

- имеющей эквивалентную длину части из нуклеооснований 40432-42873 SEO ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 44414-45718 SEO ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 52096-52153 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 52096-58525 SEO ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 59308-61697 SEO ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 60111-61697 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 65270-67169 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 65270-67150 SEO ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 67026-67065 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 67026-67087 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 67648-68527 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 67955-67998 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 68515-68583 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 68538-68592 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 68571-70874 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 71037-71313 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 71037-71184 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 72851-72887 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 79368-79483 SEQ ID NO: 2,
- имеющей эквивалентную длину части из нуклеооснований 86554-90150 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 88332-88448 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 91686-95485 SEQ ID NO: 2,

имеющей эквивалентную длину части из нуклеооснований 91686-94431 SEQ ID NO: 2, или

имеющей эквивалентную длину части из нуклеооснований 94219-94275 SEQ ID NO: 2.

Вариант осуществления 5. Олигомерное соединение по любому 1 - 4, где вариантов осуществления модифицированный ИЗ олигонуклеотид имеет последовательность нуклеотидных оснований, 80%, 85%, 90%, 95% или которая по меньшей мере на комплементарна части равной ДЛИНЫ последовательности нуклеотидных оснований, выбранной из SEQ ID NO: 1-3 измерении по всей последовательности нуклеотидных оснований модифицированного олигонуклеотида.

Вариант осуществления 6. Олигомерное соединение по любому из вариантов осуществления 1-5, где по меньшей мере один модифицированный нуклеозид, содержит фрагмент модифицированного сахара.

Вариант осуществления 7. Олигомерное соединение по варианту осуществления 6, где модифицированный фрагмент сахара, содержит фрагмент бициклического сахара.

Вариант осуществления 8. Олигомерное соединение по варианту осуществления 7, где фрагмент бициклического сахара включает 2' - 4' мостик, выбранный из -0-CH2-; и -0-CH(CH3)-.

Вариант осуществления 9. Олигомерное соединение по варианту осуществления 6, где модифицированный фрагмент сахара, содержит фрагмент модифицированного небициклического сахара.

Вариант осуществления 10. Олигомерное соединение по варианту осуществления 9, где фрагмент модифицированного небициклического сахара, содержит 2'-МОЕ сахарный фрагмент или 2'-ОМе сахарный фрагмент.

Вариант осуществления 11. Олигомерное соединение по любому из вариантов осуществления 1-5, где по меньшей мере один модифицированный нуклеозид содержит заменитель сахара.

Вариант осуществления 12. Олигомерное соединение по варианту осуществления 11, где заменитель сахара выбирают из морфолино и PNA.

Вариант осуществления 13. Олигомерное соединение по любому

из вариантов осуществления 1-12, отличающееся тем, что модифицированный олигонуклеотид имеет сахарный мотив, содержащий:

5'-область, состоящую из 1-5 связанных нуклеозидов 5'-области;

центральную область, состоящуюиз 6-10 связанных нуклеозидов центральной области; и

3'-область, состоящую из 1-5 связанных нуклеозидов 3'- области; при этом

каждый из нуклеозидов 5'-области и каждый из нуклеозидов 3'-области содержит модифицированный сахарный фрагмент, и каждый из нуклеозидов центральной области содержит немодифицированный 2'-дезоксирибозильный сахарный фрагмент.

Вариант осуществления 14. Олигомерное соединение по любому из вариантов осуществления 1-13, где модифицированный олигонуклеотид содержит по меньшей мере одну модифицированную межнуклеозидную связь.

Вариант осуществления 15. Олигомерное соединение по варианту осуществления 14, отличающееся тем, что каждая межнуклеозидная связь модифицированного олигонуклеотида представляет собой модифицированную межнуклеозидную связь.

Вариант осуществления 16. Олигомерное соединение по варианту осуществления 14 или 15, где модифицированная межнуклеозидная связь представляет собой фосфоротиоатную межнуклеозидную связь.

Вариант осуществления 17. Олигомерное соединение по варианту осуществления 14 или 16, отличающееся тем, что модифицированный олигонуклеотид содержит по меньшей мере одну фосфодиэфирную межнуклеозидную связь.

Вариант осуществления 18. Олигомерное соединение по любому из вариантов осуществления 14, 16 или 17, где каждую межнуклеозидную связь независимо выбирают из фосфодиэфирной межнуклеозидной связи или фосфоротиоатной межнуклеозидной связи.

Вариант осуществления 19. Олигомерное соединение по любому из вариантов осуществления 1-18, отличающееся тем, что модифицированный олигонуклеотид содержит по меньшей мере одно модифицированное нуклеооснование.

Вариант осуществления 20. Олигомерное соединение по варианту осуществления 19, отличающееся тем, что модифицированное нуклеооснование представляет собой 5-

метилцитозин.

Вариант осуществления 21. Олигомерное соединение по любому из вариантов осуществления 1-20, отличающееся тем, что модифицированный олигонуклеотид состоит из 12-30, 12-22, 12-20, 14-20, 15-25, 16-20, 18-22 или 18-20 связанных нуклеозидов.

Вариант осуществления 22. Олигомерное соединение по любому из вариантов осуществления 1-21, где модифицированный олигонуклеотид состоит из 20 связанных нуклеозидов.

Вариант осуществления 23. Олигомерное соединение по варианту осуществления 22, где модифицированный олигонуклеотид имеет мотив межнуклеозидной связи sooosssssssssssoss, где «s» представляет собой фосфоротиоатную межнуклеозидную связь, а «о» представляет собой фосфориэфирную межнуклеозидную связь.

Вариант осуществления 24. Олигомерное соединение по любому из вариантов осуществления 1-23, состоящее из модифицированного олигонуклеотида.

Вариант осуществления 25. Олигомерное соединение по любому из вариантов осуществления 1-23, содержащее конъюгированную группу, содержащую конъюгированный фрагмент и конъюгационный линкер.

Вариант осуществления 26. Олигомерное соединение по варианту осуществления 25, отличающееся тем, что конъюгированная группа содержит кластер GalNAc, содержащий 1-3 лиганда GalNAc.

Вариант осуществления 27. Олигомерное соединение по вариантам осуществления 25 или 26, отличающееся тем, что конъюгационный линкер состоит из одинарной связи.

Вариант осуществления 28. Олигомерное соединение по варианту осуществления 25, отличающееся тем, что конъюгационный линкер является расщепляемым.

Вариант осуществления 29. Олигомерное соединение по варианту осуществления 28, отличающееся тем, что конъюгационный линкер содержит 1-3 линкерных нуклеозида.

Вариант осуществления 30. Олигомерное соединение по любому из вариантов осуществления 25-29, отличающееся тем, что конъюгированная группа присоединена к модифицированному олигонуклеотиду на 5'-конце модифицированного олигонуклеотида.

Вариант осуществления 31. Олигомерное соединение по любому из вариантов осуществления 25-29, отличающееся тем, что конъюгированная группа присоединена к модифицированному олигонуклеотиду на 3'-конце модифицированного олигонуклеотида.

Вариант осуществления 32. Олигомерное соединение по любому из вариантов осуществления 1-31, содержащее концевую группу.

Вариант осуществления 33. Олигомерное соединение по любому из вариантов осуществления 1-32, отличающееся тем, что олигомерное соединение представляет собой одноцепочечное олигомерное соединение.

Вариант осуществления 34. Олигомерное соединение по любому из вариантов осуществления 1-28 или 30-31, отличающееся тем, что олигомерное соединение не содержит линкерных нуклеозидов.

Вариант осуществления 35. Олигомерное соединение по любому из вариантов осуществления 1-34, где модифицированный олигонуклеотид олигомерного соединения представляет собой соль, и где соль представляет собой натриевую соль или калиевую соль.

Вариант осуществления 36. Олигомерный дуплекс, содержащий олигомерное соединение по любому из вариантов осуществления 1-32, 34, или 35.

Вариант осуществления 37. Антисмысловое соединение, содержащее или состоящее из олигомерного соединения по любому из вариантов осуществления 1-35 или олигомерного дуплекса по варианту осуществления 36.

Вариант осуществления 38. Фармацевтическая композиция, содержащая олигомерное соединение ПО любому из вариантов осуществления 1-35 ИЛИ олигомерный дуплекс ПО варианту 36 и фармацевтически приемлемый осуществления носитель ИЛИ разбавитель.

Вариант осуществления 39. Фармацевтическая композиция по варианту осуществления 38, где фармацевтически приемлемый разбавитель представляет собой искусственную спинномозговую жидкость или ФСБ.

Вариант осуществления 40. Фармацевтическая композиция по варианту осуществления 39, отличающаяся TeM, ЧТО фармацевтическая КОМПОЗИЦИЯ COCTONT преимущественно модифицированного олигонуклеотида искусственной И цереброспинальной жидкости.

Вариант осуществления 41. Способ, включающий введение субъекту фармацевтической композиции по любому из вариантов осуществления 38-40.

Вариант осуществления 42. Способ лечения неврологического заболевания, включающий введение индивидууму, имеющему неврологическое заболевание или подверженному риску его

развития, терапевтически эффективного количества фармацевтической композиции согласно любому из вариантов осуществления 38-40; и тем самым проводя лечение неврологического заболевания.

Вариант осуществления 43. Способ снижения РНК КСМТ1 или белка KCNT1 в центральной нервной системе индивидуума, имеющего заболевание или неврологическое подверженного риску включающий введение терапевтически эффективного количества фармацевтической композиции согласно любому вариантов осуществления 38-40; тем самым снижая РНК КСNT1 или белок КСNT1 в центральной нервной системе.

Вариант осуществления 44. Способ по варианту осуществления 42 или 43, где неврологическое заболевание включает энцефалопатию.

Вариант осуществления 45. Способ по варианту осуществления 42 или 43, где неврологическое заболевание включает эпилепсию.

Вариант осуществления 46. Способ по варианту осуществления 42 или 43, где неврологическое заболевание включает детскую эпилепсию.

Вариант осуществления 47. Способ по варианту осуществления 46, где детская эпилепсия представляет собой младенческую эпилепсию с мигрирующими фокальными припадками (EIMFS).

Вариант осуществления 48. Способ по варианту осуществления 42 или 43, где неврологическое заболевание представляет собой аутосомно-доминантную ночную лобную эпилепсию (ADNFLE)

Вариант осуществления 49. Способ по любому из вариантов осуществления 42--48, где введение представляет собой интратекальное введение.

Вариант осуществления 50. Способ по любому из вариантов осуществления 42-49, где по меньшей мере один симптом или признак неврологического заболевания ослабляется.

Вариант осуществления 51. Способ по варианту осуществления 50, где симптом или отличительный признак выбирают из припадка, повреждения мозга, демиелинизации, гипотонии, микроцефалии, депрессии, тревоги, когнитивной функции.

Вариант осуществления 52. Способ по любому из вариантов осуществления 42-51, где способ предотвращает или замедляет регрессию заболевания.

Вариант осуществления 53. Способ снижения РНК КСNT1 в клетке, включающий приведение клетки в контакт с олигомерным

соединением согласно любому из вариантов осуществления 1-35, олигомерным дуплексом согласно варианту осуществления 36 или антисмысловым соединением согласно варианту осуществления 37; снижая тем самым РНК КСПТ1 в клетке.

Вариант осуществления 4. Способ снижения белка КСNT1 в клетке, включающий приведение клетки в контакт с олигомерным соединением согласно любому из вариантов осуществления 1-35, олигомерным дуплексом согласно варианту осуществления 36 или антисмысловым соединением согласно варианту осуществления 37; снижая тем самым белок КСNT1 в клетке.

Некоторые олигонуклеотиды

В некоторых вариантах осуществления, в данном документе представлены олигомерные соединения, содержащие олигонуклеотиды, которые состоят из связанных нуклеозидов. Олигонуклеотиды могут быть немодифицированными олигонуклеотидами (РНК или ДНК) или могут быть модифицированными олигонуклеотидами. Модифицированные содержат по меньшей олигонуклеотиды мере одну модификацию относительно немодифицированной РНК или ДНК. модифицированные олигонуклеотиды содержат по меньшей мере один модифицированный нуклеозид (содержащий модифицированный сахарный фрагмент и/или модифицированное азотистое основание) и/или по меньшей мере одну модифицированную межнуклеозидную связь.

Некоторые модифицированные нуклеозиды

Модифицированные нуклеозиды содержат модифицированный сахарный фрагмент или модифицированное азотистое основание, или и модифицированный сахарный фрагмент, и модифицированное азотистое основание.

1. Некоторые сахарные фрагменты

определенных вариантах осуществления модифицированные сахарные фрагменты представляют собой небициклические модифицированные сахарные фрагменты. В определенных вариантах осуществления модифицированные сахарные фрагменты трициклическими бициклическими или сахарными фрагментами. определенных вариантах осуществления модифицированные сахарные фрагменты представляют собой заменители сахара. Такие заменители сахара могут содержать одну или более замен, соответствующих заменам других типов модифицированных сахарных фрагментов.

В определенных вариантах осуществления модифицированные сахарные фрагменты представляют собой небициклические модифицированные сахарные фрагменты, содержащие фуранозильное

кольцо с одной или несколькими замещающими группами, ни одна из не связывает два атома фуранозильного кольца которых образованием бициклической структуры. Такие немостиковые заместители могут находиться в любом положении фуранозила, включая, но не ограничиваясь этим, заместители в положениях 2', 4' и/или 5'. В определенных вариантах осуществления один или более немостиковых заместителей небициклических модифицированных фрагментов являются разветвленными. замещающих подходящих для небициклических групп, сахарных фрагментов, включают, модифицированных НО ограничиваются ими: 2'-F, 2'-ОСНЗ ("ОМе" или "О-метил"), и 2'-О(СН2) 20СН3 ("МОЕ"). В определенных вариантах осуществления 2'замещающие группы выбирают из следующего: галоген, аллил, амино, азидо, SH, CN, OCN, CF3, OCF3, O-C1-C10 алкокси, O-C1-C10 замещенный алкокси, О-С1-С10 алкил, О-С1-С10 замещенный алкил, S-алкил, N(Rm)-алкил, O-алкенил, S-алкенил, N(Rm)-алкенил, Oалкинил, S-алкинил, N(Rm)-алкинил, O-алкиленил-O-алкил, алкинил, аралкил, О-алкарил, О-аралкил, O(CH2)2SCH3, O(CH2)2ON(Rm)(Rn) или OCH2C(=O)-N(Rm)(Rn), где каждый Rm и Rn независимо представляет собой Н, амино защитную группу или замещенный или незамещенный С1-С10 алкил, и группы 2'-замещающие группы, описанные в Cook et al., U.S. 6531584; Cook et al., U.S. 5859221; и Cook et al., U.S. 6005087. Определенные варианты осуществления этих 2'-заместителей могут быть дополнительно замещены одной или более группами заместителей, выбранными из: гидроксила, амино, алкокси, карбокси, бензила, фенила, нитро (NO2), тиола, тиоалкокси, тиоалкила, галогена, алкила, арила, алкенила и алкинила. Примеры 4'-замещающих групп, ДЛЯ небициклических модифицированных ПОДХОДЯЩИХ не ограничиваются фрагментов, включают, НО NMN, (например, метокси), алкил и группы, описанные в Manoharan et al., WO 2015/106128. Примеры 5'-замещающих групп, подходящих для небициклических модифицированных сахарных фрагментов, включают, но не ограничиваются ими: 5-метил (R или S), 5'-винил и 5'метокси. В определенных вариантах осуществления небициклические модифицированные сахарные фрагменты включают более немостикового сахарного заместителя, например, 2'-F-5'-метильные сахарные фрагменты, а также модифицированные сахарные фрагменты и модифицированные нуклеозиды, описанные в Migawa et al., WO 2008/101157, и Rajeev et al., US2013/0203836.).

В определенных вариантах осуществления 2'-замещенный небициклический модифицированный нуклеозид включает фрагмент сахара, содержащий немостиковую 2'-замещающую группу, выбранную из: F, NH2, N3, OCF3, OCH3, O(CH2)3NH2, CH2CH=CH2, OCH2CH=CH2, OCH2CH2OCH3, O(CH2)2SCH3, O(CH2)2ON(Rm)(Rn), O(CH2)2O(CH2)2N(CH3)2, и N-замещенный ацетамид (OCH2C(=O)-N(Rm)(Rn)), где каждый Rm и Rn представляет собой, независимо, H, аминозащитную группу или замещенный или незамещенный С1-С10 алкил

В определенных вариантах осуществления 2'-замещенный нуклеозид небициклический модифицированный нуклеозид включает сахарный фрагмент, содержащий немостиковую 2'-замещающую группу, выбранную из: F, OCF3, OCH3, OCH2CH2OCH3, O(CH2)2SCH3, O(CH2)2ON(CH3)2, O(CH2)2O(CH2)2N(CH3)2 и OCH2C(=O)-N(H)CH3 (NMA).

В определенных вариантах осуществления 2'-замещенный небициклический модифицированный нуклеозид включает фрагмент сахара, содержащий немостиковую 2'-замещающую группу, выбранную из: F, OCH3 и OCH2CH2OCH3.

Некоторые модифицированные сахарные фрагменты содержат заместитель, который связывает два атома фуранозильного кольца с образованием второго кольца, что приводит K образованию определенных бициклического сахарного фрагмента. В вариантах осуществления бициклический сахарный фрагмент содержит мостик между 4' и 2' атомами фуранозного кольца. Примеры таких мостиковых заместителей сахара от 4' до 2' включают, но не ограничиваются ими: 4'-CH2-2', 4'-(CH2)2-2', 4'-(CH2)3-2', 4'-CH2-O-2' ("LNA"), 4'-CH2-S-2', 4'-(CH2)2-O-2' ("ENA"), CH(CH3)-O-2' (называемый "ограниченным этилом" или "cEt"), 4'-CH2-O-CH2-2', 4'-CH2-N(R)-2', 4'-CH(CH2OCH3)-O-2' ("o MOE'' b "cMOE") и их аналоги (см., напр., Seth et al., U.S. 7,399,845, Bhat et al., U.S. 7,569,686, Swayze et al., U.S. 7,741,457, и Swayze et al., U.S. 8,022,193), 4'-С(СН3)(СН3)-О-2' и их аналоги (см., напр., Seth et al., U.S. 8,278,283), 4'-CH2-N(OCH3)-2' и их аналоги (см, напр., Prakash et al., U.S. 8,278,425), 4'-CH2-O-N(CH3)-2' (см., напр., Allerson et al., U.S. 7,696,345 и Allerson et al., U.S. 8,124,745), 4'-CH2-C(H)(CH3)-2' (CM., напр., Zhou, et al., J. Org. Chem., 2009, 74, 118-134), 4'-СН2-C(=CH2)-2' и их аналоги (см, например, Seth et al., U.S. 8,278,426), 4'-C(RaRb)-N(R)-O-2', 4'-C(RaRb)-O-N(R)-2', 4'-CH2O-N(R)-2' и 4'-CH2-N(R)-O-2',, где каждый R, Ra, и Rb представляют собой, независимо, H, защитную группу или C1-C12 алкил cm, например, Imanishi et al., U.S. 7,427,672).

В определенных вариантах осуществления такие от 4' до 2' мостики независимо содержат от 1 до 4 связанных групп, независимо выбранных из: -[C(Ra)(Rb)]n-, -[C(Ra)(Rb)]n-, -[C(Ra)(Rb)]n-, -C(Ea)(Rb)-, -C(Ea)(

где:

х равен 0, 1 или 2;

п равен 1, 2, 3 или 4;

каждый Ra и Rb независимо представляет собой H, защитную группу, гидроксил, C1-C12 алкил, замещенный C1-C12 алкил, C2-C12 алкенил, замещенный C2-C12 алкинил, замещенный C2-C12 алкинил, замещенный C2-C12 алкинил, С5-C20 арил, замещенный С5-C20 арил, гетероциклический радикал, замещенный гетероциклический радикал, гетероарил, замещенный гетероарил, C5-C7 алициклический радикал, замещенный C5-C7 алициклический радикал, замещенный C5-C7 алициклический радикал, с5-C7 алициклический радикал, галоген, ОJ1, NJ1J2, SJ1, N3, COOJ1, ацил (C(=O)-H), замещенный ацил, CN, сульфонил (S(=O)2-J1), или сульфоксил (S(=O)-J1); и

каждый из J1 и J2 независимо представляет собой H, C1-C12 алкил, замещенный C1-C12 алкил, C2-C12 алкенил, замещенный C2-C12 алкинил, С2-C12 алкинил, С5-C20 арил, замещенный C5-C20 арил, ацил (C(=0)-H), замещенный ацил, гетероциклический радикал, замещенный гетероциклический радикал, C1-C12 аминоалкил, или защитную группу.

Дополнительные бициклические сахарные фрагменты известны в данной области, см., например: Freier et al., Nucleic Acids Research, 1997, 25(22), 4429-4443, Albaek et al., J. Org. Chem., 2006, 71, 7731-7740, Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; Srivastava et al., J. Am. Chem. Soc., 2007, 129, 8362-8379; Wengel et a., U.S. 7,053,207; Imanishi et al., U.S. 6,268,490; Imanishi et al. U.S. 6,770,748; Imanishi et al., U.S. RE44,779; Wengel et al., U.S. 6,794,499; Wengel et al., U.S. 6,670,461; Wengel et al., U.S. 7,034,133; Wengel et al., U.S. 8,080,644; Wengel et al., U.S. 8,034,909; Wengel et al., U.S. 8,153,365; Wengel et al., U.S. 7,572,582; и

et al., U.S. 6,525,191; Torsten et al., 2004/106356; Wengel et al., WO 1999/014226; Seth et al., WO 2007/134181; Seth et al., U.S. 7,547,684; Seth et al., U.S. 7,666,854; Seth et al., U.S. 8,088,746; Seth et al., U.S. 7,750,131; Seth et al., U.S. 8,030,467; Seth et al., U.S. 8,268,980; Seth et al., U.S. 8,546,556; Seth et al., U.S. 8,530,640; Migawa et al., U.S. 9,012,421; Seth et al., U.S. 8,501,805; и U.S. Patent Publication Nos. Allerson et al., US2008/0039618 и Migawa et al., US2015/0191727.

В определенных вариантах осуществления изобретения бициклические сахарные фрагменты и нуклеозиды, включающие такие бициклические сахарные фрагменты, дополнительно определяют по изомерной конфигурацией. Например, LNA нуклеозид (описанный в данном документе) может находиться в α -L конфигурации или в β -D конфигурации.

LNA (β D конфигурация) α -L-LNA (α -L-конфигурация) мостик = 4'-CH₂-O-2' мостик - 4'-CH₂-O-2'

Бициклические нуклеозиды α -L-метиленокси (4'-CH2-O-2') или α-L-LNA были внедрены в олигонуклеотиды, которые демонстрировали антисмысловую активность (Frieden et al., Nucleic 2003, 21, 6365-6372). B Research, данном документе общие бициклических нуклеозидов включают oбe изомерные Когда положения специфических бициклических конфигурации. нуклеозидов (например, ИЛИ cEt) идентифицированы LNA приведенных в данном документе примерах, они находятся В конфигурации β-D, если не указано иное.

В определенных вариантах осуществления модифицированные сахарные фрагменты содержат один или более немостиковых сахарных заместителей и один или более мостиковых сахарных заместителей (например, 5'-замещенные и 4'-2'-мостиковые сахара).

определенных вариантах осуществления модифицированные фрагменты представляют собой заменители сахарные caxapa. определенных таких вариантах осуществления атом кислорода сахарного фрагмента заменен, например, атомом серы, углерода или определенных таких вариантах осуществления азота. В модифицированные сахарные фрагменты также содержат мостиковые и/или немостиковые заместители, как описано в данном документе.

Например, определенные заменители сахара содержат 4'-атом серы и замещение в положении 2-(*см.*, *например*, Bhat et al., патент США № 7 875 733 и Bhat et al., патент США № 7 939 677) и/или положении 5'.

В определенных вариантах осуществления заменители сахара содержат кольца, имеющие количество атомов отличное от 5. Например, в определенных вариантах осуществления заменитель сахара содержит шестичленный тетрагидропиран («ТГП»). Такие тетрагидропираны могут быть дополнительно модифицированы или замещены. Нуклеозиды, содержащие такие модифицированные тетрагидропираны, включают, но не ограничиваются этим, гекситолнуклеиновую кислоту («НNА»), анитолнуклеиновую кислоту («ANA»), маннитолнуклеиновую кислоту («MNA») (см., например, Leumann, CJ. Bioorg. & Med. Chem. 2002, 10, 841-854), fluoro HNA:

F-HNA

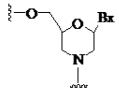
(«F-HNA», *см.*, *например* Swayze et al., U.S. 8088904; Swayze et al., U.S. 8440803; Swayze et al., U.S. 8796437; и Swayze et al., U.S. 9005906; F-HNA может также упоминаться как F-THP или 3'-фтортетрагидропиран), и нуклеозиды, содержащие дополнительные модифицированные соединения THP, имеющие формулу:

$$T_3 - 0$$
 q_1
 q_2
 q_3
 q_4
 q_6
 q_6
 q_6
 q_5
 q_5

где независимо для каждого указанного модифицированного нуклеозида ТНР:

Вх представляет собой фрагмент нуклеооснования;

ТЗ и Т4, каждый, независимо, представляют собой межнуклеозидную связывающую группу, связывающую модифицированный нуклеозид ТНР с остатком олигонуклеотида, или один из ТЗ и Т4 представляет собой межнуклеозидную связывающую группу, связывающую модифицированный нуклеозид ТНР с остатком олигонуклеотида, а другой из ТЗ и Т4 представляет собой H,


гидроксильную защитную группу, связанную конъюгированную группу или 5' или 3'-концевую группу;

каждый из q1, q2, q3, q4, q5, q6 и q7 независимо представляет собой H, C1-C6 алкил, замещенный C1-C6 алкил, С2-C6 алкенил, замещенный C2-C6 алкинил, или замещенный C2-C6 алкинил; и

каждый из R1 и R2 независимо выбирают из: водорода, галогена, замещенного или незамещенного алкокси, NJ1J2, SJ1, N3, OC(=X)J1, OC(=X)NJ1J2, NJ3C(=X)NJ1J2, и CN, где X представляет собой O, S или NJ1, и каждый J1, J2, и J3 представляет собой, независимо, H или C1-C6 алкил.

определенных вариантах осуществления представлены модифицированные нуклеозиды ТНР, где q1, q2, q3, q4, q5, q6 и q7, каждый, представляют собой H. В определенных вариантах осуществления, по меньшей мере один из q1, q2, q3, q4, q5, q6 и q7 отличен от Н. В определенных вариантах осуществления, по меньшей мере один из q1, q2, q3, q4, q5, q6 и q7 представляет собой метил. В определенных вариантах реализации представлены модифицированные нуклеозиды ТНР, в которых один из R2представляет собой F. В определенных вариантах реализации R1 представляет собой F, а R2представляет собой H, В определенных R1представляет собой реализации метокси, R2представляет собой H, и B определенных вариантах реализации R1 представляет собой метоксиэтокси, а R2 представляет собой H.

определенных вариантах осуществления заменители сахара содержат кольца, имеющие более 5 атомов и ОДНОГО гетероатома. Например, описаны нуклеозиды, морфолиносахарные фрагменты, содержащие N NX применение в олигонуклеотидах (см., например: Braasch et al., Biochemistry, 4503-4510 и Summerton et al., U.S. 5,698,685; al., U.S. 5,166,315; Summerton et Summerton et al., U.S. 5,185,444; and Summerton et al., U.S. 5,034,506). В контексте данного документа термин «морфолино» означает заменитель сахара, имеющий следующую структуру:

В определенных вариантах осуществления изобретения морфолино могут быть модифицированными, например, добавлением

или изменением различных групп заместителей относительно представленной выше структуры морфолино. Такие заменители сахара упоминаются в данном документе как «модифицированные морфолино».

В определенных вариантах осуществления изобретения заменители сахара содержат ациклические фрагменты Примеры нуклеозидов и олигонуклеотидов, содержащих такие ациклические заменители сахара, включают, но не ограничиваются ими: пептидонуклеиновую кислоту («PNA»), ациклическую бутилнуклеиновую кислоту (см., например, Kumar et al., Org. Biomol. Chem., 2013, 11, 5853-5865), и нуклеозиды и олигонуклеотиды, описанные в Manoharan et al., WO 2011/133876.

В данной области техники известно много других бициклических и трициклических сахарных кольцевых систем и кольцевых систем с заменителем сахара, которые можно использовать в модифицированных нуклеозидах.

2. Некоторые модифицированные авотистые основания

определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или более нуклеозидов, содержащих немодифицированное азотистое основание. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат один или более нуклеозидов, содержащих модифицированное азотистое В основание. определенных вариантах осуществления модифицированные олигонуклеотиды содержат ОДИН или нуклеозидов, которые не содержат азотистое основание, называемые нуклеозидом с удаленным азотистым основанием.

определенных вариантах осуществления модифицированные нуклеотидные основания выбирают из: 5-замещенных пиримидинов, 6алкилили алкинилзамещенных азапиримидинов, пиримидинов, алкилзамещенных пуринов и N-2, N-6 и O-6 замещенных пуринов. В вариантах осуществления модифицированные определенных нуклеотидные основания выбирают из: 2-аминопропиладенина, гидроксиметилцитозина, ксантина, гипоксантина, 2-аминоаденина, 6-N-метиладенина, 2-пропиладенина, 6-N-метилгуанина, тиоурацила, 2-тиотимина и 2-тиоцитозина, 5-пропинила (-С≡С-СН3) урацила, 5-пропинилцитозина, 6-азоурацила, 6-азоцитозина, азотимина, 5-рибозилурацила (псевдоурацила), 4-тиоурацила, галогена, 8-амино, 8-тиола, 8-тиоалкила, 8-гидроксила, 8-аза и других 8-замещенных пуринов, 5-галогена, в частности 5-брома, 5трифторметила, 5-галоурацила и 5-галоцитозина, 7-метилгуанина, 7 -метиладенина, 2-Г-аденина, 2-аминоаденина, 7-деазагуанина,

деазааденина, 3-деазагуанина, 3-деазааденина, 6-N-бензоладенина, 2-N-изобутирилгуанина, 4-N-бензоилцитозина, 4-N-бензоилурацила, 4-N-бензоилцитозина, 5-метил 4-N-бензоилурацила, универсальных оснований, гидрофобных оснований, смешанных увеличенных в размере оснований и фторсодержащих оснований, оснований. Другие модифицированные азотистые основания включают трициклические пиримидины, такие как 1,3-диазафеноксазин-2-он, 1,3-диазафенотиазин-2-он 9-(2-аминоэтокси)-1,3-И диазафеноксазин-2-он (G-фиксирующее основание). Пуриновые или основания модифицированных азотистых оснований пиримидиновые МОГУТ быть заменены другими гетероциклами, например дезазааденином, 7-дезазагуанозином, 2-аминопиридином 2нуклеотидные Дополнительные основания основания, раскрытые в Merigan et al., Merigan et al., U.S. 3,687,808, те, которые раскрыты в The Concise Encyclopedia Of Polymer Science And Engineering, Kroschwitz, J.I., Ed., John Wiley & Sons, 1990, 858-859; Englisch et al, Angewandte Chemie, International Edition, 1991, 30, 613; Sanghvi, Y.S., Chapter 15, Antisense Research and Applications, Crooke, S.T. and Lebleu, B., Eds., CRC Press, 1993, 273-288; и те, которые раскрыты в главах 6 и 15, Antisense Drug Technology, Crooke S.T., Ed., CRC Press, 2008, 163-166 и 442-443.

Публикации, в которых описано получение некоторых указанных выше модифицированных нуклеотидных оснований, а также других модифицированных нуклеотидных оснований, включают, ограничения Manoharan et al., US2003/0158403; Manohara et al., US2003/0175906; Dinh et al., U.S. 4845205; Spielvogel et al., U.S. 5130302; Rogers et al., U.S. 5134066; Bischofberger et al., U.S. 5175273; Urdea et al., U.S. 5367066; Benner et al., U.S. 5432272; Matteucci et al., U.S. 5434257; Gmeiner et al., U.S. 5457187; Cook et al., U.S. 5459255; Froehler et al., U.S. 5484908; Matteucci et al., U.S. 5502177; Hawkins et al., U.S. 5525711; Haralambidis et al., U.S. 5552540; Cook et al., U.S. 5587469; Froehler et al., U.S. 5594121; Switzer et al., U.S. 5596091; Cook et al., U.S. 5614617; Froehler et al., 5645985; Cook et al., U.S. 5681941; Cook et al., U.S. 5811534; Cook et al., U.S. 5750692; Cook et al., U.S. 5948903; Cook et al., U.S. 5587470; Cook et al., U.S. 5457191; Matteucci et al., U.S. 5763588; Froehler et al., U.S. 5830653; Cook et al., U.S. 5808027; Cook et al., 6166199; и Matteucci et al., U.S. 6005096.

3. Некоторые модифицированные межнуклеозидные связи

определенных осуществления вариантах нуклеозиды модифицированных олигонуклеотидов могут быть связаны вместе с использованием любой межнуклеозидной связи. Два основных класса межнуклеозидных связывающих групп определяют по наличию ОТСУТСТВИЮ атома фосфора. Типичные фосфорсодержащие межнуклеозидные СВЯЗИ включают, НО не ограничиваются фосфаты, которые содержат фосфодиэфирную связь («P=O») немодифицированными или встречающимися в называемые природе метилфосфонаты, фосфотриэфиры, фосфорамидаты связями), ϕ ос ϕ оротиоаты («P=S») и ϕ ос ϕ ородитиоаты («HS-P=S»). Типичные межнуклеозидные связывающие группы, не содержащие φοςφορ, включают, но не ограничиваются ими, метиленметилимино (-CH2-N(CH3)-O-CH2-), тиодиэфир, тионокарбамат (-O-C (=O) (NH) -S-);силоксан (-O-SiH2-O-); и N, N'-диметилгидразин (-CH2-N(CH3)-N(CH3)-). Модифицированные межнуклеозидные связи по сравнению с встречающимися в природе фосфатными связями можно использовать правило, повышения устойчивости изменения, как В олигонуклеотида К нуклеазам. определенных вариантах осуществления межнуклеозидные связи, имеющие хиральный получены в виде рацемической смеси или могут быть виде отдельных энантиомеров. Способы получения фосфорсодержащих нефосфорсодержащих межнуклеозидных связей ошодох известны специалистам в данной области техники.

Типичные межнуклеозидные связи, имеющие хиральный центр, включают, ограничиваются ими, алкилфосфонаты НО не И фосфоротиоаты. Модифицированные олигонуклеотиды, содержащие хиральный центр, межнуклеозидные связи, имеющие MOTYT виде популяций модифицированных олигонуклеотидов, содержащих стереослучайные межнуклеозидные связи, или в качестве популяций модифицированных олигонуклеотидов, содержащих фосфоротиоатные СВЯЗИ В определенных стереохимических конфигурациях. В определенных вариантах осуществления популяции олигонуклеотидов модифицированных содержат фосфоротиоатные межнуклеозидные все фосфоротиоатные связи, причем, межнуклеозидные являются стереослучайными. Такие СВЯЗИ модифицированные олигонуклеотиды могут быть получены использованием синтетических способов, которые приводят К случайной стереохимической конфигурации селекции каждой фосфоротиоатной связи. Тем не менее, как хорошо известно

специалистам в данной области техники, каждый отдельный фосфоротиоат каждой отдельной молекулы олигонуклеотида имеет определенную стереоконфигурацию. В определенных осуществления популяции модифицированных олигонуклеотидов обогащены модифицированными олигонуклеотидами, содержащими одну или несколько конкретных фосфоротиоатных межнуклеозидных связей независимо выбранной конкретной, стереохимической конфигурации. В определенных вариантах осуществления конкретная конфигурация конкретной фосфоротиоатной связи присутствует в по меньшей мере 65% молекул в популяции. В определенных вариантах осуществления конкретная конфигурация конкретной фосфоротиоатной связи присутствует в по меньшей мере 70% молекул в популяции. В вариантах осуществления конкретная конфигурация определенных конкретной фосфоротиоатной связи присутствует в по меньшей мере 80% молекул в популяции. В определенных вариантах осуществления конкретная конфигурация конкретной фосфоротиоатной СВЯЗИ присутствует в по меньшей мере 90% молекул в популяции. определенных вариантах осуществления конкретная конфигурация конкретной фосфоротиоатной связи присутствует в по меньшей мере 99% молекул в популяции. Такие хирально обогащенные популяции модифицированных олигонуклеотидов могут быть получены использованием способов синтеза, известных в данной области, например, способов, описанных в Oka et al., JACS 125, (2003), Wan et al. Nuc. Acid. Res. 42, 13456 (2014) и WO 2017/015555. В определенных вариантах осуществления популяцию модифицированных олигонуклеотидов обогащают модифицированными мере олигонуклеотидами, имеющими по меньшей ОДИН указанный фосфоротиоат в конфигурации (Sp). В определенных вариантах олигонуклеотидов осуществления популяцию модифицированных обогащают модифицированными олигонуклеотидами, имеющими меньшей мере ОДИН фосфоротиоат в конфигурации (Rp). В определенных вариантах осуществления модифицированные олигонуклеотиды, содержащие (Rp) и/или (Sp)фосфоротиоаты, содержат одну или более из следующих формул, соответственно, где «В» обозначает азотистое основание:

$$O = P - SH$$

Если не указано иное, хиральные межнуклеозидные связи модифицированных олигонуклеотидов, описанные в данном документе, могут быть стереослучайными или могут быть в определенной стереохимической конфигурации.

Нейтральные межнуклеозидные СВЯЗИ включают, без ограничения, фосфотриэфиры, метилфосфонаты, ММІ (3'-СН2-N(СН3)-O-5'), амид-3 (3'-CH2-C(=O)-N(H)-5'), амид-4 (3'-CH2-N(H)-C(=O)формацеталь (3'-0-СH2-0-5'), метоксипропил, (3'-S-CH2-O-5'). тиоформацеталь Дополнительные нейтральные межнуклеозидные связи включают неионные связи, содержащие силоксан (диалкилсилоксан), сложный дифе карбоксилата, карбоксамид, сульфид, сложный эфир сульфокислоты и амиды (см., например: Carbohydrate Modifications in Antisense Research; Y.S. Sanghvi and P.D. Cook, Eds., ACS Symposium Series 580; Chapters 40-65). Другие нейтральные межнуклеозидные связи включают неионные связи, содержащие смешанные N, O, S и CH2 составляющие.

Определенные мотивы

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат ОДИН ИЛИ более модифицированных нуклеозидов, содержащих модифицированный сахарный фрагмент. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат ОДИН ИЛИ более модифицированных нуклеозидов, содержащих модифицированное азотистое основание. В определенных вариантах осуществления модифицированные олигонуклеотиды содержат одну или более модифицированных межнуклеозидных связей. В таких вариантах осуществления модифицированные, немодифицированные по-разному И модифицированные сахарные фрагменты, азотистые основания и/или межнуклеозидные связи модифицированного олигонуклеотида определяют мотив. В определенных вариантах осуществления каждая

сахарных фрагментов, азотистых оснований структура межнуклеозидных связей не зависит друг от друга. Таким образом, модифицированный олигонуклеотид может быть описан его сахарным мотивом, мотивом азотистых оснований и/или мотивом межнуклеозидной связи (в контексте данного документа мотив азотистых оснований описывает модификации азотистых оснований независимо от последовательности азотистых оснований).

1. Некоторые сахарные мотивы

В определенных вариантах осуществления изобретения олигонуклеотиды содержат один или более типов модифицированных сахарных фрагментов и/или немодифицированных сахарных фрагментов, расположенных вдоль олигонуклеотида или его области определенным образом или в виде сахарного мотива. В определенных случаях, такие мотивы могут содержать, но не ограничиваются ими, любые сахарные модификации, рассмотренные в данном документе и/или другие известные модификации сахара.

определенных вариантах осуществления модифицированные олигонуклеотиды содержат или состоят области, ИЗ гэпмерный мотив, который определяется с помощью двух внешних областей или «крыла» и центральной или внутренней областью, или «гэпом». Эти три области гэпмерного мотива (5'-крыло, гэп и 3'образуют непрерывную последовательность азотистых оснований, в которой по меньшей мере некоторые из сахарных фрагментов нуклеозидов в каждом крыле отличаются по меньшей мере некоторых сахарных фрагментов нуклеозидов гэпе. частности, по меньшей мере те сахарные фрагменты нуклеозидов каждого крыла, которые расположены ближе всего к гэпу (крайний 3'-концевой нуклеозид 5'-крыла и крайний 5'-концевой нуклеозид 3'-крыла), отличаются \circ T сахарного фрагмента соседних нуклеозидов в гэпе, определяя таким образом границу между крыльями и гэпом (т.е. соединение крыло/гэп). В определенных вариантах осуществления изобретения сахарные фрагменты в гэпе являются одинаковыми по отношению друг к другу. В определенных вариантах осуществления изобретения гэп содержит один или более нуклеозидов, имеющих сахарный фрагмент, который отличается от сахарного фрагмента одного или более других нуклеозидов в гэпе. определенных вариантах осуществления сахарные принадлежащие двум крыльям, являются одинаковыми по отношению друг к другу (симметричный гэпмер). В определенных вариантах осуществления сахарные мотивы 5'-крыла отличаются от сахарного

мотива 3'-крыла (асимметричный сахарный гэпмер).

определенных вариантах осуществления крылья гэпмера содержат 1-5 нуклеозидов. В определенных вариантах осуществления каждый нуклеозид каждого крыла гэпмера представляет собой В модифицированный нуклеозид. определенных вариантах осуществления по меньшей мере один нуклеозид каждого крыла собой модифицированный представляет нуклеозид. определенных вариантах реализации по меньшей мере два нуклеозида каждого крыла гэпмера представляет собой модифицированные нуклеозиды. В определенных вариантах осуществления по меньшей мере три нуклеозида каждого крыла гэпмера представляют собой В модифицированные нуклеозиды. определенных вариантах осуществления по меньшей мере четыре нуклеозида каждого крыла гэпмера представляют собой модифицированные нуклеозиды.

В определенных вариантах осуществления изобретения гэп гэпмера содержит 7-12 связанных нуклеозидов. В определенных вариантах осуществления каждый нуклеозид гэпа гэпмера представляет собой 2' дезоксинуклеозид. В некоторых вариантах осуществления по меньшей мере один нуклеозид гэпа гэпмера представляет собой модифицированный нуклеозид.

В определенных вариантах осуществления изобретения гэпмер дезоксигэпмер. В представляет собой определенных вариантах осуществления нуклеозиды со стороны гэпа каждого соединения крыло/гэп представляют собой немодифицированные дезоксинуклеозиды, а нуклеозиды со стороны крыльев каждого крыло/гэп представляют собой модифицированные соединения нуклеозиды. В определенных вариантах осуществления каждый гэпа представляет собой немодифицированный нуклеозид дезоксинуклеозид. В определенных вариантах осуществления каждый нуклеозид каждого крыла гэпмера представляет собой модифицированный нуклеозид.

определенных вариантах осуществления модифицированные олигонуклеотиды содержат или состоят ИЗ области, имеющей полностью модифицированный сахарный мотив. В таких вариантах нуклеозид полностью осуществления каждый модифицированной области модифицированного олигонуклеотида содержит модифицированный сахарный фрагмент. В определенных вариантах осуществления каждый нуклеозид всего модифицированного олигонуклеотида содержит модифицированный сахарный фрагмент. В определенных вариантах осуществления модифицированные

олигонуклеотиды содержат ИЛИ COCTOAT ИЗ области, полностью модифицированный сахарный мотив, где каждый нуклеозид в полностью модифицированной области содержит один и модифицированный сахарный мотив, называемый в данном документе модифицированным сахарным мотивом. В определенных ондофондо вариантах осуществления полностью модифицированный олигонуклеотид представляет собой равномерно модифицированный олигонуклеотид. В определенных вариантах осуществления каждый нуклеозид однородно модифицированного олигонуклеотида содержит одну и ту же 2'-модификацию.

В данном документе длины (число нуклеозидов) трех областей гэпмера могут быть указаны с использованием обозначения [число нуклеозидов в 5'-крыле] - [число нуклеозидов в гэпе] - [число нуклеозидов в 3'-крыле]. Таким образом, 5-10-5 гэпмер состоит из связанных нуклеозидов каждом крыле 10 связанных В И нуклеозидов В гэпе. Если за такой номенклатурой следует конкретная модификация, эта модификация представляет собой модификацию в каждом сахарном фрагменте каждого крыла, содержат немодифицированные дезоксинуклеозидные нуклеозиды сахара. Таким образом, 5-10-5 МОЕ гейпмер состоит из 5 связанных модифицированных МОЕ нуклеозидов в 5'-крыле, 10 связанных дезоксинуклеозидов в гэпе и 5 связанных МОЕ нуклеозидов в 3'крыле.

определенных вариантах осуществления модифицированные В представляют собой 5-10-5 MOE олигонуклеотиды гэпмеры. определенных вариантах осуществления модифицированные 3-10-3 олигонуклеотиды представляют собой BNA гэпмеры. определенных вариантах осуществления модифицированные 3-10-3 олигонуклеотиды представляют собой cEt гэпмеры. определенных вариантах осуществления модифицированные олигонуклеотиды представляют собой 3-10-3 LNA гэпмеры.

2. Некоторые мотивы азотистых оснований

осуществления определенных вариантах изобретения олигонуклеотиды модифицированные содержат и/или немодифицированные азотистые основания, расположенные олигонуклеотида или его области определенным образом или в виде мотива. В определенных вариантах осуществления каждое азотистое основание является модифицированным. В определенных вариантах азотистых оснований осуществления ИИ ОДНО ИЗ не модифицированным. В определенных вариантах осуществления каждый

ИЛИ каждый пиримидин является модифицированным. пурин определенных вариантах осуществления каждый аденин является модифицированным. В определенных вариантах осуществления каждый гуанин является модифицированным. В определенных вариантах осуществления каждый модифицированным. ТИМИН является определенных вариантах осуществления каждый урацил является модифицированным. В определенных вариантах осуществления каждый цитозин является модифицированным. В определенных осуществления некоторые или все цитозиновые азотистые основания 5модифицированном олигонуклеотиде представляют собой метилцитозины. В определенных вариантах осуществления все 5цитозиновые нуклеотидные основания представляют собой метилцитозины, а все другие нуклеотидные основания модифицированного олигонуклеотида представляют собой немодифицированные нуклеотидные основания.

В определенных вариантах осуществления модифицированные олигонуклеотиды содержат блок модифицированных азотистых оснований. В определенных вариантах осуществления блок находится на 3'-конце олигонуклеотида. В определенных вариантах осуществления блок находится в пределах 3 нуклеозидов 3'-конца олигонуклеотида. В определенных вариантах осуществления блок находится на 5'-конце олигонуклеотида. В определенных вариантах осуществления блок находится в пределах 3 нуклеотидов 5'-конца олигонуклеотида.

В определенных вариантах осуществления олигонуклеотиды, имеющие гэпмерный мотив, содержат нуклеозид, содержащий модифицированное азотистое основание. В определенных осуществления ОДИН нуклеозид, содержащий модифицированное азотистое основание, находится в центральном гэпе олигонуклеотида, имеющего гэпмерный мотив. В определенных вариантах осуществления сахарный фрагмент указанного нуклеозида 2'-дезоксирибозильный представляет собой фрагмент. определенных вариантах осуществления модифицированное азотистое основание выбрано из 2-тиопиримидина и 5-пропинепиримидина.

3. Некоторые мотивы межнуклеозидных связей

В определенных вариантах осуществления олигонуклеотиды содержат модифицированные и/или немодифицированные межнуклеозидные связи, расположенные вдоль олигонуклеотида или его области определенным образом или в виде мотива модифицированной межнуклеозидной связи. В определенных вариантах

осуществления каждая межнуклеозидная связывающая группа представляет собой фосфодиэфирную межнуклеозидную связь (Р=О). В осуществления вариантах каждая межнуклеозидная группа связывающая модифицированного олигонуклеотида представляет собой фосфоротиоатную межнуклеозидную связь (P=S). В определенных вариантах осуществления каждая межнуклеозидная связь модифицированного олигонуклеотида независимо выбрана из фосфоротиоатной межнуклеозидной СВЯЗИ И фосфодиэфирной межнуклеозидной связи. В определенных вариантах осуществления каждая фосфоротиоатная межнуклеозидная связь независимо выбрана из стереослучайного фосфоротиоата, (Sp) фосфоротиоата и фосфоротиоата. В определенных вариантах осуществления сахарный модифицированного олигонуклеотида представляет все межнуклеозидные внутри гэпмер, СВЯЗИ гэпа являются модифицированными. В определенных таких вариантах осуществления некоторые или все межнуклеозидные связи в крыльях представляют собой немодифицированные фосфодиэфирные межнуклеозидные связи. В определенных вариантах осуществления терминальные межнуклеозидные связи являются модифицированными. В определенных осуществления сахарный модифицированного мотив олигонуклеотида представляет собой гэпмер, И мотив межнуклеозидных связей содержит ПО меньшей мере ОДНУ фосфодиэфирную межнуклеозидную связь в по меньшей мере одном меньшей мере фосфодиэфирная где ПО одна СВЯЗЬ представляет собой концевую межнуклеозидную связь, а остальные представляют собой фосфоротиоатные межнуклеозидные СВЯЗИ В межнуклеозидные связи. определенных таких вариантах фосфоротиоатные осуществления все СВЯЗИ являются стереослучайными. В определенных вариантах осуществления все фосфоротиоатные СВЯЗИ В хрыльях представляют собой фосфоротиоаты, и гэп содержит по меньшей мере один Sр, Sр, Rр осуществления определенных вариантах модифицированных олигонуклеотидов обогащают модифицированными олигонуклеотидами, содержащими такие мотивы межнуклеозидных связей.

Некоторые длины

Существует возможность увеличивать или уменьшать длину олигонуклеотида без устранения активности. Например, в Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992), ряд олигонуклеотидов длиной 13-25 нуклеотидных оснований тестировали

на их способность индуцировать расщепление целевой РНК в модели инъекции в ооцит. Олигонуклеотиды длиной 25 нуклеооснований с 8 или 11 несовпадающими основаниями вблизи концов олигонуклеотидов оказались способны направлять специфическое расщепление целевой РНК, хотя и в меньшей степени, чем олигонуклеотиды, которые не содержали несовпадений. Аналогично, целевое специфическое расщепление было достигнуто при помощи олигонуклеотидов из 13 азотистых оснований, включая те, которые содержали 1 или 3 несовпадения.

определенных вариантах осуществления олигонуклеотиды (включая модифицированные олигонуклеотиды) могут иметь любую длину из множества диапазонов. В определенных вариантах осуществления олигонуклеотиды СОСТОЯТ ИЗ X-Yсвязанных Х представляет наименьшее нуклеозидов, где количество нуклеозидов в диапазоне, а У представляет наибольшее количество нуклеозидов В диапазоне. В определенных таких вариантах осуществления каждый X и Y независимо выбирают из 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 и 50; при условии, что Х≤Ү. Например, в определенных вариантах осуществления олигонуклеотиды состоят из 12-13, 12-14, 12-15, 12-16, 12-17, 12-18, 12-19, 12-20, 12-21, 12-22, 12-23, 12-24, 12-25, 12-26, 12-27, 12-28, 12-29, 12-30, 13-14, 13-15, 13-16, 13-17, 13-18, 13-19, 13-20, 13-21, 13-22, 13-23, 13-24, 13-25, 13-26, 13-27, 13-28, 13-29, 13-30, 14-15, 14-16, 14-17, 14-18, 14-19, 14-20, 14-21, 14-22, 14-23, 14-24, 14-25, 14-26, 14-27, 14-28, 14-29, 14-30, 15-16, 15-17, 15-18, 15-19, 15-20, 15-21, 15-22, 15-23, 15-24, 15-25, 15-26, 15-27, 15-28, 15-29, 15-30, 16-17, 16-18, 16-19, 16-20, 16-21, 16-22, 16-23, 16-24, 16-25, 16-26, 16-27, 16-28, 16-29, 16-30, 17-18, 17-19, 17-20, 17-21, 17-22, 17-23, 17-24, 17-25, 17-26, 17-27, 17-28, 17-29, 17-30, 18-19, 18-20, 18-21, 18-22, 18-23, 18-24, 18-25, 18-26, 18-27, 18-28, 18-29, 18-30, 19-20, 19-21, 19-22, 19-23, 19-24, 19-25, 19-26, 19-29, 19-28, 19-29, 19-30, 20-21, 20-22, 20-23, 20-24, 20-25, 20-26, 20-27, 20-28, 20-29, 20-30, 21-22, 21-23, 21-24, 21-25, 21-26, 21-27, 21-28, 21-29, 21-30, 22-23, 22-24, 22-25, 22-26, 22-27, 22-28, 22-29, 22-30, 23-24, 23-25, 23-26, 23-27, 23-28, 23-29, 23-30, 24-25, 24-26, 24-27, 24-28, 24-29, 24-30, 25-26, 25-27, 25-28, 25-29, 25-30, 26-27, 26-28, 26-29, 26-30, 27-28, 27-29, 27-30, 28-29, 28-30 ado 29-30

связанных нуклеозидов.

Определенные модифицированные олигонуклеотиды

определенных вариантах осуществления вышеуказанные модификации (сахар, азотистое основание, межнуклеозидная связь) модифицированный олигонуклеотид. В определенных включены в вариантах осуществления модифицированные олигонуклеотиды характеризуются по их мотивам модификаций и общей длине. определенных вариантах осуществления изобретения такие параметры не зависят друг от друга. Таким образом, если не указано иное, каждая межнуклеозидная связь олигонуклеотида, имеющего гэпмерный сахарный мотив, может быть модифицирована или немодифицирована и тэжом эн или тэжом следовать паттерну сахарных модификаций гэпмера. Например, межнуклеозидные СВЯЗИ В областях сахарного гэпмера могут быть одинаковыми или отличаться друг от друга, и могут быть такими же, или отличаться от межнуклеозидных связей в области гэпа сахарного мотива. Аналогично, олигонуклеотиды с сахарными гэпмерами могут включать одно или более модифицированное ануклеотидное основание независимо гэпмерной структуры модификаций сахара. Если не указано иное, все модификации не зависят от последовательности азотистых оснований.

Некоторые популяции модифицированных олигонуклеотидов

Популяции модифицированных олигонуклеотидов, в которых все модифицированные олигонуклеотиды популяции имеют одинаковую молекулярную формулу, могут быть стереослучайными или хирально обогащенными популяциями. Все хиральные центры всех модифицированных олигонуклеотидов являются стереослучайными стереослучайной популяции. В хирально обогащенной популяции по конкретный хиральный меньшей мере один центр не является стереослучайным в модифицированных олигонуклеотидах популяции. В определенных вариантах реализации модифицированные олигонуклеотиды хирально обогащенной популяции обогащены β -D-рибозилсахара, фрагментами И все фосфоротиоатные межнуклеозидные связи являются стереослучайными. В определенных осуществления модифицированные олигонуклеотиды вариантах хирально обогащенной популяции обогащают как в отношении β-Dрибозил сахарных фрагментов, так и по меньшей мере в отношении конкретной фосфоротиоатной межнуклеозидной связи конкретной стереохимической конфигурации.

Последовательность авотистых оснований

определенных вариантах осуществления олигонуклеотиды (немодифицированные или модифицированные олигонуклеотиды) дополнительно описываются их последовательностями нуклеотидных оснований. В определенных вариантах осуществления олигонуклеотиды имеют последовательность азотистых оснований, комплементарна второму олигонуклеотиду или идентифицированной эталонной нуклеиновой кислоте, такой как нуклеиновая кислота. В определенных таких вариантах осуществления область олигонуклеотида имеет последовательность оснований, которая комплементарна азотистых олигонуклеотиду или идентифицированной эталонной нуклеиновой кислоте, такой как целевая нуклеиновая кислота. В определенных вариантах осуществления последовательность азотистых оснований области или всего олигонуклеотида на по меньшей мере 50%, по меньшей мере 60%, по меньшей мере 70%, по меньшей мере 80%, по меньшей мере 85%, по меньшей мере 90%, по меньшей мере 95% или 100% комплементарны второму олигонуклеотиду или нуклеиновой кислоте, такой как целевая нуклеиновая кислота.

Некоторые олигомерные соединения

В определенных вариантах осуществления в данном документе предложены олигомерные соединения, которые COCTOST ИЗ олигонуклеотида (модифицированного или немодифицированного) и необязательно одной или более групп конъюгата и/или концевых групп. Группы конъюгата состоят из одного или более фрагментов линкера конъюгата, который связывает конъюгата конъюгата с олигонуклеотидом. Группы конъюгата могут присоединены к одному или обоим концам олигонуклеотида и/или в внутреннем положении. В определенных вариантах осуществления конъюгированные группы присоединены к 2'-положению нуклеозида модифицированного олигонуклеотида. В определенных группы, вариантах осуществления конъюгированные присоединены к одному или обоим концам олигонуклеотида, являются концевыми группами. В некоторых таких вариантах осуществления группы конъюгата или концевые группы присоединены на 3'- и/или олигонуклеотидов. В определенных таких вариантах осуществления конъюгированные группы (или концевые 3'-конце олигонуклеотидов. В присоединены на определенных вариантах осуществления конъюгированные группы присоединены олигонуклеотидов. В определенных 3'-конца вариантах осуществления конъюгированные группы (или концевые группы)

присоединены на 5'-конце олигонуклеотидов. В определенных вариантах осуществления конъюгированные группы присоединены около 5'-конца олигонуклеотидов.

Примеры концевых групп включают, но не ограничиваются ими, конъюгированные группы, кэппирующие группы, фосфатные фрагменты, защитные группы, модифицированные или немодифицированные нуклеозиды и два или более нуклеозидов, которые независимо модифицированы или немодифицированы.

Некоторые группы конъюгата

определенных вариантах осуществления олигонуклеотиды ковалентно связаны с одной или более группами конъюгата. В определенных вариантах осуществления группы конъюгата свойств модифицируют ОДНО или более присоединенного но не ограничиваясь олигонуклеотида, включая, фармакодинамику, фармакокинетику, стабильность, связывание, абсорбцию, клеточное распределение в тканях, распределение в клетках, клеточное поглощение, заряд и клиренс. В определенных вариантах осуществления конъюгированные группы придают новое свойство присоединенному олигонуклеотиду, например флуорофоры репортерные группы, которые позволяют обнаруживать олигонуклеотид. Некоторые конъюгированные группы и фрагменты конъюгата были описаны ранее, например, фрагмент холестерина (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), холевую кислоту (Manoharan et al., Bioorg. Med. Chem. Lett., 1994, 4, 1053-1060), тиоэфир, например, тритилтиол (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), тиохолестерин (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), алифатическая цепь, например, додекандиол или ундецильные остатки (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., *Biochimie*, 1993, 75, 49-54), фосфолипид, например дигексадецил-рац-глицерин или 1,2-ди-0-гексадецил-рацглицеро-3-Н-фосфонат пиноммытитеичт (Manoharan Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids 3777-3783), полиаминовая Res., 1990, 18, и.пи полиэтиленгликолевая цепь (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), или адамантануксусная кислота пальмитиловый фрагмент (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237) или октадециламиновый или гексиламинокарбонил-оксихолестериновый фрагмент (Crooke et al., *J. Pharmacol. Exp. Ther.*, 1996, 277, 923-937), токоферольная группа (Nishina et al., *Molecular Therapy Nucleic Acids*, 2015, 4, e220; and Nishina et al., *Molecular Therapy*, 2008, 16, 734-740) или кластер GalNAc (e.g., WO2014/179620).

1. Фрагменты конъюгата

Фрагменты конъюгата включают, без ограничения, интеркаляторы, репортерные молекулы, полиамины, полиамиды, пептиды, углеводы, витаминные фрагменты, полиэтиленгликоли, тиоэфиры, простые полиэфиры, холестерины, тиохолестерины, фрагменты холевой кислоты, фолат, липиды, фосфолипиды, биотин, феназин, фенантридин, антрахинон, адамантан, акридин, флуоресцеины, родамины, кумарины, флуорофоры и красители.

В определенных вариантах осуществления фрагмент конъюгата включает активное лекарственное вещество, например, аспирин, варфарин, фенилбутазон, ибупрофен, супрофен, фенбуфен, кетопрофен, (S) – (+) –пранопрофен, карпрофен, дансилсаркозин, 2,3,5-трийодбензойную кислоту, финголимод, флуфенамовую кислоту, фолиевую кислоту, бензотиадиазид, хлоротиазид, диазепин, индометицин, барбитурат, цефалоспорин, сульфамидный препарат, противодиабетическое, антибактериальное или антибиотик.

2. Линкеры конъюгата

Фрагменты конъюгата присоединяются к олигонуклеотидам через конъюгатные линкеры. В определенных олигомерных соединениях линкер конъюгата представляет собой одинарную химическую связь (т.е. конъюгатный фрагмент присоединяется непосредственно к олигонуклеотиду через одинарную связь). В определенных вариантах осуществления линкер конъюгата содержит цепочечную структуру, такую как гидрокарбильная цепь, или олигомер из повторяющихся единиц, таких как этиленгликоль, нуклеозиды или аминокислотные единицы.

В определенных вариантах осуществления линкер конъюгата содержит одну или несколько групп, выбранных из алкила, амино, оксо, амида, дисульфида, полиэтиленгликоля, простого эфира, простого тиоэфира и гидроксиламино. В определенных таких вариантах осуществления линкер конъюгата содержит группы, выбранные из алкильных, амино, оксо, амидных и простых эфирных групп. В определенных вариантах осуществления линкер конъюгата содержит группы, выбранные из алкильных и амидных групп. В определенных вариантах осуществления линкер конъюгата содержит

группы, выбранные из алкильных и простых эфирных групп. В определенных вариантах осуществления линкер конъюгата содержит по меньшей мере один фосфорный фрагмент. В определенных вариантах осуществления линкер конъюгата содержит по меньшей мере одну фосфатную группу. В определенных вариантах осуществления линкер конъюгата включает по меньшей мере одну нейтральную связывающую группу.

В определенных вариантах осуществления линкеры конъюгата, включая линкеры конъюгата, описанные выше, представляют собой бифункциональные связывающие фрагменты, например, те, которые известны в данной области как применимые для присоединения групп конъюгата к исходным соединениям, таким как олигонуклеотиды, представленные В данном документе. Обычно бифункциональный связывающий фрагмент содержит по меньшей мере две функциональные группы. Одну из функциональных групп выбирают для связывания с конкретным сайтом родительского соединения, а другую выбирают для связывания с группой конъюгата. Примеры функциональных групп, используемых в бифункциональном связывающем фрагменте, включают, НО не ограничиваются ими, электрофилы ПЛЯ взаимодействия с нуклеофильными группами и нуклеофилы взаимодействия с электрофильными группами. В определенных вариантах осуществления бифункциональные связывающие фрагменты содержат одну или более групп, выбранных из амино, гидроксила, карбоновой кислоты, тиола, алкила, алкенила и алкинила.

Примеры линкеров конъюгата включают, но не ограничиваются ими, пирролидин, 8-амино-3,6-диоксаоктановую кислоту сукцинимидил-4-(N-малеимидометил) циклогексан-1-карбоксилат (SMCC) и 6-аминогексановую кислоту (АНЕХ или АНА). Другие включают, но не ограничиваются линкеры конъюгатов незамещенный С1-С10 алкил, замещенный или замещенный незамещенный С2-С10 алкенил или замещенный или незамещенный С2-С10 алкинил, где неограничивающий список предпочтительных групп заместителей включает гидроксил, амино, алкокси, карбокси, бензил, фенил, нитро, тиол, тиоалкокси, галоген, алкил, алкенил и алкинил.

В определенных вариантах осуществления линкеры конъюгата содержат 1-10 линкер-нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат 2-5 линкер-нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат ровно 3 линкер-нуклеозида. В определенных вариантах

осуществления линкеры конъюгата содержат мотив TCA. определенных вариантах осуществления такие линкер-нуклеозиды представляют собой модифицированные нуклеозиды. В определенных осуществления такие линкер-нуклеозиды вариантах содержат модифицированный сахарный фрагмент. В определенных вариантах осуществления линкер-нуклеозиды являются немодифицированными. В определенных вариантах осуществления линкер-нуклеозиды содержат необязательно защищенное гетероциклическое основание, выбранное замещенного пурина, пиримидина пурина, ИЛИ замещенного пиримидина. В определенных вариантах осуществления расщепляемый фрагмент представляет собой нуклеозид, выбранный из урацила, 5-метилцитозина, цитозина, 4-N-бензоилцитозина, бензоил-5-метилцитозина, аденина, 6-N-бензоиладенина, гуанина и 2-N-изобутирилгуанина. Обычно желательно, чтобы линкернуклеозиды отщеплялись от олигомерного соединения после попалания В ткань-мишень. Соответственно, линкер-нуклеозиды обычно связаны друг с другом и с остальной частью олигомерного посредством расщепляемых связей. В определенных соединения вариантах осуществления такие расщепляемые связи представляют собой фосфодиэфирные связи.

В данном документе линкер-нуклеозиды не считаются частью олигонуклеотида. Соответственно, в вариантах осуществления, которых олигомерное соединение включает олигонуклеотид, состоящий из определенного количества или диапазона связанных нуклеозидов и/или определенного процента комплементарности с эталонной нуклеиновой кислотой, и олигомерное соединение также группу конъюгата, содержащую линкер содержащий линкер-нуклеозиды, ЭТИ линкер-нуклеозиды длине олигонуклеотида учитываются в и не используются при процента комплементарности олигонуклеотида пля эталонной нуклеиновой кислоты. Например, олигомерное соединение может содержать (1) модифицированный олигонуклеотид, состоящий из 8-30 нуклеозидов, и (2) группу конъюгата, содержащую 1-10 С нуклеозидами модифицированного линкер-нуклеозидов, смежных олигонуклеотида. Общее количество смежных линкер-нуклеозидов в таком олигомерном соединении составляет более 30. Альтернативно, олигомерное соединение тэжом содержать модифицированный олигонуклеотид, состоящий из 8-30 нуклеозидов и не содержать группу конъюгата. Общее количество смежных линкер-нуклеозидов в таком олигомерном соединении не превышает 30. Если не указано иное, линкеры конъюгата содержат не более 10 линкер-нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат не более 5 линкер-нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат не более 3 линкер-нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат не более 2 линкер-нуклеозидов. В определенных вариантах осуществления линкеры конъюгата содержат не более 1 линкер-нуклеозида.

В определенных вариантах осуществления желательно, чтобы группа конъюгата отщеплялась от олигонуклеотида. Например, в определенных обстоятельствах олигомерные соединения, содержащие фрагмент конъюгата, лучше поглощаются конкретным конкретный типом клеток, но после поглощения олигомерного соединения чтобы конъюгата желательно, группа расщеплялась для высвобождения неконъюгированного ИЛИ родительского олигонуклеотида. Таким образом, некоторые линкеры конъюгата могут содержать один или более расщепляемых фрагментов. определенных вариантах осуществления расщепляемый представляет собой расщепляемую связь. В определенных вариантах осуществления расщепляемый фрагмент представляет собой группу атомов, содержащую по меньшей мере одну расщепляемую связь. В определенных вариантах осуществления расщепляемый включает группу атомов, имеющих одну, две, три, четыре или более В расщепляемых связей. определенных вариантах осуществления расщепляемый фрагмент избирательно расщепляется внутри клетки или субклеточного компартмента, такого как лизосома. В определенных вариантах осуществления расщепляемый фрагмент избирательно расщепляется ЭНДОГЕННЫМИ ферментами, такими как нуклеазы.

В определенных вариантах осуществления расщепляемую связь выбирают из: амида, сложного эфира, простого эфира, одного или обоих сложных эфиров фосфодиэфира, фосфатного сложного эфира, В карбамата, ИЛИ дисульфида. определенных вариантах осуществления расщепляемая связь представляет собой один или оба фосфодиэфира. В СЛОЖНЫХ эфира определенных вариантах осуществления расщепляемый фрагмент включает фосфат фосфодиэфир. В определенных вариантах осуществления расщепляемый собой представляет фосфатную СВЯЗЬ олигонуклеотидом и фрагментом конъюгата или группой конъюгата.

В определенных вариантах осуществления расщепляемый

фрагмент содержит или состоит из одного или более линкернуклеозидов. В определенных таких вариантах осуществления один или несколько линкер-нуклеозидов связаны друг с другом и/или с остатком олигомерного соединения посредством расщепляемых связей. В определенных вариантах осуществления такие расщепляемые СВЯЗИ представляют собой немодифицированные фосфодиэфирные связи. В определенных вариантах осуществления расщепляемый фрагмент представляет собой 2'-дезоксинуклеозид, 3**′** – 5'-концевому нуклеозиду который присоединен к ИЛИ олигонуклеотида посредством фосфатной межнуклеозидной связи и ковалентно присоединен к остатку линкера конъюгата или фрагмента конъюгата с помощью фосфатной или фосфоротиоатной связи. определенных таких вариантах осуществления расщепляемый фрагмент представляет собой 2'-дезоксиаденозин.

Некоторые концевые группы

определенных вариантах осуществления олигомерные соединения содержат одну или более концевых групп. таких осуществления олигомерные определенных вариантах 5'-фосфат. соединения содержат стабилизированный Стабилизированные 5'-фосфаты включают, но не ограничиваются ими, 5'-фосфанаты, включая, НО не ограничиваясь NMN, винилфосфонаты. В определенных вариантах осуществления концевые группы содержат один или более основных нуклеозидов и/или нуклеозидов. В определенных инвертированных вариантах осуществления концевые группы содержат один или более 2′нуклеозидов. В определенных таких связанных вариантах осуществления 2'-связанный нуклеозид представляет собой основной нуклеозид.

III. Олигомерные дуплексы

определенных вариантах осуществления олигомерные соединения, описанные В данном документе, содержат последовательность олигонуклеотид, имеющий нуклеотидных оснований комплементарную последовательности нуклеиновой В кислоты-мишени. определенных вариантах осуществления олигомерное соединение объединено CO вторым олигомерным соединением с образованием олигомерного дуплекса. Такие олигомерные дуплексы включают первое олигомерное соединение, имеющее область, комплементарную нуклеиновой кислоте-мишени, и второе олигомерное соединение, имеющее область, комплементарную первому олигомерному соединению. В определенных вариантах

осуществления первое олигомерное соединение олигомерного дуплекса включает или состоит из (1) модифицированного или немодифицированного олигонуклеотида необязательно группы \mathbb{N} конъюгата (2) второго модифицированного И или немодифицированного олигонуклеотида И необязательно группы Одно или оба олигомерных соединения олигомерного дуплекса могут содержать группу конъюгата. Олигонуклеотиды каждого олигомерного соединения олигомерного дуплекса могут включать некомплементарные подвесные нуклеозиды.

Антисмысловая активность

определенных вариантах осуществления олигомерные соединения и олигомерные дуплексы способны гибридизоваться с нуклеиновой кислотой-мишенью, что приводит к по меньшей мере одной антисмысловой активности; такие олигомерные соединения и представляют собой олигомерные дуплексы антисмысловые соединения. В определенных вариантах осуществления антисмысловые соединения обладают антисмысловой активностью, когда они снижают или ингибируют количество или активность нуклеиновой кислотымишени на 25% или более в стандартном клеточном анализе. В определенных вариантах осуществления антисмысловые соединения избирательно влияют на одну или несколько нуклеиновых кислот-Такие мишеней. антисмысловые соединения содержат последовательность азотистых оснований, способных более гибридизоваться с одной ИЛИ целевыми нуклеиновыми кислотами, что приводит к одной или более нужным антисмысловым активностям и не способных гибридизоваться с одной или более нецелевыми нуклеиновыми кислотами, ИЛИ не способных гибридизоваться с одной или более нецелевыми нуклеиновыми ЧТО приводит таким образом, ĸ значительной нежелательной антисмысловой активности.

При определенных антисмысловых активностях гибридизация антисмыслового соединения C нуклеиновой кислотой-мишенью приводит к привлечению белка, который расщепляет нуклеиновую некоторые антисмысловые соединения кислоту-мишень. Например, приводят к опосредованному РНазой Н расщеплению нуклеиновой кислоты-мишени. РНаза Η представляет собой клеточную эндонуклеазу, которая катализирует расщепление цепи РНК дуплекса РНК:ДНК. ДНК в таком дуплексе необязательно должна быть немодифицированной ДНК. В определенных в данном вариантах осуществления, документе описаны антисмысловые соединения, которые являются достаточно «ДНКподобными», чтобы вызывать активность РНазы Н. В определенных вариантах осуществления допускается наличие одного или более не ДНК-подобных нуклеозидов в гэпе гэпмера.

определенных антисмысловых активностях антисмысловое соединение или часть антисмыслового соединения загружается РНК-индуцированный комплекс сайленсинга (RISC), что в конечном приводит K расщеплению нуклеиновой кислоты-мишени. Например, определенные антисмысловые соединения, описанные данном документе, приводят к расщеплению нуклеиновой кислотымишени С помощью Argonaute. Антисмысловые соединения, РНКи. загружаемые В RISC, представляют собой соединения Соединения РНКи МОГУТ быть двухцепочечными (киРНК) или одноцепочечными (оцРНК).

определенных вариантах осуществления гибридизация антисмыслового соединения с нуклеиновой кислотой-мишенью приводит к привлечению белка, который расщепляет эту нуклеиновую кислоту-мишень. В определенных вариантах осуществления гибридизация антисмыслового соединения с нуклеиновой кислотоймишенью приводит к изменению сплайсинга нуклеиновой кислоты-В определенных вариантах осуществления гибридизация мишени. антисмыслового соединения С нуклеиновой кислотой-мишенью приводит к ингибированию связывающего взаимодействия нуклеиновой кислотой-мишенью и белком или другой нуклеиновой кислотой. В определенных вариантах осуществления гибридизация антисмыслового соединения С нуклеиновой кислотой-мишенью приводит к изменению трансляции нуклеиновой кислоты-мишени.

Антисмысловая активность может наблюдаться прямо или косвенно. В определенных вариантах осуществления наблюдение или обнаружение антисмысловой активности включает наблюдение или обнаружение изменения количества целевой нуклеиновой кислоты или белка, кодируемого такой целевой нуклеиновой кислотой, изменение соотношения вариантов сплайсинга нуклеиновой кислоты или белка, и/или фенотипическое изменение в клетке или у субъекта.

Некоторые целевые нуклеиновые кислоты

В определенных вариантах осуществления олигомерные соединения содержат или состоят из олигонуклеотида, содержащего область, комплементарную нуклеиновой кислоте-мишени. В определенных вариантах осуществления целевая нуклеиновая кислота представляет собой эндогенную молекулу РНК. В определенных

вариантах осуществления нуклеиновая кислота-мишень кодирует белок. В некоторых таких вариантах осуществления целевая нуклеиновая кислота выбрана из: зрелой РНК и пре-мРНК, включая экзонные И нетранслируемые области. В некоторых интронные, вариантах осуществления целевая РНК представляет собой зрелую мРНК. В определенных вариантах осуществления целевая нуклеиновая кислота представляет собой пре-мРНК. В определенных вариантах осуществления целевая область полностью находится интрона. В определенных вариантах осуществления целевая область охватывает соединение интрон/экзон. В определенных вариантах осуществления целевая область составляет по меньшей мере 50% внутри интрона. В определенных вариантах осуществления целевая нуклеиновая кислота представляет собой продукт транскрипции РНК некоторых вариантах осуществления нуклеиновая ретрогена. В кислота-мишень представляет собой некодирующую РНК. В некоторых таких вариантах осуществления некодирующую РНК-мишень выбирают из молекулы длинной некодирующей РНК, короткой некодирующей РНК, интронной РНК.

Комплементарность/ошибочное спаривание с нуклеиновой кислотой-мишенью

Можно ввести базы несоответствия без устранения активности. Например, Gautschi et al (J. Natl. Cancer Inst. 93: 463-471, 2001) продемонстрировали способность олигонуклеотида, 100% комплементарность cPHK bcl-2 м и имеющего несовпадения с мРНК bcl-xL, снижать экспрессию как bcl-2, так и bcl-xL in vitro. и in vivo. Кроме того, этот олигонуклеотид продемонстрировал мощную противоопухолевую активность in vivo. and Dolnick (Nuc. Acid. Res. 16:3341-3358, тандемных олигонуклеотидов ИЗ 14 исследовали серию нуклеооснований и олигонуклеотидов из 28 и 42 нуклеооснований, СОСТОЯЩИХ из последовательности ДВУХ или трех тандемных олигонуклеотидов, соответственно, в отношении их способности прекращать трансляцию человеческого DHFR в анализе ретикулоцитов кролика. Каждый из трех олигонуклеотидов из 14 нуклеотидных оснований по отдельности был способен ингибировать трансляцию, хотя и на более умеренном уровне, чем олигонуклеотиды из 28 или 42 нуклеотидных оснований.

В определенных вариантах осуществления олигонуклеотиды комплементарны целевой нуклеиновой кислоте по всей длине олигонуклеотида. В определенных вариантах осуществления

олигонуклеотиды на 99%, 95%, 90%, 85% или 80% комплементарны кислоте-мишени. В нуклеиновой определенных вариантах осуществления олигонуклеотиды комплементарны нуклеиновой 80% по кислоте-мишени по меньшей мере на всей длине 100% олигонуклеотида и содержат область, которая на или комплементарна нуклеиновой кислоте-мишени. вариантах осуществления определенных длина области полной комплементарности составляет от 6 до 20, от 10 до 18 или от 18 до 20 нуклеотидных оснований.

В определенных вариантах осуществления олигонуклеотиды содержат одно ИЛИ более ошибочно спаренных нуклеотидных оснований относительно нуклеиновой кислоты-мишени. определенных вариантах осуществления антисмысловая против мишени снижается из-за такого ошибочного спаривания, но активность против немишени снижается на большую величину. Таким образом, в определенных вариантах осуществления селективность В улучшается. олигонуклеотида определенных вариантах осуществления ошибочное спаривание специфически расположено внутри олигонуклеотида, имеющего гэпмерный мотив. В определенных вариантах осуществления, ошибочное спаривание находится положении 1, 2, 3, 4, 5, 6, 7 или 8 от 5'-конца области гэпа. В определенных вариантах осуществления изобретения, ошибочное спаривание находится в положении 9, 8, 7, 6, 5, 4, 3, 2, 1 от 3'-конца области гэпа. В определенных вариантах осуществления, ошибочное спаривание находится в положении 1, 2, 3 или 4 от 5'конца области крыла. В определенных вариантах осуществления, ошибочное спаривание находится в положении 4, 3, 2 или 1 от 3'конца области крыла.

KCNT1

определенных вариантах осуществления олигомерные соединения содержат или состоят из олигонуклеотида, содержащего область, комплементарную нуклеиновой кислоте KCNT1. В определенных вариантах осуществления нуклеиновая кислота KCNT1 имеет последовательность, представленную в SEQ ID NO: GENBANK: NM 020822.2). В определенных доступа вариантах осуществления нуклеиновая кислота KCNT1 имеет последовательность, представленную в SEQ ID NO: 2 (№ доступа в GENBANK: NC 000009.12 усеченный с нуклеотидов 135698001 135796000). В определенных вариантах осуществления нуклеиновая кислота KCNT1 имеет последовательность, представленную в SEQ ID NO: 3 (№ доступа в GENBANK: NM_020822.3), который представляет собой вариант сплайсинга SEQ ID NO: 1.

осуществления олигомерное определенных вариантах соединение, комплементарное SEQ ID NO: 1, SEQ ID NO: 2 или SEQ ID NO: 3, способно снижать РНК КСNT1 в клетке. В определенных вариантах осуществления олигомерное соединение, комплементарное SEQ ID NO: 1, SEQ ID NO: 2 или SEQ ID NO: 3, способно снижать белок KCNT1 в клетке. В определенных вариантах осуществления находится in vitro. В определенных клетка вариантах клетка находится в субъекте. В осуществления определенных вариантах осуществления олигомерное соединение СОСТОИТ модифицированного олигонуклеотида. В определенных вариантах осуществления олигомерное соединение, комплементарное SEQ ID NO: 1, SEQ ID NO: 2 или SEQ ID NO:3, способно ослабить один или более симптомов или признаков неврологического заболевания при введении В клетку субъекта. В определенных вариантах неврологическое заболевание осуществления представляет эпилепсию. В определенных вариантах осуществления один или более симптомов или признаков выбирают из припадка, повреждения мозга, демиелинизации, гипотонии, микроцефалии, депрессии, тревоги и когнитивной дисфункции, и их комбинаций.

осуществления олигомерное определенных вариантах соединение, комплементарное SEQ ID NO: 1, SEQ ID NO: 2 или SEQ ID NO: 3, способно снижать обнаруживаемое количество РНК КСNT1 в ЦСЖ субъекта, когда олигомерное соединение вводится субъекта. Обнаруживаемое количество РНК КСNT1 может быть снижено по меньшей мере на 10%, по меньшей мере на 20%, по меньшей мере на 30%, по меньшей мере на 40%, по меньшей мере на 50%, по меньшей мере на 60%, по меньшей мере на 70%, по меньшей мере на 80%, или по меньшей мере на 90%. В определенных вариантах осуществления олигомерное соединение, комплементарное SEQ ID NO: 1, SEQ ID NO: 2 или SEQ ID NO: 3 способно снижать обнаруживаемое количество белка KCNT1 в ЦСЖ субъекта, когда олигомерное соединение вводится в ЦСЖ субъекта. Обнаруживаемое количество белка KCNT1 может быть снижено по меньшей мере на 10%, меньшей мере на 20%, по меньшей мере на 30%, по меньшей мере на 40%, по меньшей мере на 50%, по меньшей мере на 60%, по меньшей мере на 70%, по меньшей мере на 80%, или по меньшей мере на 90%.

Определенные нуклеиновые кислоты-мишени в определенных тканях

определенных вариантах осуществления олигомерные соединения содержат или состоят из олигонуклеотида, содержащего комплементарную нуклеиновой кислоте-мишени, нуклеиновая кислота-мишень экспрессируется в фармакологически релевантной ткани. В определенных вариантах осуществления фармакологически релевантными тканями являются клетки и ткани, которые составляют центральную нервную систему (ЦНС). ткани включают ткани головного мозга, такие как кора, черная субстанция, полосатое тело, средний мозг, а также ствол мозга и спинной мозг.

Некоторые фармацевтические композиции

В определенных вариантах осуществления в данном документе описаны фармацевтические композиции, содержащие одно или более олигомерных соединений. В определенных вариантах осуществления более олигомерных соединений ИЛИ каждое состоит модифицированного олигонуклеотида. В определенных вариантах осуществления фармацевтическая композиция содержит фармацевтически приемлемый разбавитель носитель. ИЛИ определенных вариантах осуществления фармацевтическая композиция содержит или состоит из стерильного физиологического раствора и ОДНОГО или более олигомерных соединений. В определенных вариантах осуществления стерильный физиологический представляет собой физиологический раствор фармакологической чистоты. В определенных вариантах осуществления фармацевтическая композиция содержит или состоит из одного или более олигомерных стерильной воды. В определенных соединений И вариантах осуществления стерильная вода представляет собой фармакологической чистоты. В определенных вариантах осуществления фармацевтическая композиция содержит или состоит из одного или более олигомерных соединений и фосфатно-солевого буферного раствора (ФСВ). В определенных вариантах осуществления стерильный ФСБ представляет собой ФСБ фармакологической чистоты. определенных вариантах осуществления фармацевтическая композиция состоит содержит или состоит из одного или более олигомерных соединений и искусственной спинномозговой жидкости. В определенных вариантах осуществления искусственная спинномозговая жидкость является жидкостью фармацевтического качества.

В определенных вариантах осуществления фармацевтическая композиция содержит модифицированный олигонуклеотид и

искусственную спинномозговую жидкость. В определенных вариантах осуществления фармацевтическая композиция COCTONT модифицированного олигонуклеотида и искусственной спинномозговой жидкости. В определенных осуществления вариантах фармацевтическая композиция COCTONT существу ПО ИЗ модифицированного олигонуклеотида и искусственной спинномозговой жидкости. В определенных вариантах осуществления искусственная спинномозговая жидкость является ЖИДКОСТЬЮ фармацевтического качества.

В определенных вариантах осуществления фармацевтические композиции содержат одно или более олигомерных соединений и одно или более вспомогательных веществ. В определенных вариантах осуществления вспомогательные вещества выбирают из воды, солевых растворов, спирта, полиэтиленгликолей, желатина, лактозы, амилазы, стеарата магния, талька, кремниевой кислоты, вязкого парафина, гидроксиметилцеллюлозы и поливинилпирролидона.

определенных вариантах осуществления олигомерные МОГУТ смешаны с фармацевтически соединения быть приемлемыми и/или инертными веществами приготовления активными для фармацевтических композиций или составов. Композиции и способы приготовления фармацевтических композиций зависят OTряда критериев, включая, НО не ограничиваясь, способ введения, степень заболевания или дозу, которую необходимо вводить.

определенных вариантах осуществления фармацевтические содержащие олигомерное соединение, включают любые фармацевтически приемлемые соли олигомерного соединения, сложные эфиры олигомерного соединения или соли таких сложных эфиров. В определенных вариантах осуществления фармацевтические композиции, содержащие олигомерные соединения, содержащие один при введении субъекту, включая более олигонуклеотидов, ИЛИ человека, способны обеспечивать omrqn) косвенно) ИЛИ биологически активный метаболит или его остаток. Соответственно, изобретение также относится K фармацевтически например, приемлемым СОЛЯМ олигомерных соединений, пролекарствам, фармацевтически приемлемым солям таких пролекарств и другим биоэквивалентам. Подходящие фармацевтически приемлемые включают, помимо прочего, соли натрия и калия. В определенных вариантах осуществления пролекарства содержат одну или более групп конъюгата, присоединенных к олигонуклеотиду, при группа конъюгата расщепляется В организме эндогенными нуклеазами.

фрагменты используются в терапии нуклеиновых Липидные различными способами. В некоторых нуклеиновая кислота, такая как олигомерное соединение, вводится предварительно сформированные ЛИПОСОМЫ или липоплексы, состоящие из смесей катионных липидов и нейтральных липидов. В некоторых способах комплексы ДНК с моно- или поликатионными липидами образуются без присутствия нейтрального определенных вариантах осуществления липидный фрагмент выбирают увеличения распределения фармацевтического агента конкретной клетке или ткани. В определенных вариантах осуществления липидный фрагмент выбирают для увеличения распределения фармацевтического агента в жировой ткани. определенных вариантах осуществления липидный фрагмент выбирают для увеличения распределения фармацевтического агента в мышечной ткани.

определенных вариантах осуществления фармацевтические композиции содержат систему доставки. Примеры систем доставки включают, но не ограничиваются ими, липосомы и ЭМУЛЬСИИ. Определенные системы доставки применимы для приготовления определенных фармацевтических композиций, включая композиции, содержащие гидрофобные соединения. В некоторых вариантах осуществления используются определенные органические растворители, такие как диметилсульфоксид.

В определенных вариантах осуществления фармацевтические композиции содержат одну или более тканеспецифичных молекул доставки, предназначенных для доставки одного или более фармацевтических агентов по настоящему изобретению к конкретным тканям или типам клеток. Например, в определенных вариантах осуществления фармацевтические композиции включают липосомы, покрытые тканеспецифическим антителом.

В определенных вариантах осуществления фармацевтические композиции содержат систему сорастворителя. Некоторые из таких систем сорастворителей включают, например, бензиловый спирт, неполярное поверхностно-активное вещество, смешивающийся с водой органический полимер и водную фазу. В определенных вариантах осуществления такие системы сорастворителей используют для гидрофобных соединений. Неограничивающим примером такой системы сорастворителей уРD, которая представляет собой раствор абсолютного этанола, содержащий 3%

мас/об бензилового спирта, 8% мас/об неполярного поверхностно-65위 80 Polysorbate И активного вещества mac/oб. полиэтиленгликоля 300. Пропорции таких систем сорастворителей можно значительно варьировать без существенного изменения их характеристик растворимости И токсичности. Кроме идентичность компонентов сорастворителей может варьироваться: например, вместо Polysorbate 80 ™ можно использовать поверхностно-активные вещества; размер фракции полиэтиленгликоля различным; другие биосовместимые полимеры могут может быть полиэтиленгликоль, например, поливинилпирролидон; заменять другие сахара или полисахариды могут заменять декстрозу.

определенных вариантах осуществления фармацевтические композиции готовят для перорального введения. В определенных вариантах осуществления фармацевтические композиции готовят для буккального введения. В определенных вариантах осуществления фармацевтическую композицию готовят для введения путем инъекции внутривенной, подкожной, внутримышечной, интратекальной (IT), интрацеребровентрикулярной (ICV) и т.д.). В определенных таких вариантах осуществления фармацевтическая композиция содержит носитель и приготовлена в водном растворе, таком как вода, или физиологически совместимых буферах, таких как раствор Хэнкса, раствор Рингера или физиологический солевой буфер. В определенных вариантах осуществления включены другие (например, ингредиенты, которые способствуют ингредиенты растворимости или служат В качестве консервантов). вариантах осуществления суспензии определенных ДЛЯ инъекций готовят использованием ХИШКДОХДОП ЖИДКИХ суспендирующих агентов И т.п. Некоторые фармацевтические композиции для инъекций представлены в единичной дозированной форме, например, В ампулах или в многодозовых контейнерах. Некоторые фармацевтические композиции для инъекций представляют собой суспензии, растворы или эмульсии в масляных или водных несущих средах и могут содержать формулирующие агенты, такие как суспендирующие, стабилизирующие и/или диспергирующие Некоторые растворители, подходящие ДЛЯ использования В фармацевтических композициях для инъекций, включают, не ограничиваются ими, липофильные растворители и жирные масла, такие как кунжутное масло, синтетические сложные эфиры жирных кислот, такие как этилолеат или триглицериды, и липосомы.

При определенных условиях некоторые соединения, описанные в

данном документе, действуют как кислоты. Хотя такие соединения могут быть представлены или описаны в протонированной (свободная кислота) форме или ионизированной и в ассоциации с катионом форме, водные растворы таких соединений существуют в (соль) такими формами. Например, фосфатная связь равновесии между олигонуклеотида в водном растворе находится в равновесии между свободной кислотой, анионной и солевой формами. Если не указано подразумевается, что соединения, описанные такие формы. Более того, документе, включают все некоторые олигонуклеотиды имеют несколько таких связей, каждая из которых находится равновесии. Таким образом, олигонуклеотиды растворе существуют в виде ансамбля маоф В нескольких положениях, находящихся в равновесии. Термин «олигонуклеотид» включает все такие формы. Нарисованные структуры обязательно изображают одну форму. Тем не менее, если не указано иное, такие чертежи также предназначены для включения соответствующих форм. В данном документе структура, изображающая свободную кислоту за которым следует термин «или его соль», соединения, включает все такие формы, которые могут быть полностью или частично протонированы/депротонированы/в ассоциации с катионом. случаях идентифицируется один R некоторых ИЛИ несколько конкретных катионов.

определенных вариантах осуществления модифицированные олигонуклеотиды или олигомерные соединения находятся в водном растворе с натрием. В определенных вариантах осуществления модифицированные олигонуклеотиды или олигомерные соединения находятся в водном растворе с калием. В определенных вариантах осуществления модифицированные олигонуклеотиды или олигомерные ФСБ. соединения находятся В В определенных вариантах осуществления модифицированные олигонуклеотиды или олигомерные соединения находятся в воде. В некоторых таких вариантах осуществления pH раствора регулируют с помощью NaOH и/или HCl для достижения желаемого рН.

В данном документе описаны определенные конкретные дозы. Доза может быть в форме единицы дозирования. Для ясности, доза (или единица дозировки) модифицированного олигонуклеотида или олигомерного соединения в миллиграммах указывает массу свободной кислотной формы модифицированного олигонуклеотида или олигомерного соединения. Как описано выше, в водном растворе свободная кислота находится в равновесии с анионной и солевой

Однако для целей расчета дозы предполагается, модифицированный олигонуклеотид ИЛИ олигомерное соединение существует в виде безводной свободной кислоты, не содержащей растворителя и ацетата натрия. Например, если модифицированный олигонуклеотид или олигомерное соединение находится в растворе, содержащем натрий (например, физиологический pactbop), модифицированный олигонуклеотид или олигомерное соединение может быть частично или полностью депротонировано и ассоциировано с ионами Na+. Однако масса протонов все же учитывается в весе а масса ионов Na+ не учитывается в весе дозы. доза, или единица дозирования, 80 мг соединения № 1080855 равна количеству полностью протонированных молекул весом 85 было бы эквивалентно $M\Gamma$ 1080855, катионированного соединения $N_{ar{0}}$ не содержащего растворителей и ацетата натрия. Когда олигомерное соединение содержит группу конъюгата, масса группы конъюгата включается в дозы такого олигомерного соединения. Если группа целей также содержит кислоту, конъюгата для расчета дозы предполагается, что группа конъюгата полностью протонирована.

Неограничивающее раскрытие и включение посредством ссылки Каждая из литературных и патентных публикаций, перечисленных в данном документе, включена в данный документ посредством ссылки во всей своей полноте.

Несмотря на то, что определенные соединения, композиции и способы, описанные в данном документе, были подробно описаны в соответствии определенными вариантами С осуществления изобретения, следующие примеры служат ЛИШЬ ДЛЯ иллюстрации соединений, описанных в данном документе, и не предназначены для данного изобретения. Каждая ограничения ИЗ ссылок, доступа GenBank и т.п., приведенных в настоящей заявке, включена в настоящий документ посредством ссылки во всей своей полноте.

Хотя в перечне последовательностей, прилагаемом к настоящей заявке, каждая последовательность идентифицируется как "РНК" или действительности OTC требуется, В как ЭТИ последовательности могут быть модифицированы любой комбинацией химических модификаций. Специалист в данной области поймет, что такое обозначение как «РНК» или «ДНК» для описания модифицированных олигонуклеотидов в некоторых случаях является произвольным. Например, олигонуклеотид, содержащий нуклеозид, содержащий сахарный фрагмент 2'-ОН и тиминовое основание, может

описан как ДНК, имеющая модифицированный сахар вместо одного 2'-Н ДНК) или как РНК, имеющая модифицированное (метилированный урацил) вместо урацила РНК). основание (тимин Соответственно, последовательности нуклеиновых кислот, представленные в данном документе, включая, но не ограничиваясь последовательности В перечне последовательностей, предназначены для охвата нуклеиновых кислот, содержащих любую природных или модифицированных РНК включая, но не ограничиваясь ими, такие нуклеиновые кислоты, имеющие модифицированные нуклеотидные основания. В качестве дополнительного примера И без ограничения олигомерное соединение, имеющее последовательность нуклеотидных оснований «ATCGATCG», включает любые олигомерные соединения, имеющие такую последовательность нуклеотидных оснований, модифицированные или немодифицированные, включая, но не ограничиваясь ИMИ, соединения, содержащие основания РНК, такие как соединения, имеющие последовательность «AUCGAUCG» и соединения, имеющие некоторые основания ДНК и некоторые основания РНК, такие как «AUCGATCG», олигомерные соединения, имеющие И другие модифицированные нуклеотидные основания, такие как «ATmCGAUCG», где mC обозначает цитозиновое основание, содержащее метильную группу в 5-положении.

Некоторые соединения, описанные В данном документе (например, модифицированные олигонуклеотиды), имеют один или асимметричных центров И, таким образом, диастереомеры стереоизомерные энантиомеры, И другие конфигурации, которые могут быть определены с точки абсолютной стереохимии как (R) или (S), как α или β , например, для аномеров сахаров, или как (D) или (L), например, аминокислот и т.д. Предложенные в данном документе соединения, которые изображены ИЛИ описаны имеющие определенные как стереоизомерные конфигурации, включают ТОЛЬКО соединения. Приведенные в данном документе соединения, которые изображены или описаны с неопределенной стереохимией, включают такие возможные изомеры, включая их стереослучайные оптически чистые формы, если не указано иное. Подобным образом, таутомерные формы соединений в данном документе также включены, если не указано иное. Если не указано иное, подразумевается, что описанные в данном документе соединения включают соответствующие солевые формы.

Описанные в данном документе соединения включают варианты, более атомов заменены которых ОДИН ИЛИ нерадиоактивным MOHOTOEN ИЛИ радиоактивным MOUOLOEN указанного Например, соединения в данном документе, которые содержат атомы охватывают все возможные замещения дейтерием каждого из атомов водорода 1Н. Изотопные замены, охватываемые приведенными в данном документе соединениями, включают, но не ограничиваются ими: 2H или 3H вместо 1H, 13C или 14C вместо12C, 15N вместо 14N, 170 или 180 вместо 16O, и 33S, 34S, 35S, или 36S вместо 32S. В некоторых вариантах осуществления нерадиоактивные изотопные замены могут придавать олигомерному соединению новые свойства, которые полезны для использования В терапевтического или исследовательского инструмента. В некоторых вариантах осуществления радиоактивные изотопные замены могут ПОДХОДЯЩИМ ДЛЯ исследовательских соединение ИЛИ диагностических целей, таких как считывание изображения.

ПРИМЕРЫ

Следующие ниже примеры иллюстрируют определенные варианты осуществления настоящего раскрытия И не являются ограничивающими. Более того, там, где представлены конкретные варианты осуществления, изобретатели предусмотрели возможность вариантов общего применения этих конкретных осуществления. Например, раскрытие олигонуклеотида, имеющего конкретный мотив, обеспечивает разумную поддержку дополнительных олигонуклеотидов, или подобный имеющих такой же мотив. И, например, конкретная высокоаффинная модификация появляется в определенном положении, другие высокоаффинные модификации в том же положении считаются подходящими, если не указано иное.

Пример 1: Влияние гэпмер-модифицированных олигонуклеотидов 5-10-5 МОЕ на РНК КСNT1 человека *in vitro*, однократная доза

Модифицированные олигонуклеотиды, комплементарные нуклеиновой кислоте КСNT1 человека, тестировали на их влияние на уровень РНК КСNT1 $in\ vitro.$

олигонуклеотиды в таблице Модифицированные ниже 5-10-5 представляют собой MOE гэпмеры смешанными CO межнуклеозидными связями. Гэпмеры имеют длину 20 нуклеозидов, при этом центральный гэп-сегмент состоит из десяти дезоксинуклеозидов, а 3 'и 5' крылья каждое состоят из пяти 2'-МОЕ нуклеозидов. Мотив для гэпмеров (от 5' к 3')представляет собой: eeeeddddddddddeeeeee; где «d» представляет собой 2'- β-D-

дезоксирибозный сахарный фрагмент, а «е» представляет собой 2'- MOE- сахарный фрагмент. Мотив межнуклеозидной связи для гэпмеров (от 5 'до 3'): sooossssssssssoss; где «s» представляет собой фосфоротиоатную межнуклеозидную связь, а «о» представляет собой фосфодиэфирную межнуклеозидную связь. Все остатки цитозина представляют собой 5-метилцитозины.

«Стартовый сайт» указывает на наибольший 5'-нуклеозид, К модифицированный олигонуклеотид комплементарен последовательности гена человека. «Стартовый сайт» указывает на 3'-нуклеозид, K наибольший которому модифицированный олигонуклеотид комплементарен В последовательности человека. Каждый модифицированный олигонуклеотид, перечисленный в таблицах ниже, на 100% комплементарен SEQ ID NO: 1 (№ доступа в GENBANK: NM 020822.2) или SEQ ID NO: 2 (№ доступа в GENBANK: NC 000009.12 усеченный с нуклеотидов 135698001 по 135796000). «Н/Д» указывает, что модифицированный олигонуклеотид не комплементарен этой конкретной последовательности гена.

Культивируемые клетки SH-SY5Y (клеточная нейробластомы) при плотности 20 000 клеток на лунку обрабатывали 4000 модифицированным олигонуклеотидом Мн электропорации. После периода обработки продолжительностью приблизительно 24 часа из клеток выделяли общую РНК и измеряли уровни РНК KCNT1 с помощью количественной ОТ-ПЦР в реальном времени. Набор праймеров-зондов RTS39508 для КСNT1 человека (прямая последовательность GTCAACGTGCAGACCATGT, обозначенная в данном документе как SEQ ID NO: 11; обратная последовательность TCGCTCCCTCTTTTCTAGTTTG, обозначенная в данном документе как SEQ 12; последовательность зонда AGCTCACCCACCCTTCCAACATG, обозначенная в данном документе как SEQ ID NO: 13) использовали для измерения уровней РНК, представленных в таблицах набор праймеров-зондов RTS39496 для KCNT1 человека последовательность CAGGTGGAGTTCTACGTCAA, обозначенная в данном ID NO: 14; обратная последовательность документе как SEO GAGAAGTTGAACAGCCGGAT, обозначенная в данном документе как SEQ ID NO: последовательность зонда TGATGAAGAACAGCTTGAGCCGCT, обозначенная в данном документе как SEQ ID NO 16) использовали для измерения уровней РНК, представленных в таблицах 7-38. общему содержанию Уровни РНК KCNT1 нормализовали ĸ PHK, RIBOGREEN®. Снижение измеренному ПОМОЩЬЮ РНК KCNT1 представлено в таблицах 1-6 ниже в виде процентов уровней РНК

КСПТ1 по отношению к необработанным контрольным (UTC) клеткам. В каждой таблице представлены результаты, полученные на отдельном аналитическом планшете. «НО» означает, что % UTC не определен для этого конкретного модифицированного олигонуклеотида в этом конкретном эксперименте из-за ошибки эксперимента. Однако активности выбранных модифицированных олигонуклеотидов, включая те, которые не определены в Примере 1, успешно продемонстрированы в Примере 2.

Таблица 1. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39508 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO
1080685	17	36	4201	4220	AGTGGGAGCCGCCACCTTCT	107	21
1080691	50	69	4234	4253	CTGGCAGCTCGGACCCGACC	114	22
1080697	123	142	4307	4326	GTGTAGCCCCCGCCGCGCGC	83	23
1080703	194	213	16586	16605	GGAGCGCCCCCCCCCC	43	24
1080709	226	245	16618	16637	CAGGTCGCTCATCTTGAAGC	40	25
1080715	329	348	52098	52117	CGTAGAACTCCACCTGGACC	25	26
1080721	458	477	52991	53010	GGACGCGCACAATGTAGAGC	28	27
1080727	590	609	57145	57164	TCGCCCACAGTGTCATCTTT	33	28
1080733	613	632	58871	58890	TATTATGGCCACGATGACCT	64	29
1080739	709	728	59190	59209	GTTGATCATCTCCAGGACGA	57	30
1080745	953	972	61703	61722	ACAGGTTCTCGCCCGCCCGC	78	31
1080751	1069	1088	61819	61838	GGCCACGCAGATCATGATGA	54	32
1080757	1125	1144	67046	67065	TGCCGCTCCATCCAGAGGTA	37	33
1080763	1229	1248	67150	67169	CGTTCAGGAAGTCCATGAGA	36	34
1080768	1498	1517	70851	70870	GAAGTCCTTCACGGCCCAGG	34	35
1080774	1852	1871	72865	72884	CTTCAGCCCGATGAGGCACA	54	36
1080780	1956	1975	72969	72988	GCCGAGTTCTCCTCCTTGGT	34	37
1080786	2197	2216	74829	74848	CAGGACGGGCGCGATGCTGG	57	38

1080792	2262	2281	74894	74913	ACCTCATCCTCCGACTGGTC	58	39
1080798	2460	2479	79374	79393	AGCTTGTTCTTGAACCCGTA	61	40
1080804	2478	2497	79392	79411	TCTGCCGAGACGATGATCAG	39	41
1080810	2503	2522	79417	79436	GTTGTACAGCCCATTGCCGG	66	42
1080816	2530	2549	79444	79463	GTAGTAGGCCCGCAGTGGCA	42	43
1080822	2971	2990	86079	86098	GATGCTGAAGACGCGGCCGG	50	44
1080828	3078	3097	86595	86614	CAGAGGTACCCCGAGCCCGG	50	45
1080834	3387	3406	88332	88351	TGCAGGCTCTTGCGCCGTAG	53	46
1080840	3462	3481	88407	88426	TGCTGGCTGATCCACTCCGC	44	47
1080846	3525	3544	88470	88489	ATGCGGTTCTTCACCAGCTC	14	48
1080852	3842	3861	94221	94240	CCACCGTGTCCTCACACGCT	23	49
1080858	3875	3894	94254	94273	GTAGAGTGTGCCATCCCCAG	23	50
1080864	4046	4065	94425	94444	AGCCCTGGTCACGAGTTGCG	61	51
1080870	4478	4497	94857	94876	TGCCCCCTAGATGCAGTGGC	44	52
1080876	4493	4512	94872	94891	CCATCTTCCGCCCAATGCCC	35	53
1080882	4502	4521	94881	94900	GGAAATGCACCATCTTCCGC	27	54
1080888	4698	4717	95077	95096	CCGTACAAACCAGTAAGGAA	23	55
1080894	4705	4724	95084	95103	GCGCTGACCGTACAAACCAG	16	56
1080900	Н/П	Н/П	90128	90147	GGTTTACCCGATTCATGACA	26	57
1080906	Н/П	Н/П	3591	3610	ACACAGCACCTTTAGACGGG	153	58
1080912	Н/П	Н/П	6781	6800	ACTGCTCCCTAATATGGGCC	88	59
1080918	н/п	н/п	8833	8852	AAATGACCAACTCACTGGCG	77	60
1000510	11/ 11	117 11	37277	37296	AMIUMCCMCICACIOUCU	' '	
1080924	Н/П	Н/П	14472	14491	CCTGGCATAGCCAGACACGG	92	61
1080930	Н/П	Н/П	17507	17526	TGCCGTACCCTACACGCTGG	30	62
1080936	Н/П	Н/П	18221	18240	ACTTCCTGCCCAATATCGGA	58	63
1080942	Н/П	Н/П	20077	20096	GGAGGGTCCTCCAAGCGGCT	38	64
1080948	Н/П	Н/П	23023	23042	TTCACGGCCCCTAAACCACC	74	65
1080954	Н/П	Н/П	24946	24965	GGAGGATTTCCCACGACATC	47	66
1080960	Н/П	Н/П	27095	27114	GGCCATTGAGCCACCAAGGG	30	67
1080966	Н/П	Н/П	29977	29996	CATTTTAACCCTCTTTGCCG	90	68
1080972	Н/П	Н/П	30914	30933	TCAATCCCGAACACCATGTC	61	69
1080978	Н/П	Н/П	32653	32672	GGTCCGAAATCCCAAGCCTG	23	70
1080984	Н/П	Н/П	34972	34991	GTGCCGGAATCCTCACCCTT	51	71

1080990	Н/П	Н/П	38017	38036	ACCGGGCACAGATCCCACCT	53	72
1080996	Н/П	Н/П	40434	40453	TCCGTGAGATCCACACTCCA	24	73
1081002	Н/П	Н/П	45589	45608	GGCTTCTATCTCACACCCGT	34	74
1081008	Н/П	Н/П	47517	47536	CCGTCTGCTCAAACCATCAG	60	75
1081014	Н/П	Н/П	49388	49407	GGCGGTACCCAGGGACCACC	58	76
1081020	Н/П	Н/П	52241	52260	CCAGCCTTCGCCATCGCCAG	33	77
1081026	Н/П	Н/П	56009	56028	GCGCCTGGCTATTGGGAGCT	25	78
1001020	11/11	11/11	56073	56092	GCGCCIGGCIAIIGGGAGCI	25	'
			60111	60130			
1081032	Н/П	Н/П	60153	60172	ACCTGTGTCTCGGCTGAGGC	26	79
			60245	60264			
1081038	Н/П	Н/П	60194	60213	CGTCTCGGCTGAGGCCCACG	36	80
1001030	11/11	11/11	60286	60305			80
1081044	Н/П	Н/П	64878	64897	CACCATGGCCATACCCATCG	61	81
1081050	Н/П	Н/П	66061	66080	GCATTGCACTTATCCAGCGC	27	82
1081056	Н/П	Н/П	67948	67967	GTCCACCCCAGACGATCCAC	29	83
1001030 H/II	11/ 11		68544	68563	dicencechonconicene		
1081062	Н/П	Н/П	67979	67998	ATGGTCCATCCCAGAAGGTC	34	84
1001002	11/ 11	117 11	68118	68137			
1081068	Н/П	Н/П	68507	68526	AGAGGGTCCACCATGGATGG	50	85
1001000	11/ 11		68563	68582		50	00
1081074	Н/П	Н/П	68517	68536	GGTCCACCCAAGAGGGTCCA	34	86
1001074	11/ 11	11/11	68573	68592			
1081080	Н/П	Н/П	69967	69986	TGTGCAGGCTGACAGCGGGT	13	87
1001000	11/ 11		70025	70044			
1081086	Н/П	Н/П	71040	71059	TCCTGCCCCAGACGCACCGT	33	88
1001000	11/ 11	11/11	71080	71099			
1081092	Н/П	Н/П	71173	71192	GTGTGCACACGCGCCCTGCC	18	89
1001032	11/ 11		71293	71312			
1081098	Н/П	Н/П	72815	72834	TCAGGTACCGCCGCTCACCC	89	90
1081104	Н/П	Н/П	75842	75861	GGGCTCTTACCCACATACTT	25	91
1081110	Н/П	Н/П	77408	77427	CGCCAGCCTTACCTTGTCCA	156	92
1081116	Н/П	Н/П	79137	79156	AGCTGTACCCACAGGCGGCA	69	93
1081122	Н/П	Н/П	82606	82625	CCGAGCATCCCCCTACGCCT	53	94

1081128	Н/П	Н/П	84928	84947	GTTCGCCCTTACTCATCAGT	63	95
1081134	Н/П	Н/П	86431	86450	CACAGGTCCATACCCCACCG	51	96
1081140	Н/П	Н/П	91100	91119	TCCGAGCACCACAGTGCCCG	76	97
1081146	Н/П	Н/П	92063	92082	TGCCCGGACCACACGCTTCT	48	98

Таблица 2. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39508 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательност ь (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO
1080686	19	38	4203	4222	CGAGTGGGAGCCGCCACC TT	113	99
1080692	77	96	4261	4280	GCGCCCCGTCAGGGAGTG GC	84	100
1080698	125	144	4309	4328	TGGTGTAGCCCCCGCCGC GC	59	101
1080704	199	218	16591	16610	GTCCAGGAGCGCGCCGTC CC	30	102
1080710	234	253	16626	16645	TCGGAGTCCAGGTCGCTC AT	31	103
1080716	357	376	52126	52145	AGCCGCTCCTTGAAGGTG TT	36	104
1080722	464	483	52997	53016	CGAGCAGGACGCGCACAA TG	21	105
1080728	591	610	57146	57165	ATCGCCCACAGTGTCATC TT	32	106
1080734	686	705	59167	59186	ACACGCGGAAGATCTGCT CC	41	107
1080740	760	779	59308	59327	GAACAGGTTCCGCAGCGG CG	20	108
1080746	955	974	61705	61724	GGACAGGTTCTCGCCCGC	53	109

					CC		
1080752	1075	1094	61825	61844	CACGAGGGCCACGCAGAT CA	83	110
1080758	1147	1166	67068	67087	GCTGTAGTTGCCCCCTGA CT	48	111
1080764	1299	1318	67648	67667	TGGACATCCATCTCCGTG GG	28	112
1080769	1502	1521	70855	70874	GGGCGAAGTCCTTCACGG CC	26	113
1080775	1854	1873	72867	72886	CGCTTCAGCCCGATGAGG CA	52	114
1080781	1957	1976	72970	72989	GGCCGAGTTCTCCTCCTT GG	28	115
1080787	2207	2226	74839	74858	CGGCCAGTTCCAGGACGG GC	55	116
1080793	2266	2285	74898	74917	CGTCACCTCATCCTCCGA CT	43	117
1080799	2473	2492	79387	79406	CGAGACGATGATCAGCTT GT	39	118
1080805	2479	2498	79393	79412	CTCTGCCGAGACGATGAT CA	40	119
1080811	2504	2523	79418	79437	AGTTGTACAGCCCATTGC CG	42	120
1080817	2542	2561	79456	79475	CTTGCGGGATCTGTAGTA GG	60	121
1080823	3016	3035	86533	86552	GTAGTCCTTCACGAAGGA CT	72	122
1080829	3079	3098	86596	86615	ACAGAGGTACCCCGAGCC CG	43	123
1080835	3411	3430	88356	88375	TTGCGGCTCAGCCTCCGG GC	32	124
1080841	3463	3482	88408	88427	CTGCTGGCTGATCCACTC CG	42	125
1080847	3526	3545	88471	88490	CATGCGGTTCTTCACCAG	18	126

1080853	3847	3866	94226	94245	TAGTGCCACCGTGTCCTC AC	26	127
1080859	3877	3896	94256	94275	GAGTAGAGTGTGCCATCC CC	15	128
1080865	4369	4388	94748	94767	GACGCACCCCTCTCACAT GC	21	129
1080871	4480	4499	94859	94878	AATGCCCCCTAGATGCAG TG	28	130
1080877	4495	4514	94874	94893	CACCATCTTCCGCCCAAT GC	24	131
1080883	4583	4602	94962	94981	CCGGAGGCTGAATTGTGC TT	27	132
1080889	4699	4718	95078	95097	ACCGTACAAACCAGTAAG GA	15	133
1080895	Н/П	н/п	90121	90140	CCGATTCATGACATCACT GG	20	134
1080901	Н/П	Н/П	90129	90148	AGGTTTACCCGATTCATG AC	28	135
1080907	Н/П	Н/П	4599	4618	CCCAGCTTCTTACCAGGT CG	121	136
1080913	Н/П	Н/П	7382	7401	GGGTACACGATACCCGTT CA	56	137
1080919	Н/П	Н/П	9148	9167	GCACCGGGCCTTATCTGA TC	135	138
1080925	н/п	н/п	14834	14853	GCACACGGCCATAAGCAG GT	86	139
1080931	н/п	н/п	17508	17527	CTGCCGTACCCTACACGC TG	37	140
1080937	Н/П	н/п	18644	18663	GCACAGCACGCCAAGACC GC	29	141
1080943	Н/П	Н/П	20549	20568	CGGCACTTCCACCTTACC CA	27	142
1080949	Н/П	Н/П	23033	23052	TCCTCGAACCTTCACGGC CC	42	143
1080955	Н/П	Н/П	25141	25160	TCGGAGAGCCACGCCCGT	43	144

					CA		
1080961	Н/П	н/п	27253	27272	ACAGGAATCTTTCGAAGG	43	145
					CC CCTCCAAACAATTATGC		
1080967	Н/П	Н/П	30331	30350	GA	67	146
1080973	Н/П	Н/П	30919	30938	ACAGTTCAATCCCGAACA	47	147
1000373	117 11	11/ 11	30313	30330	CC		
1080979	н/п	Н/П	33660	33679	CTAGGACTATTATACCCA GC	31	148
1080985	Н/П	Н/П	36054	36073	TCGCTTTGCCTACCGCGA	88	149
					GC	-	
1080991	Н/П	Н/П	38455	38474	CCGGCTCAAACCACCGCC AG	46	150
1000007	11./17	TT /TT	40070	40001	CGGCAGGTTCCCACACGC	20	1 - 1
1080997	Н/П	Н/П	42272	42291	AA	30	151
1081003	н/п	Н/П	45594	45613	GGCACGGCTTCTATCTCA	41	152
					CA CCCTTTACCTCCCCGTGG		
1081009	Н/П	Н/П	48647	48666	AC	59	153
1081015	Н/П	Н/П	49818	49837	GCTTGTCACCCCACCGGG	50	154
1001013	117 11	11/ 11	13010	13037	CA		101
1081021	Н/П	Н/П	52720	52739	GCCCCACCTTACAGGTGC CT	39	155
1081027	Н/П	Н/П	56052	56071	GAGTGGAGACTCATCCCA	33	156
	Н/П	Н/П	56116	56135	CC		
			60112	60131	CACCTGTGTCTCGGCTGA		
1081033	Н/П	Н/П	60154	60173	GG	44	157
			60246	60265			
1081039	Н/П	н/п	60978	60997	AGTGGTGACCAGGCCTCG CT	27	158
1081045	н/п	н/п	65270	65289	GCCCACCCTTACCATCGC CA	35	159
1081051	Н/П	Н/П	66638	66657	GTCAGGAGCCTATGTCTG	29	160
					GG		
1081057	Н/П	Н/П	67950	67969	TGGTCCACCCCAGACGAT	23	161

			68546	68565	CC		
1081063	Н/П	Н/П	68042	68061	CACCCTGGATGGTCCACC	37	162
1001003	П/11	п/п	68363	68382	CT		102
1081069	11 / 11	11 / 11	68508	68527	AAGAGGGTCCACCATGGA	12	163
1081069	Н/П	Н/П	68564	68583	TG	43	163
1081075	н/п	н/п	68538	68557	CCCAGACGATCCACCCCA GA	64	164
1081081	н/п	н/п	70254	70273	CACCGGTATCCCAGTGCC CC	58	165
1081087	17 / 77	TT /TT	71072	71091	CAGACGCACCGTCACCCA	29	166
1001007	Н/П	Н/П	71152	71171	CG	29	100
1081093	Н/П	Н/П	71174	71193	CGTGTGCACACGCGCCCT	21	167
1001093	.001093 11/11 H/11	П/11	71294	71313	GC		107
1081099	Н/П	н/п	72851	72870	GGCACACGCCATACCTGG GC	43	168
1081105	н/п	н/П	75990	76009	CCCCCATGCCCTACTCGG TC	49	169
1081111	н/п	н/п	77628	77647	GGTGCCTCTAACATAGAC AC	49	170
1081117	Н/П	Н/П	79139	79158	ACAGCTGTACCCACAGGC GG	52	171
1081123	Н/П	н/п	83317	83336	CGTCTCTGTATATGCCTG GC	50	172
1081129	Н/П	н/П	84931	84950	CGGGTTCGCCCTTACTCA TC	42	173
1081135	Н/П	Н/П	87153	87172	GCTGCCCGTATTCTTCCT GA	18	174
1081141	Н/П	Н/П	91137	91156	CGCAGGCATCCCACTCAT GA	89	175
1081147	Н/П	Н/П	93676	93695	TCCGGCCTTCCTGACCAT TC	23	176

Таблица 3. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39508 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO
854697	1354	1373	67703	67722	CTGGAGGTAGATGACCCG CT	48	177
1080687	41	60	4225	4244	CGGACCCGACCCGAGGGA GA	65	178
1080693	79	98	4263	4282	CCGCGCCCCGTCAGGGAG TG	68	179
1080699	127	146	4311	4330	GTTGGTGTAGCCCCCGCC GC	85	180
1080705	208	227	16600	16619	GCCGGCGGTGTCCAGGAG CG	36	181
1080711	237	256	16629	16648	ACCTCGGAGTCCAGGTCG CT	43	182
1080717	358	377	52127	52146	GAGCCGCTCCTTGAAGGT GT	36	183
1080723	517	536	55945	55964	GGAGTAGTTCTGCTTTGG GC	ND	184
1080729	594	613	57149	57168	TGGATCGCCCACAGTGTC AT	41	185
1080735	692	711	59173	59192	CGAAGGACACGCGGAAGA TC	34	186
1080741	761	780	59309	59328	TGAACAGGTTCCGCAGCG GC	12	187
1080747	1012	1031	61762	61781	GTCACCGTAGCCCACGGT GG	59	188
1080753	1105	1124	67026	67045	GACGAGCTCCTCGAACTG CA	23	189
1080759	1174	1193	67095	67114	GTGCTTCTCCGTCTGCGC AC	43	190

1080770	1710	1729	72314	72333	ATGCGCTGCCACTGCTCC GG	44	191
1080776	1855	1874	72868	72887	CCGCTTCAGCCCGATGAG GC	40	192
1080782	2163	2182	74795	74814	GAGCCGTTCTCCGTGGGC AG	73	193
1080788	2208	2227	74840	74859	TCGGCCAGTTCCAGGACG GG	60	194
1080794	2318	2337	77310	77329	GAGGGTAGCCCTTCACAT AC	24	195
1080800	2474	2493	79388	79407	CCGAGACGATGATCAGCT TG	30	196
1080806	2484	2503	79398	79417	GCCGTCTCTGCCGAGACG AT	ND	197
1080812	2505	2524	79419	79438	AAGTTGTACAGCCCATTG CC	50	198
1080818	2550	2569	79464	79483	TTCAGCTCCTTGCGGGAT CT	22	199
1080824	3017	3036	86534	86553	TGTAGTCCTTCACGAAGG AC	56	200
1080830	3107	3126	86766	86785	ACAGGTCGCCCTCGGTGA TT	48	201
1080836	3433	3452	88378	88397	CCGGCCTGCTTGGG CG	45	202
1080842	3484	3503	88429	88448	GCGCCGGTACAGGCTGAG GC	41	203
1080848	3536	3555	88481	88500	CCAGGTGCTTCATGCGGT TC	30	204
1080854	3850	3869	94229	94248	CGCTAGTGCCACCGTGTC CT	22	205
1080860	3933	3952	94312	94331	GGCCCTCCCCCGCATGA GG	28	206
1080866	4370	4389	94749	94768	GGACGCACCCTCTCACA TG	31	207
1080872	4484	4503	94863	94882	GCCCAATGCCCCCTAGAT	27	208

					GC		
1080878	4496	4515	94875	94894	GCACCATCTTCCGCCCAA	22	209
1000070	1130	4010	34073	34034	TG	22	200
1080884	4631	4650	95010	95029	CGGGATCTCGCCTTGCTG	37	210
					AG		
1080890	4700	4719	95079	95098	GACCGTACAAACCAGTAA	16	211
					GG		
1080896	Н/П	Н/П	90124	90143	TACCCGATTCATGACATC	19	212
					AC CAGGTTTACCCGATTCAT		
1080902	Н/П	Н/П	90130	90149	GA	21	213
					CCCTTAAAGACCATCCGC		
1080908	Н/П	Н/П	5393	5412	CC	41	214
1000011				5500	CTGGCGGGCCCCACACAT		0.1.5
1080914	Н/П	Н/П	7489	7508	CC	63	215
1080920	Н/П	Н/П	11384	11403	ATGGATTTTCATCACGGC	72	216
1000520	11/11	11/11	11304	11403	CT	/ 2	210
1080926	Н/П	Н/П	16248	16267	GCGCACCACTCCTCCCTG	88	217
					AT		
1080932	Н/П	Н/П	17509	17528	CCTGCCGTACCCTACACG	38	218
					CT		
1080938	Н/П	Н/П	18670	18689	CGGCACACACCCATGTG	93	219
					AGCGGCACTTCCACCTTA		
1080944	Н/П	Н/П	20551	20570	CC	ND	220
					CCCGACTCCTCCTCGAAC		
1080950	Н/П	Н/П	23042	23061	CT	48	221
1000056	/	/	05070	0.5.0.1	GTGGCATTCCATGTTGAC	2.0	000
1080956	Н/П	Н/П	25372	25391	CC	38	222
1080962	Н/П	Н/П	27294	27313	ACCGTGTTTCTACATAAG	ND	223
1000502		117 11	2,234	2,313	CC		223
1080968	Н/П	Н/П	30452	30471	GCTGTTACATCCGCAGTG	36	224
					AG		
1080974	Н/П	Н/П	31098	31117	CCGTGTATACCTGTCTCC	59	225
					CC		

1080980	Н/П	Н/П	34408	34427	ACAACAAGATCCAGGCAC CG	41	226
1080986	Н/П	Н/П	36386	36405	GGAAGGACAATACCTTCG GC	29	227
1080992	Н/П	Н/П	38458	38477	TGCCCGGCTCAAACCACC GC	23	228
1080998	Н/П	н/п	42854	42873	CGCAGCATCCAAACCCAC GG	39	229
1081004	Н/П	н/п	45699	45718	CGGCACACACTATAGCCT CG	36	230
1081010	Н/П	н/п	48773	48792	TCCGCCCTGACCATCGCC CC	38	231
1081016	Н/П	Н/П	50478	50497	GGCTCCTATCAATCGAAT CT	ND	232
1081022	Н/П	н/п	53235	53254	GGACCCTTCTCCCTACGC TG	34	233
1081028	Н/П	н/п	57238 58128	57257 58147	TGGGTTCCCTACTTACTG AG	23	234
			60113	60132	110		
1001004		 			ACACCTGTGTCTCGGCTG	4.0	
1081034	Н/П	Н/П	60155	60174	AG	48	235
			60247	60266			
1081040	Н/П	Н/П	61142	61161	GCCAGGTCCCAGATGCTA TC	23	236
1081046	Н/П	н/п	65273	65292	GCAGCCCACCCTTACCAT CG	45	237
1081052	Н/П	н/п	66668	66687	CCGGTCTTCCAGGCACTC GC	19	238
		<u> </u>	67951	67970	ATGGTCCACCCCAGACGA		1
1081058	Н/П	Н/П	68547	68566	TC	24	239
1081064	Н/П	Н/П	68062	68081	ATGGTCCACCCCAGATGG TC	ND	240
		+	68509	68528	CAAGAGGGTCCACCATGG		
1081070	Н/П	Н/П	68565	68584	AT	86	241
1081076	Н/П	Н/П	68649	68668	CCGGACAGTCTACCCCAG AC	22	242

1081082	Н/П	Н/П	70255	70274	CCACCGGTATCCCAGTGC CC	42	243
1081088	н/п	Н/П	71073	71092	CCAGACGCACCGTCACCC	48	244
1001000	11/11	11/11	71153	71172	AC	40	244
1081094	н/п	н/п	71350	71369	ACACAGCTCGCCTAACTG	99	245
1001034	117 11	11/ 11	71330	71303	CG		240
1081100	н/п	н/п	74164	74183	GGGCAGAGTGCCTACTGC	23	246
1001100	11/11	11/ 11	74104	74100	GC	25	240
1081106	н/п	Н/П	76774	76793	CCTCGGCATAACACATGG	82	247
1001100	11/11	117 11	, , , , ,	70733	CC	02	21/
1081112	н/п	Н/П	77773	77792	GATCAGACACCCATGCCG	37	248
1001112	11/11	117 11		11132	GG		210
1081118	н/п	Н/П	80495	80514	TCGGCCGGCCACGCCTTA	30	249
	117 11	11/ 11			CT		
1081124	н/п	Н/П	84304	84323	GACTCCTCTCACACACCG	53	250
	11, 11	,		0 10 20	GG		
1081130	Н/П	Н/П	84933	84952	TCCGGGTTCGCCCTTACT	73	251
	,	,			CA		
1081136	Н/П	Н/П	87371	87390	GTGAAGCTGCGATGTTCT	22	252
	11, 11	11, 11			GG		
1081142	н/п	н/п	91673	91692	ACCCGCTTCCTAACCCTG	38	253
	11, 11				CA		
1081148	н/п	н/п	95466	95485	GAGTTCTGTGCCACTGCG	9	254
1001110	11/11	/			GG		

Таблица 4. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39508 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO
1080688	42	61	4226	4245	TCGGACCCGAC	125	255

					GGAG		
1080694	80	99	4264	4283	TCCGCGCCCCGTCAGG GAGT	56	256
1080700	143	162	4327	4346	CAAACTCGAAGGTCCG GTTG	93	257
1080706	222	241	16614	16633	TCGCTCATCTTGAAGC CGGC	19	258
1080712	238	257	16630	16649	CACCTCGGAGTCCAGG TCGC	42	259
1080718	365	384	52134	52153	ACAGCTTGAGCCGCTC CTTG	38	260
1080724	531	550	55959	55978	GACGAGTCATTGAAGG AGTA	40	261
1080730	595	614	57150	57169	CTGGATCGCCCACAGT GTCA	27	262
1080736	698	717	59179	59198	CCAGGACGAAGGACAC GCGG	47	263
1080742	910	929	60490	60509	CCCCGTGAAAACGAGG CACA	46	264
1080748	1036	1055	61786	61805	CGATGGCCAGATCTTG GGCG	43	265
1080754	1106	1125	67027	67046	AGACGAGCTCCTCGAA CTGC	46	266
1080760	1175	1194	67096	67115	CGTGCTTCTCCGTCTG CGCA	27	267
1080765	1491	1510	70844	70863	TTCACGGCCCAGGCGC GCAG	71	268
1080771	1764	1783	72368	72387	TTGCTGTCACCCATGC GGAT	39	269
1080777	1888	1907	72901	72920	CCCCGGGTTCAGCAGG ATGC	48	270
1080783	2164	2183	74796	74815	CGAGCCGTTCTCCGTG GGCA	30	271
1080789	2210	2229	74842	74861	TGTCGGCCAGTTCCAG GACG	85	272

1080795	2319	2338	77311	77330	GGAGGGTAGCCCTTCA CATA	28	273
1080801	2475	2494	79389	79408	GCCGAGACGATGATCA GCTT	36	274
1080807	2486	2505	79400	79419	CGGCCGTCTCTGCCGA GACG	44	275
1080813	2512	2531	79426	79445	CACGATGAAGTTGTAC AGCC	28	276
1080819	2689	2708	80708	80727	GTCCGCATAGATGATG CCAC	15	277
1080825	3018	3037	86535	86554	ATGTAGTCCTTCACGA AGGA	38	278
1080831	3114	3133	86773	86792	CGGATCCACAGGTCGC CCTC	25	279
1080837	3458	3477	88403	88422	GGCTGATCCACTCCGC GGCC	53	280
1080843	3522	3541	88467	88486	CGGTTCTTCACCAGCT CGGA	45	281
1080849	3663	3682	94042	94061	GGGTCGGAGCGGATGA GATA	29	282
1080855	3854	3873	94233	94252	GTCACGCTAGTGCCAC CGTG	22	283
1080861	3934	3953	94313	94332	TGGCCCTCCCCCGCA TGAG	43	284
1080867	4371	4390	94750	94769	GGGACGCACCCTCTC ACAT	32	285
1080873	4486	4505	94865	94884	CCGCCCAATGCCCCCT AGAT	53	286
1080879	4497	4516	94876	94895	TGCACCATCTTCCGCC CAAT	34	287
1080885	4632	4651	95011	95030	CCGGGATCTCGCCTTG CTGA	46	288
1080891	4702	4721	95081	95100	CTGACCGTACAAACCA GTAA	25	289
1080897	н/п	н/п	90125	90144	TTACCCGATTCATGAC	38	290

					ATCA		
1080903	Н/П	н/п	90131	90150	CCAGGTTTACCCGATT CATG	26	291
1080909	Н/П	н/п	6181	6200	GGTTCTGACCACGCTG TTGC	79	292
1080915	Н/П	н/п	7601	7620	AAGATGCCCATTTAAC CGGG	84	293
1080921	Н/П	Н/П	11439	11458	AACTTGGAACCTCTAC CTGG	71	294
1080927	н/п	н/п	16963	16982	CCTCCGCGCCCCAAGT CGGG	33	295
1080933	Н/П	н/п	17641	17660	CCTGACCATTTTCAAC CTCG	33	296
1080939	Н/П	н/п	19044	19063	TGTCCTATAGACACCA ACAC	61	297
1080945	Н/П	н/п	21696	21715	ACGAAGCTTCCTCTTG CCTG	51	298
1080951	Н/П	н/п	24071	24090	GACACCGTTCACATGT GATG	30	299
1080957	Н/П	н/п	25510	25529	CCTTCGGGAGCCACAC GCTC	61	300
1080963	Н/П	Н/П	28340	28359	GGGTACGGCCTCATCC AGGT	45	301
1080969	Н/П	Н/П	30456	30475	GGTGGCTGTTACATCC GCAG	38	302
1080975	Н/П	Н/П	31586	31605	GTAACGAACCACCACC AGCC	68	303
1080981	Н/П	Н/П	34524	34543	AGCCCACACGCCATAC AGTT	74	304
1080987	Н/П	н/п	36895	36914	CTGCAGGGCCCTTCAC CGCG	45	305
1080993	Н/П	Н/П	38783	38802	CCCGCGCGCCCCTACC TCTG	39	306
1080999	Н/П	Н/П	43235	43254	CCCGATATAGCCCTAG CTGA	55	307

1081005	Н/П	Н/П	46620	46639	GCCCCGTCCCTACACG GCTG	55	308
1081011	Н/П	н/п	48803	48822	GGCCACTCCTCCTAGG CGGG	47	309
1081017	Н/П	н/п	50894	50913	AGTCGGCTGCCTTAGC CCTC	38	310
1081023	Н/П	н/п	55659	55678	AGGGTACATCCCACAT CTGC	17	311
1081029	н/п	н/п	58506	58525	ACCTGGTTTTCCCCCA CGGA	48	312
			60114	60133	CACACCTGTGTCTCGG		
1081035	Н/П	Н/П	60156	60175	CTGA	45	313
			60248	60267			
1081041	Н/П	н/п	61207	61226	CGGCACAGCCAGACAA GCGC	43	314
1081047	н/п	Н/П	65470	65489	CGGAGGATACATATCT GCTG	33	315
1081053	Н/П	Н/П	67263	67282	GGGACTTGCCAAGCAG	72	316
1001033	11/11		67384	67403	TCCT	12	
1081059	Н/П	Н/П	67955	67974	CTGAATGGTCCACCCC	52	317
1001033	11/11		68094	68113	AGAC] 52	
1081065	Н/П	Н/П	68143	68162	ATCCACCCTGGATGGT	34	318
1001003			68366	68385	CCAC		
1081071	Н/П	Н/П	68513	68532	CACCCAAGAGGGTCCA	85	319
1001071	11/11		68569	68588	CCAT		
1081077	Н/П	Н/П	68940	68959	GGAACTCTACCTTCAG CCCG	55	320
1081083	н/п	Н/П	70954	70973	CAGATACACCATCACC CACG	87	321
1081089	Н/П	Н/П	71076	71095	GCCCCAGACGCACCGT	26	322
1001009	11/11	11/11	71156	71175	CACC		
1081095	Н/П	Н/П	71738	71757	GGTGGACCTTCCATCG CTCC	30	323
1081101	Н/П	Н/П	74408	74427	GGTTGGCTGATTCTGG GCTC	38	324

1081107	Н/П	Н/П	76923	76942	GGACTTAGCCCCATCA GGGC	19	325
1081113	н/п	Н/П	78059	78078	GTGACCTGACAATTGA CCCC	67	326
1081119	н/п	Н/П	81776	81795	GACCAACTGACCATGC CAGG	53	327
1081125	н/п	Н/П	84520	84539	CGGATGAGCCCTTCCT GAGC	60	328
1081131	н/п	Н/П	85101	85120	GGGTCATTCTTCAGCG GAGG	50	329
1081137	н/п	Н/П	88514	88533	GTGTGCCCTTACCGTA GCCG	34	330
1081143	н/п	Н/П	91674	91693	AACCCGCTTCCTAACC CTGC	76	331
1081149	Н/П	Н/П	96183	96202	TGCGACTCCCCCATGG TGCC	72	332

Таблица 5. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39508 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO
1080689	45	64	4229	4248	AGCTCGGACCCGACCC GAGG	97	333
1080695	81	100	4265	4284	GTCCGCGCCCCGTCAG GGAG	76	334
1080701	146	165	4330	4349	CGTCAAACTCGAAGGT CCGG	102	335
1080707	223	242	16615	16634	GTCGCTCATCTTGAAG CCGG	25	336
1080713	327	346	52096	52115	TAGAACTCCACCTGGA	36	337

					CCCT		
1080719	417	436	52950	52969	GAGAAGTTGAACAGCC GGAT	48	338
1080725	535	554	55963	55982	GGAGGACGAGTCATTG AAGG	45	339
1080731	597	616	57152	57171	ACCTGGATCGCCCACA GTGT	31	340
1080737	706	725	59187	59206	GATCATCTCCAGGACG AAGG	43	341
1080743	928	947	61678	61697	GTGCTGGATGCCGCAG GTCC	33	342
1080749	1066	1085	61816	61835	CACGCAGATCATGATG ACCA	55	343
1080755	1114	1133	67035	67054	CCAGAGGTAGACGAGC TCCT	33	344
1080761	1210	1229	67131	67150	AAGGTCGATCTTGAGG GAGC	36	345
1080766	1493	1512	70846	70865	CCTTCACGGCCCAGGC GCGC	43	346
1080772	1776	1795	72380	72399	TCGCGGAAGAACTTGC TGTC	50	347
1080778	1954	1973	72967	72986	CGAGTTCTCCTCCTTG GTGA	39	348
1080784	2175	2194	74807	74826	CGCCGGCTGCCCGAGC CGTT	54	349
1080790	2213	2232	74845	74864	AGCTGTCGGCCAGTTC CAGG	56	350
1080796	2454	2473	79368	79387	TTCTTGAACCCGTAGG CCTT	44	351
1080802	2476	2495	79390	79409	TGCCGAGACGATGATC AGCT	31	352
1080808	2490	2509	79404	79423	TTGCCGGCCGTCTCTG CCGA	46	353
1080814	2518	2537	79432	79451	CAGTGGCACGATGAAG TTGT	44	354

1080820	2696	2715	80715	80734	CCAGGTTGTCCGCATA GATG	33	355
1080826	3020	3039	86537	86556	TCATGTAGTCCTTCAC GAAG	67	356
1080832	3117	3136	86776	86795	GTGCGGATCCACAGGT CGCC	41	357
1080838	3459	3478	88404	88423	TGGCTGATCCACTCCG CGGC	37	358
1080844	3523	3542	88468	88487	GCGGTTCTTCACCAGC TCGG	18	359
1080850	3732	3751	94111	94130	TTGCAGGACGACAGCT TGTG	50	360
1080856	3859	3878	94238	94257	CCAGGGTCACGCTAGT GCCA	25	361
1080862	4032	4051	94411	94430	GTTGCGGTACATCTGT GTAA	8	362
1080868	4414	4433	94793	94812	CCTTCAGAAAGGTCCT CGGC	29	363
1080874	4491	4510	94870	94889	ATCTTCCGCCCAATGC CCCC	42	364
1080880	4498	4517	94877	94896	ATGCACCATCTTCCGC CCAA	27	365
1080886	4634	4653	95013	95032	GCCCGGGATCTCGCCT TGCT	28	366
1080892	4703	4722	95082	95101	GCTGACCGTACAAACC AGTA	14	367
1080898	н/П	Н/П	90126	90145	TTTACCCGATTCATGA CATC	46	368
1080904	Н/П	н/П	2853	2872	CCCCAGATCGCCAGCC CGTC	76	369
1080910	Н/П	н/П	6210	6229	GCACCAAGACCTATGG ACTC	87	370
1080916	н/п	н/п	8477	8496	GGCGACGGTGCCAAGG AGGA	64	371
1080922	Н/П	Н/П	12789	12808	GAGCGCATCACTATTT	88	372

					TCTC		
1080928	Н/П	Н/П	17266	17285	TGGGCTCATCCTGTTG GTCC	35	373
1080934	Н/П	Н/П	17803	17822	TAGAATATTCCATTCC CCGC	35	374
1080940	Н/П	Н/П	19220	19239	CTCATCCTATAGACAC	37	375
	11/ 11	117 11	19266	19285	CAAC		
1080946	н/П	н/п	22380	22399	ACTTCCCCGACCAGCT GAGA	68	376
1080952	н/П	Н/П	24243	24262	GCGGGATTCGCCCTCT CAGG	18	377
1080958	Н/П	Н/П	26459	26478	CCCTCGCCGACCACTG GCCT	24	378
1080964	Н/П	Н/П	28499	28518	CAGGTTCTACCTACCA AGGG	28	379
1080970	Н/П	Н/П	30784	30803	ATCACCATAACCAGAC CCGG	35	380
1080976	Н/П	Н/П	31773	31792	TGCAACATTTTCAAGC CTCG	24	381
1080982	Н/П	Н/П	34618	34637	GCAATGGAAGCCACAC TCGA	44	382
1080988	Н/П	Н/П	37260	37279	GCGCTCCCGATACCTG CCCT	39	383
1080994	н/П	н/п	39863	39882	TTGACCTTAGCCTCAA CCGC	65	384
1081000	н/П	н/п	43695	43714	TCGGCCTACGCCAGGC TCTC	57	385
1081006	н/п	Н/П	46984	47003	GGGCGCAGCCACAC TCGC	28	386
1081012	н/п	Н/П	49047	49066	GGGTGACTTCCCAACT GGCT	41	387
1081018	Н/П	Н/П	51273	51292	TGGCTCACCTACCGTG GCCA	77	388
1081024	н/п	н/п	55801	55820	GGGCTAACCCCCACAT CAGA	38	389

1081030	н/п	н/п	58944	58963	CTGTGAGGTGCCATCC CGGG	68	390
			60146	60165	TCTCGGCTGAGGCCCA		
1081036	Н/П	Н/П	60192	60211	CGGG	38	391
			60284	60303			
1081042	Н/П	н/п	63494	63513	GGTGAGATTTACGGAT	29	392
1001042	11/ 11	117 11	03434	03313	TGGG		
1081048	Н/П	Н/П	65546	65565	ACAATCTCCCCCAAAG	23	393
	11, 11	11, 11			CGGC		
1081054	Н/П	Н/П	67914	67933	CCCGGACGATCCACCC	45	394
		,			TGGA		
1081060	Н/П	Н/П	67956	67975	CCTGAATGGTCCACCC	52	395
	,	,	68095	68114	CAGA		
1081066	Н/П	Н/П	68154	68173	CACCCTAGACAATCCA	53	396
		,			CCCT		
1081072	Н/П	Н/П	68515	68534	TCCACCCAAGAGGGTC	29	397
	,	,	68571	68590	CACC		
1081078	Н/П	Н/П	69277	69296	ATGGCCTACGCCCTTG	48	398
					CCCT		
			71037	71056	TGCCCCAGACGCACCG		
1081084	Н/П	Н/П	71077	71096	TCAC	32	399
			71157	71176			
1081090	Н/П	Н/П	71165	71184	ACGCGCCCTGCCCCAG	34	400
	==, ==	==, ==	71285	71304	ACGC		
1081096	Н/П	Н/П	71768	71787	GACCTCAACCCCCTAC	82	401
	,	,			TTGG		
1081102	Н/П	Н/П	74644	74663	CGGCGAGTTCCCAGAG	43	402
	,	,		,	CTCA		
1081108	Н/П	Н/П	77143	77162	CCGTTCTTCCCTTAAC	38	403
	11, 11	11, 11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,	CACC		
1081114	Н/П	Н/П	78693	78712	CCGGCCACAGATTATA	60	404
					ACCC		
1081120	Н/П	Н/П	81784	81803	GGAGTTCTGACCAACT	63	405
					GACC		
1081126	Н/П	Н/П	84783	84802	GCATCCAGAATTCCAG	32	406

					CCGT		
1081132	Н/П	н/п	86404	86423	GCTCGCCACCCCTCAT	42	407
	,	,			GCAT		
1081138	Н/П	Н/П	88517	88536	GCCGTGTGCCCTTACC	40	408
	·	·			GTAG		
1081144	Н/П	Н/П	91686	91705	TGCTCGCCCCCAACC	48	409
	·	·			CGCT		
1081150	Н/П	Н/П	96608	96627	GGGAGGATTCACAGGC	41	410
		·			CGCT		

Таблица 6. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39508 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO
1080690	46	65	4230	4249	CAGCTCGGACCCGACCCG AG	74	411
1080696	121	140	4305	4324	GTAGCCCCCGCCGCGCCCC	53	412
1080702	191	210	16583	16602	GCGCGCCGTCCCCCGCGC AG	76	413
1080708	225	244	16617	16636	AGGTCGCTCATCTTGAAG CC	47	414
1080714	328	347	52097	52116	GTAGAACTCCACCTGGAC CC	46	415
1080720	457	476	52990	53009	GACGCGCACAATGTAGAG CA	40	416
1080726	547	566	55975	55994	CCAGTTGATCTCGGAGGA CG	50	417
1080732	611	630	58869	58888	TTATGGCCACGATGACCT GG	52	418

1080738	708	727	59189	59208	TTGATCATCTCCAGGACG AA	71	419
1080744	948	967	61698	61717	TTCTCGCCCGCCCGCTCC AG	66	420
1080750	1067	1086	61817	61836	CCACGCAGATCATGATGA CC	57	421
1080756	1123	1142	67044	67063	CCGCTCCATCCAGAGGTA GA	52	422
1080762	1214	1233	67135	67154	TGAGAAGGTCGATCTTGA GG	75	423
1080767	1494	1513	70847	70866	TCCTTCACGGCCCAGGCG CG	49	424
1080773	1778	1797	72382	72401	ACTCGCGGAAGAACTTGC TG	45	425
1080779	1955	1974	72968	72987	CCGAGTTCTCCTCCTTGG TG	26	426
1080785	2176	2195	74808	74827	CCGCCGGCTGCCCGAGCC GT	40	427
1080791	2261	2280	74893	74912	CCTCATCCTCCGACTGGT CG	38	428
1080797	2455	2474	79369	79388	GTTCTTGAACCCGTAGGC CT	35	429
1080803	2477	2496	79391	79410	CTGCCGAGACGATGATCA GC	34	430
1080809	2502	2521	79416	79435	TTGTACAGCCCATTGCCG GC	46	431
1080815	2519	2538	79433	79452	GCAGTGGCACGATGAAGT TG	61	432
1080821	2954	2973	86062	86081	CGGCGGCGAACGGCAGGC GG	27	433
1080827	3037	3056	86554	86573	CAGCCGGGTGATGGTGAT CA	52	434
1080833	3118	3137	86777	86796	CGTGCGGATCCACAGGTC GC	44	435
1080839	3461	3480	88406	88425	GCTGGCTGATCCACTCCG	53	436

					CG		
1080845	3524	3543	88469	88488	TGCGGTTCTTCACCAGCT CG	48	437
1080851	3840	3859	94219	94238	ACCGTGTCCTCACACGCT CC	19	438
1080857	3861	3880	94240	94259	CCCCAGGGTCACGCTAGT GC	25	439
1080863	4033	4052	94412	94431	AGTTGCGGTACATCTGTG TA	23	440
1080869	4456	4475	94835	94854	GGACAGTTCAGTGTGAAG TA	47	441
1080875	4492	4511	94871	94890	CATCTTCCGCCCAATGCC CC	42	442
1080881	4501	4520	94880	94899	GAAATGCACCATCTTCCG CC	39	443
1080887	4641	4660	95020	95039	AGCCGCCGCCCGGGATCT CG	55	444
1080893	4704	4723	95083	95102	CGCTGACCGTACAAACCA GT	39	445
1080899	Н/П	н/п	90127	90146	GTTTACCCGATTCATGAC AT	38	446
1080905	Н/П	Н/П	3435	3454	GGAGAACTGCGATTTCTG TC	88	447
1080911	Н/П	н/П	6282	6301	CCCCTCTGAACCATAGCA CC	91	448
1080917	Н/П	н/П	8832 37276	8851 37295	AATGACCAACTCACTGGC GC	40	449
1080923	Н/П	н/п	12935	12954	CGCGGGAGCCCCAAACCC AC	63	450
1080929	н/п	н/п	17285	17304	AGCGGATGAATTATTCCC AT	30	451
1080935	Н/П	н/П	17804	17823	GTAGAATATTCCATTCCC CG	32	452
1080941	Н/П	Н/П	19315	19334	TGTCCCATCCTATAGACA CC	47	453

1080947	Н/П	Н/П	22762	22781	CACTCACGCCTTCACGCA GA	52	454
1080953	н/п	Н/П	24432	24451	TGGTGGCTTCCTGACGCG GA	48	455
1080959	Н/П	Н/П	26473	26492	CAGACTGGCCACGCCCCT CG	56	456
1080965	н/п	Н/П	29889	29908	CACTCGCCTTTTTAGAGC CC	44	457
1080971	н/п	Н/П	30872	30891	TCTCAGATTCACAATCCC GG	30	458
1080977	н/п	Н/П	32351	32370	CCCCCTCGCCACGCATGG TT	28	459
1080983	Н/П	Н/П	34970	34989	GCCGGAATCCTCACCCTT AG	38	460
1080989	н/П	н/п	37589	37608	CCGGCCCGCCCAAACTC AC	54	461
1080995	Н/П	Н/П	40432	40451	CGTGAGATCCACACTCCA GA	36	462
1081001	н/П	Н/П	44414	44433	GGTGACAACCACACTCGA GG	32	463
1081007	Н/П	Н/П	47083	47102	GGGAACATCGCCATTCCC AG	78	464
1081013	н/п	Н/П	49373	49392	CCACCGGGCCCTAAAAGC AT	83	465
1081019	н/п	Н/П	52235	52254	TTCGCCATCGCCAGGCTT GC	40	466
1081025	н/п	Н/П	56008 56072	56027 56091	CGCCTGGCTATTGGGAGC TG	40	467
1081031	Н/П	Н/П	59374	59393	GCCCCGGCTTACAATCAT GT	63	468
			60147	60166	GTCTCGGCTGAGGCCCAC		
1081037	Н/П	Н/П	60193	60212	GG	30	469
			60285	60304			
1081043	н/п	н/п	64874	64893	ATGGCCATACCCATCGAT GC	22	470

1081049	Н/П	Н/П	65596	65615	AAGCAGCCCCAGGGATTG CG	28	471
1081055	Н/П	Н/П	67917	67936	CACCCGGACGATCCACC CT	52	472
1081061	Н/П	н/п	67958	67977	ACCCTGAATGGTCCACCC	49	473
1001001	117 11	11/ 11	68097	68116	CA		175
1081067	Н/П	Н/П	68342	68361	GAGATCCATCCCAGATGG TT	58	474
1081073	Н/П	н/п	68516	68535	GTCCACCCAAGAGGGTCC	29	475
1001073		11/11	68572	68591	AC		4/5
1081079	Н/П	н/п	69658	69677	GGTGGAGACCCCACCTAG GT	46	476
			71038	71057	CTGCCCCAGACGCACCGT		
1081085	н/п	Н/П	71078	71097	CA	21	477
			71158	71177	CA		
1001001		TT / TT	71166	71185	CACGCGCCCTGCCCCAGA	7.0	470
1081091	Н/П	Н/П	71286	71305	CG	73	478
1081097	Н/П	н/п	72438	72457	CCGGCCTTACTTCTTGTG GG	66	479
1081103	Н/П	Н/П	74938	74957	GCACTCACTCTACCACGG AG	79	480
1081109	Н/П	Н/П	77306	77325	GTAGCCCTTCACATACCT GG	64	481
1081115	Н/П	н/п	78899	78918	GTGGTTCATTCCAGACTG GA	42	482
1081121	Н/П	н/п	81950	81969	GTCCCTTGTCAATACAAG GA	59	483
1081127	Н/П	Н/П	84926	84945	TCGCCCTTACTCATCAGT GG	50	484
1081133	Н/П	Н/П	86428	86447	AGGTCCATACCCCACCGG CC	39	485
1081139	Н/П	Н/П	89027	89046	GGTCCCCACCAGTCTTGT TC	49	486
1081145	Н/П	Н/П	91719	91738	TCCGACCTTTACTCCAGG CC	21	487

	1081151	Н/П	Н/П	96762	96781	CGGGTGCTCCCTAAACCT GG	71	488	
--	---------	-----	-----	-------	-------	--------------------------	----	-----	--

Таблица 7. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	94233	94252	GTCACGCTAGTGCCACCG TG	24	283
1337234	н/п	н/п	18642	18661	ACAGCACGCCAAGACCGC TA	28	489
1337247	н/п	н/п	22973	22992	CGTGCCCCACCCTCACCT TT	33	490
1337271	н/П	н/П	25733	25752	ACTGGCAGAATCATCAGT AA	49	491
1337272	н/П	н/П	31118	31137	AGCGAACTTAATTATATC TC	31	492
1337277	н/П	н/П	67945	67964	CACCCAGACGATCCACC CT	51	493
1337307	н/П	н/П	48755	48774	CCACACTCCACTCCAAGG CA	31	494
1337319	н/п	н/П	19177	19196	CTCCCATCCTATACACAC CA	41	495
1337323	н/п	н/П	47075	47094	CGCCATTCCCAGAGTCCA CA	31	496
1337325	Н/П	Н/П	66012	66031	GCCTTGCCACACAAAACA GT	43	497
1337327	н/п	н/п	87839	87858	AGCACATCCTGGCCTTGC CC	12	498
1337332	Н/П	Н/П	54378	54397	GGTTCTGCCCTCTTCTGA	9	499

					CC		
1007007	TT / TT	11./11	10001	10000	GACTCACCCAACCCTACC	F 0	F00
1337337	Н/П	Н/П	19881	19900	AT	58	500
1337378	н/п	Н/П	42262	42281	CCACACGCAACAAAGGCA	40	501
1337370	11/11	117 11	42202	42201	CC	40	301
1337473	н/п	н/п	33706	33725	GATGACGGTCCCATGCTG	30	502
1337473	11/11	11/11	33700	33723	AT		302
1337479	н/п	н/п	44857	44876	CTCTCACACCTCTAAGAG	68	503
	117 11	117 11			CC		
1337515	н/п	н/п	40232	40251	GCGAGGCCACCCATGTGA	48	504
	11, 11	117 11			AA		
1337557	н/п	н/п	31679	31698	AGCTGAACCACCCACAGA	61	505
	,	,			GA		
1337565	Н/П	Н/П	73927	73946	CACCGTGTAACAACACCC	36	506
	,	,			CA		
1337570	Н/П	Н/П	22293	22312	ACCGCAACCCCTTCTGCT	32	507
	,	12, 22			TG		
1337582	Н/П	Н/П	18187	18206	CTGCCGTTTTCAAGAATT	28	508
	,	ŕ			AA		
1337624	 н/П	Н/П	34958	34977	ACCCTTAGCCCTCATCAG	45	509
	·	,			GA		
1337658	Н/П	Н/П	17714	17733	GACTCTAGTTACAAACAT	30	510
					GA		
1337674	Н/П	Н/П	48074	48093	ACGATCCATTTTCCCCTG	28	511
					CA		
1337696	Н/П	Н/П	86209	86228	AGAGGGAGTCCTATCATT	32	512
					CA		
1337729	Н/П	н/п	29630	29649	CCTGGTGCCACACCTCCC	31	513
					TT		
1337790	н/п	Н/П	37484	37503	CCTCCATGCACCCGTGCC	31	514
					AC		
1337831	Н/П	Н/П	62061	62080	TCACGGGACTCCATCATT	37	515
					AC		
1337853	н/п	Н/П	76382	76401	CGGACACACAACATACGC	61	516
					AA		

1337856	Н/П	Н/П	32675	32694	GTTTTAAGCACACCATCC CG	57	517
1337871	Н/П	Н/П	93318	93337	CTTCATAGCAACCCATGC CT	36	518
1337874	Н/П	Н/П	68280	68299	CACCCTGGACAGTCTACC CT	43	519
1337896	Н/П	Н/П	62937	62956	GAAAGCCACACACAACTG GC	27	520
1337952	н/п	Н/П	81978	81997	GGCAGGCCCCTTCCCTCT CA	36	521
1337988	Н/П	Н/П	55656	55675	GTACATCCCACATCTGCG GG	21	522
1337990	Н/П	Н/П	24539	24558	GGCATAAACACACTTACA CC	35	523
1338022	Н/П	Н/П	21423	21442	CCCCCGACATACACAGCA TC	40	524
1338028	Н/П	Н/П	39245	39264	ACCAGCCCAAGCATACCC CA	43	525
1338062	Н/П	Н/П	27209	27228	GGAGTACTCTCCACAGAC CC	23	526
1338153	Н/П	Н/П	78619	78638	GGAGGTCCCCTCCGTGGC CG	53	527
1338221	Н/П	Н/П	89346	89365	GCCCATGGCTTCATCAAC GG	24	528
1338284	Н/П	Н/П	82786	82805	GAACACAGAATCCTGTGA AC	51	529
1338312	н/п	Н/П	53236	53255	GGGACCCTTCTCCCTACG CT	14	530
1338327	Н/П	Н/П	71160	71179	CCCTGCCCCAGACGCACC GT	26	531
1338371	Н/П	Н/П	75708	75727	TTGACCCCACCCCAGAGG CA	56	532
1338380	Н/П	Н/П	58395	58414	ACCCAGTCATGAACTAGG TC	25	533
1338411	Н/П	Н/П	68885	68904	GCCCCTGTTCTATTTTGA	64	534

					GC		
1338472	TT /TT	Н/П	43184	43203	TCTACTCTGCCCAAGGCC	52	535
1330472	Н/П	П/11	43104	43203	CT	32	333
1338475	3837	3856	94216	94235	GTGTCCTCACACGCTCCT	15	536
1330473	3037	3030	74210	74233	CC		
1338539	н/п	Н/П	77536	77555	CCTTGCAGAATTCTTGCA	41	537
	117 11	11/11		77000	GC		
1338584	н/п	н/п	87032	87051	TAGCAAAGCTGATCTAGC	16	538
	11, 11	11, 11			CC		
1338668	 Н/П	Н/П	45674	45693	AGACGCATCCATTTCCTC	28	539
	·				CA		
1338714	Н/П	Н/П	50484	50503	GGCACTGGCTCCTATCAA	21	540
					TC		
1338732	Н/П	Н/П	30479	30498	GGGCTTTTCCCAGGCAGG	30	541
					CC		
1338757	Н/П	Н/П	40855	40874	TAATCAGCTCCCAATCCC	59	542
					TC		
1338790	Н/П	Н/П	92433	92452	CTGTGTCCACACCTGCGG	30	543
					GA		
1338877	4746	4765	95125	95144	CTTCATGCCTCCAGAATG	28	544
					CA		
1338944	н/п	Н/П	51865	51884	TGAAGATTCCTCCCCGCA	59	545
					GC		
1338988	н/п	Н/П	49201	49220	ACCAGACCCCAGAATCTC	42	546
					CT		
1339065	Н/П	Н/П	84233	84252	ACCAGCAGCATCCTTAAT	48	547
					AA		
1339137	Н/П	Н/П	72442	72461	CAGCCCGGCCTTACTTCT	38	548
					TG CCCAGGCAAACCGCCCAG		
1339151	Н/П	Н/П	27805	27824	CCAGGCAAACCGCCCAG	20	549
					GACCTTTACTCCAGGCCT		
1339156	н/п	Н/П	91716	91735	CA	13	550
					ACGAAGGTCACCATCCAC		
1339160	Н/П	Н/П	90703	90722	CT	19	551

1339168	Н/П	Н/П	23662	23681	TTGGACACCATCCCGGGC CT	16	552
1339180	4265	4284	94644	94663	CAGAGTGCAGAACAGCAG CC	41	553
1339217	н/П	н/П	69820	69839	GCCCTGTTCTCTGAAGCA AC	26	554
1339277	н/П	н/П	65182	65201	ATCACTGTCCCAATCACC CC	58	555
1339289	4507	4526	94886	94905	TCCATGGAAATGCACCAT CT	23	556
1339330	н/П	н/П	60779	60798	GGGCCAGTCCCCTTCTCT AC	21	557
1339365	н/п	н/п	36572	36591	CAAGAGAACATCTGTGCC GT	32	558
1339417	н/п	н/п	57078	57097	CAGTAGGGCACCACAGCC AC	67	559
1339423	н/п	н/п	58942	58961	GTGAGGTGCCATCCCGGG CA	29	560
1339454	н/п	н/п	85145	85164	GGCGGTACATCCACGGGC TC	39	561
1339481	н/П	н/П	56447	56466	GGTGCCTTCCTTTGCCGT AA	13	562
1339523	н/П	н/П	20544	20563	CTTCCACCTTACCCAGAC CT	37	563
1339569	н/П	н/П	32356	32375	GTGGTCCCCCTCGCCACG CA	26	564
1339621	н/П	н/П	79249	79268	AGACCCCTCACCAAACAT CC	51	565

Таблица 8. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	385	3873	94233	94252	GTCACGCTAGTGCCAC CGTG	30	283
1337226	н/п	н/п	37418	37437	CGGCAGGTCCCTGACA GGCA	12	566
1337228	Н/П	н/п	93317	93336	TTCATAGCAACCCATG CCTA	59	567
1337243	Н/П	н/П	57076	57095	GTAGGGCACCACAGCC ACTA	56	568
1337267	Н/П	н/П	56391	56410	GAGACGGGCTTCCTTG CATC	27	569
1337329	Н/П	н/П	60574	60593	GCATCTGTATCCCCTC GCCC	12	570
1337365	Н/П	н/П	82776	82795	TCCTGTGAACTTCCTC CCCT	55	571
1337400	Н/П	н/П	50482	50501	CACTGGCTCCTATCAA TCGA	50	572
1337409	Н/П	н/П	68260	68279	AGATGGTCCACCCCAC ATGA	44	573
1337462	Н/П	н/П	34887	34906	CCAGGGCTGACCCTTG GACT	47	574
1337506	Н/П	н/п	76381	76400	GGACACACAACATACG CAAC	69	575
1337528	Н/П	н/п	73718	73737	CCATGGGCCTCCACCT GCTC	62	576
1337575	Н/П	н/п	90700	90719	AAGGTCACCATCCACC TGGC	18	577
1337595	н/п	н/п	49164	49183	CAGCACGGCCTCCCCG AGCT	35	578

1337598	Н/П	Н/П	51825	51844	AGTCTGGGCCCTCCAG GCCG	55	579
1337622	Н/П	Н/П	19121	19140	ACACACCAACACCACA	22	580
1337022	11/11		19165	19184	GGGC	22	
1337673	Н/П	н/п	68884	68903	CCCCTGTTCTATTTTG AGCC	42	581
1337677	Н/П	н/п	67941	67960	CCAGACGATCCACCCT AAAT	51	582
1337684	Н/П	н/п	22968	22987	CCCACCCTCACCTTTG GGTC	50	583
1337708	Н/П	н/п	91714	91733	CCTTTACTCCAGGCCT CAGT	76	584
1337816	Н/П	н/п	27208	27227	GAGTACTCTCCACAGA CCCC	35	585
1337925	Н/П	Н/П	29628	29647	TGGTGCCACACCTCCC TTCA	46	586
1337956	Н/П	н/п	78566	78585	ACTGGAAACCATCCAC AGAT	56	587
1337975	Н/П	н/п	54376	54395	TTCTGCCCTCTTCTGA CCTA	23	588
1338018	Н/П	н/п	93878	93897	CACAGGTGCTACTCAC ACAA	53	589
1338027	474 5	4764	95124	95143	TTCATGCCTCCAGAAT GCAT	31	590
1338042	Н/П	н/п	18184	18203	CCGTTTTCAAGAATTA ACCA	19	591
1338060	Н/П	н/п	43150	43169	GAGGAAGCCACCACCT GTCA	49	592
1338124	Н/П	н/п	17646	17665	TGTGTCCTGACCATTT TCAA	26	593
1338160	Н/П	н/п	42252	42271	CAAAGGCACCCCTTA TCTC	66	594
1338161	Н/П	н/п	22247	22266	GAGAGAAGCCTCTCTC TGTT	44	595
1338269	Н/П	Н/П	75543	75562	ACTTGGCCCCAAACCT	39	596

					AGGC		
1338324	Н/П	Н/П	62935	62954	AAGCCACACACAACTG GCTT	66	597
1338369	Н/П	н/п	58383	58402	ACTAGGTCACCCACCC AGGA	52	598
1338422	Н/П	н/п	55655	55674	TACATCCCACATCTGC GGGA	23	599
1338464	Н/П	н/п	87027	87046	AAGCTGATCTAGCCCA GGTC	28	600
1338477	Н/П	н/п	66011	66030	CCTTGCCACACAAAAC AGTT	53	601
1338483	Н/П	н/п	85116	85135	CCGTGGCCAACTCTCG GGTC	50	602
1338523	Н/П	н/п	47069	47088	TCCCAGAGTCCACACC CGGC	38	603
1338533	Н/П	н/п	53183	53202	TGGCTTTTTCCATCCT GGGA	8	604
1338553	Н/П	н/п	71083	71102	GCATCCTGCCCCAGAC GCAC	32	605
1338579	Н/П	н/п	40139	40158	GCTACAGCTCCCATGC TGCA	41	606
1338676	Н/П	н/п	31675	31694	GAACCACCCACAGAGA GGCC	43	607
1338677	Н/П	н/п	92432	92451	TGTGTCCACACCTGCG GGAT	29	608
1338698	450 3	4522	94882	94901	TGGAAATGCACCATCT TCCG	22	609
1338706	Н/П	н/п	39169	39188	GGCTTCGGCCTCACTC ACCT	32	610
1338721	н/п	н/п	58927	58946	GGGCAGGCACTCACTT TGTA	67	611
1338726	н/п	н/п	23651	23670	CCCGGGCCTTTCCTGC TCCA	31	612
1338753	Н/П	н/П	21375	21394	GAAGCCGCACCTCCAC TGCC	46	613

1338771	Н/П	Н/П	32673	32692	TTTAAGCACACCATCC CGGA	65	614
1338793	Н/П	н/п	48754	48773	CACACTCCACTCCAAG GCAA	74	615
1338825	н/п	н/п	27739	27758	GCTGAGGGTCCCAAAC CCAG	35	616
1338845	Н/П	н/п	72437	72456	CGGCCTTACTTCTTGT GGGC	50	617
1338852	Н/П	н/п	45673	45692	GACGCATCCATTTCCT CCAC	31	618
1338905	Н/П	н/п	36489	36508	AGGATCTTCGCAACTT GCTG	38	619
1338915	Н/П	н/п	79245	79264	CCCTCACCAAACATCC CCCG	84	620
1338943	Н/П	н/п	32279	32298	ATTTGGCCCACCACAC ACGG	66	621
1338969	Н/П	н/п	87774	87793	AGCCCTGATCCCTCTT GCAA	19	622
1338983	426	4283	94643	94662	AGAGTGCAGAACAGCA GCCC	24	623
1339093	Н/П	н/п	65181	65200	TCACTGTCCCAATCAC CCCC	69	624
1339109	Н/П	н/п	40854	40873	AATCAGCTCCCAATCC CTCC	82	625
1339133	Н/П	н/п	33704	33723	TGACGGTCCCATGCTG ATCA	37	626
1339167	Н/П	н/п	48034	48053	GCGATCTGTCTTCACG AGTC	33	627
1339170	Н/П	н/п	25732	25751	CTGGCAGAATCATCAG TAAC	74	628
1339194	Н/П	н/п	31117	31136	GCGAACTTAATTATAT CTCC	16	629
1339212	Н/П	н/п	89345	89364	CCCATGGCTTCATCAA CGGA	46	630
1339228	Н/П	Н/П	81929	81948	GCAGTGGTTATACTGA	42	631

					ACCT		
1339262	н/п	Н/П	44846	44865	CTAAGAGCCCTTGTCT	63	632
	11, 11	11, 11			GCCA		
1339388	н/п	Н/П	20528	20547	ACCTGAGACACCCCCA	70	633
	,	,			TGGC	· -	
1339451	Н/П	 н/П	30453	30472	GGCTGTTACATCCGCA	16	634
	·	·			GTGA		
1339467	Н/П	 н/П	69811	69830	TCTGAAGCAACCCCCC	63	635
					AGCT		
1339471	Н/П	Н/П	19854	19873	GAAGCAAGCCCCTTTG	30	636
					GGCA		
1339491	Н/П	Н/П	62059	62078	ACGGGACTCCATCATT	15	637
					ACCC		
1339558	Н/П	Н/П	18574	18593	GGAGTGAGTCCCAGTG	56	638
					GTTA		
1339564	Н/П	н/п	86207	86226	AGGGAGTCCTATCATT	33	639
					CAGA		
1339578	Н/П	н/п	77410	77429	GCCGCCAGCCTTACCT	80	640
					TGTC		
1339626	н/п	н/п	24534	24553	AAACACACTTACACCC	33	641
					ATTC		
1339630	н/п	н/п	84232	84251	CCAGCAGCATCCTTAA	61	642
					TAAT		

Таблица 9. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	94233	94252	GTCACGCTAGTGCCACC GTG	21	283

1337246	Н/П	Н/П	65180	65199	CACTGTCCCAATCACCC CCA	51	643
1337258	Н/П	н/п	19136	19155	TCCCTCCTGTCCTATAC ACA	56	644
1337259	623	642	58881	58900	CCAGGAAGCTTATTATG GCC	19	645
1337266	н/п	н/п	55630	55649	GGTAGCCCCAACCCAAC AGC	17	646
1337417	н/п	н/п	92410	92429	GACGGCCTGACACCTGC CCC	25	647
1337494	Н/П	Н/П	30386	30405	CCGCTGGCTCTTTTCTG CCC	34	648
1337654	н/п	н/П	81925	81944	TGGTTATACTGAACCTG TTT	28	649
1337688	4500	4519	94879	94898	AAATGCACCATCTTCCG CCC	33	650
1337702	4744	4763	95123	95142	TCATGCCTCCAGAATGC ATC	20	651
1337728	н/п	н/П	54372	54391	GCCCTCTTCTGACCTAG ACA	23	652
1337760	н/п	н/п	67938	67957	GACGATCCACCCTAAAT GGT	33	653
1337775	н/п	н/п	27199	27218	CCACAGACCCCTCCTTC TGA	44	654
1337794	н/п	н/п	53182	53201	GGCTTTTTCCATCCTGG GAC	14	655
1337801	н/п	н/п	68883	68902	CCCTGTTCTATTTTGAG CCT	52	656
1337808	н/п	н/П	69810	69829	CTGAAGCAACCCCCCAG CTT	65	657
1337819	н/п	н/п	22967	22986	CCACCCTCACCTTTGGG TCA	54	658
1337833	Н/П	н/п	46983	47002	GGCGCAGCCACACTC GCC	47	659
1338021	Н/П	Н/П	29627	29646	GGTGCCACACCTCCCTT	44	660

					CAA		
1338053	Н/П	Н/П	86206	86225	GGGAGTCCTATCATTCA GAA	38	661
1338129	Н/П	Н/П	24533	24552	AACACACTTACACCCAT TCC	28	662
1338163	н/п	н/п	83786	83805	TGGCAGAGCATCTCACT GAC	58	663
1338193	Н/П	Н/П	49144	49163	CTGTTGTTCTCCCCTCC GCT	42	664
1338266	Н/П	Н/П	40138	40157	CTACAGCTCCCATGCTG CAC	51	665
1338292	Н/П	н/п	78190	78209	GTGGTTTGCTTTCCTGA TCT	24	666
1338314	Н/П	н/п	58348	58367	GGCCTGTGCACTCTCCA CCC	48	667
1338316	Н/П	н/п	40739	40758	TGCAGCACCCATAAGTG GGC	54	668
1338339	Н/П	Н/П	21372	21391	GCCGCACCTCCACTGCC ACA	44	669
1338487	Н/П	н/п	90682	90701	GCCTGGGCAGCCATAAA GCC	39	670
1338514	Н/П	Н/П	85115	85134	CGTGGCCAACTCTCGGG TCA	76	671
1338561	Н/П	н/п	45672	45691	ACGCATCCATTTCCTCC ACA	49	672
1338607	Н/П	н/п	79244	79263	CCTCACCAAACATCCCC CGT	72	673
1338672	Н/П	Н/П	48753	48772	ACACTCCACTCCAAGGC AAC	66	674
1338679	Н/П	Н/П	32658	32677	CCGGAGGTCCGAAATCC CAA	22	675
1338699	Н/П	Н/П	77409	77428	CCGCCAGCCTTACCTTG TCC	95	676
1338709	н/п	Н/П	18069	18088	GAGAGCCTCCCAGCCAC GCA	37	677

1338764	Н/П	Н/П	60573	60592	CATCTGTATCCCCTCGC CCG	25	678
1338775	Н/П	Н/П	89299	89318	GATGAGCTTCTCTCCAC GCC	36	679
1338803	Н/П	Н/П	34864	34883	GTGAGACCTCTTGATTG CCC	53	680
1338822	Н/П	Н/П	91688	91707	TCTGCTCGCCCCCAAC CCG	58	681
1338867	Н/П	Н/П	44823	44842	AGACAGTTCCTCCCTTG CAA	47	682
1338903	Н/П	н/п	82775	82794	CCTGTGAACTTCCTCCC CTT	47	683
1338942	Н/П	Н/П	56380	56399	CCTTGCATCTCTCACTG GGC	26	684
1338964	Н/П	Н/П	50481	50500	ACTGGCTCCTATCAATC GAA	25	685
1338992	Н/П	Н/П	31674	31693	AACCACCCACAGAGAGG CCA	45	686
1339024	Н/П	Н/П	71081	71100	ATCCTGCCCCAGACGCA CCG	28	687
1339033	Н/П	н/п	23650	23669	CCGGGCCTTTCCTGCTC CAA	38	688
1339046	Н/П	н/п	68257	68276	TGGTCCACCCCACATGA TCT	28	689
1339115	Н/П	Н/П	93316	93335	TCATAGCAACCCATGCC TAT	53	690
1339128	Н/П	Н/П	33699	33718	GTCCCATGCTGATCAAG TTC	19	691
1339131	Н/П	н/п	25730	25749	GGCAGAATCATCAGTAA CAA	36	692
1339173	Н/П	Н/П	62926	62945	ACAACTGGCTTCTTCTA GAA	43	693
1339177	Н/П	Н/П	76187	76206	ACACAATACCACTCAGA CAC	100	694
1339222	Н/П	Н/П	93877	93896	ACAGGTGCTACTCACAC	48	695

					AAT		
1339249	Н/П	11 / 11	75542	75561	CTTGGCCCCAAACCTAG	81	696
1339249	П/11	Н/П	73342	73361	GCC	01	090
1339298	н/п	Н/П	20527	20546	CCTGAGACACCCCCATG	46	697
1333230	117 11	117 11		20010	GCC		
1339323	н/п	Н/П	86927	86946	TGTGGGTCACACAGGAC	26	698
1003020	11, 11	117 11	86984	87003	AGG		
1339355	Н/П	Н/П	31116	31135	CGAACTTAATTATATCT	26	699
	·	·			CCC		
1339358	Н/П	Н/П	73621	73640	GCCACTGCGACCTCATT	49	700
					CCG		
1339372	Н/П	Н/П	18554	18573	AGGAGATTCCTTCTAGG	17	701
					GTA		
1339396	Н/П	Н/П	22119	22138	CTTCTGCACCCATTCCT	47	702
					GCT		
1339426	1719	1738	72323	72342	CGCCCATACATGCGCTG	28	703
					CCA		
1339465	н/п	Н/П	57072	57091	GGCACCACAGCCACTAG TGT	56	704
					AAGGCACCCCTTATCT		
1339469	Н/П	Н/П	42250	42269	CGG	52	705
					TGTCCTGACCATTTTCA		
1339470	Н/П	Н/П	17644	17663	ACC	25	706
					TCAGGACACCGCAAGTG		
1339478	Н/П	Н/П	51692	51711	CTC	44	707
	,	,			CGGGACTCCATCATTAC		
1339479	Н/П	Н/П	62058	62077	CCA	14	708
1220520	TT / TT	TT / TT	65000	66017	AACAGTTTCCACAGCTG	2.5	7.00
1339530	Н/П	Н/П	65998	66017	GGA	35	709
1339571	п/п	ц/п	20104	39143	CCTGTCTCCCCCAAAGT	55	710
13393/1	Н/П	Н/П	39124	39143	GGC		1,10
1339574	Н/П	Н/П	27738	27757	CTGAGGGTCCCAAACCC	41	711
1333314	11/11	11/11	21130	21131	AGC	 _{# T}	' + +
1339595	Н/П	Н/П	43135	43154	TGTCAGATGTCCCACAG	57	712
100000	11/11	11/ 11	1 17177	1 10104	CCT		(+ -

1339606	Н/П	н/п	32277	32296	TTGGCCCACCACACACG GCA	44	713
1339617	н/п	н/п	36426	36445	ATGTTTGTCACAGAAAG TCC	39	714
1339619	н/п	н/П	48033	48052	CGATCTGTCTTCACGAG TCA	29	715
1339628	н/п	н/п	87773	87792	GCCCTGATCCCTCTTGC AAA	31	716
1339635	4263	4282	94642	94661	GAGTGCAGAACAGCAGC CCT	34	717
1339642	н/п	н/П	19853	19872	AAGCAAGCCCCTTTGGG CAA	72	718
1339647	Н/П	н/П	37384	37403	TTCTTCAGCACCCATGC TGA	60	719

Таблица 10. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Crapr caŭr	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	94233	94252	GTCACGCTAGTGCCACCG TG	24	283
1337233	н/п	н/п	83763	83782	CGTGTATGCCATCTCCAC CT	37	720
1337268	н/п	н/п	31114	31133	AACTTAATTATATCTCCC GT	39	721
1337297	н/п	н/П	30385	30404	CGCTGGCTCTTTTCTGCC CC	47	722
1337301	н/п	н/п	65976	65995	TGCTCAAGACTCCAGGGC GA	36	723
1337316	Н/П	Н/П	36385	36404	GAAGGACAATACCTTCGG	47	724

					CA		
1337392	Н/П	Н/П	29508	29527	CCTTGACTAATCACTGTG GA	46	725
1337420	н/п	Н/П	43061	43080	GTAGAGGATCCACCCAGG GA	63	726
1337483	622	641	58880	58899	CAGGAAGCTTATTATGGC CA	18	727
1337510	Н/П	н/п	48748	48767	CCACTCCAAGGCAACACC CA	47	728
1337516	Н/П	Н/П	77309	77328	AGGGTAGCCCTTCACATA CC	31	729
1337632	н/п	Н/П	34717	34736	GCAGACAAAGAACCCGGC CA	48	730
1337665	Н/П	Н/П	73620	73639	CCACTGCGACCTCATTCC GC	47	731
1337681	Н/П	Н/П	27059	27078	GTCATGTGTCCACCACAC GC	30	732
1337694	Н/П	н/п	78189	78208	TGGTTTGCTTTCCTGATC TC	38	733
1337698	Н/П	Н/П	22118	22137	TTCTGCACCCATTCCTGC TC	90	734
1337704	Н/П	Н/П	93874	93893	GGTGCTACTCACACAATG TC	39	735
1337709	н/п	н/п	44808	44827	TGCAAAGCACTTACTGAG AC	62	736
1337758	Н/П	н/п	45595	45614	GGGCACGGCTTCTATCTC AC	44	737
1337779	Н/П	Н/П	58199	58218	GTCCTCAGCACTCACTGA AC	32	738
1337803	Н/П	Н/П	53181	53200	GCTTTTTCCATCCTGGGA CA	18	739
1337916	Н/П	Н/П	87772	87791	CCCTGATCCCTCTTGCAA AC	29	740
1337946	Н/П	Н/П	50480	50499	CTGGCTCCTATCAATCGA AT	37	741

1338050	Н/П	Н/П	51681	51700	CAAGTGCTCAGAACATGC CG	39	742
1338056	Н/П	Н/П	69806	69825	AGCAACCCCCCAGCTTGT CC	40	743
1338059	Н/П	Н/П	23641	23660	TCCTGCTCCAATAAACCA GA	54	744
1338079	Н/П	Н/П	57070	57089	CACCACAGCCACTAGTGT CC	65	745
1338089	Н/П	Н/П	62057	62076	GGGACTCCATCATTACCC AC	31	746
1338132	н/п	н/п	75541	75560	TTGGCCCCAAACCTAGGC CA	84	747
1338165	н/п	н/п	47908	47927	GGCCCAAGCCTCCTTGCT GC	81	748
1338185	Н/П	Н/П	71075	71094	CCCCAGACGCACCGTCAC	C 15	749
1330103			71155	71174	CC		743
1338192	Н/П	Н/П	25701	25720	GACACGGCACTTCCCGGG AC	36	750
1338206	н/п	н/п	90676	90695	GCAGCCATAAAGCCTGCC TA	38	751
1338229	н/п	н/п	65034	65053	GCTTGTCCCACTCAGGGC CT	16	752
1338243	н/п	н/п	20525	20544	TGAGACACCCCATGGCC AA	61	753
1338291	4743	4762	95122	95141	CATGCCTCCAGAATGCAT CC	31	754
1338334	Н/П	Н/П	18410	18429	TCATTGTGAAATCCCATG CC	51	755
1338374	н/п	Н/П	46982	47001	GCGCAGCCACACTCGC CA	49	756
1338401	Н/П	Н/П	32255	32274	TCCACGGAACTCCATGGG TC	32	757
1338424	н/п	Н/П	81840	81859	GTACTAAGAGCTACTGGC CA	52	758
1338559	4499	4518	94878	94897	AATGCACCATCTTCCGCC	43	759

					CA		
1338566	Н/П	Н/П	37300	37319	GCTGAGCCGCCATCATGC TC	38	760
1338573	Н/П	Н/П	91687	91706	CTGCTCGCCCCCAACCC GC	50	761
1338577	Н/П	Н/П	92409	92428	ACGGCCTGACACCTGCCC CT	29	762
1338582	Н/П	Н/П	24532	24551	ACACACTTACACCCATTC CA	39	763
1338589	Н/П	Н/П	85104	85123	CTCGGGTCATTCTTCAGC GG	64	764
1338615	Н/П	Н/П	54305	54324	ATGCCAGGCCCCCTTGTG AC	32	765
1338643	Н/П	Н/П	18006	18025	AGGGAGATAAACTAAACT CT	69	766
1338651	Н/П	Н/П	40738	40757	GCAGCACCCATAAGTGGG CA	60	767
1338658	н/п	н/п	62925	62944	CAACTGGCTTCTTCTAGA AC	68	768
1338762	Н/П	Н/П	22942	22961	GGCCACACCCTTCCTCCT GA	74	769
1338855	Н/П	Н/П	33690	33709	TGATCAAGTTCTAATGGG AA	57	770
1338864	Н/П	Н/П	72184	72203	TGGCATGGATCCCCTCCC TA	36	771
1338911	Н/П	Н/П	93301	93320	CCTATGGTATCCACAGAC CC	27	772
1338948	н/п	н/п	17643	17662	GTCCTGACCATTTTCAAC CT	34	773
1338950	н/п	н/п	55629	55648	GTAGCCCCAACCCAACAG CA	32	774
1339010	н/п	н/п	42248	42267	GGCACCCCTTATCTCGG GC	38	775
1339028	Н/П	Н/П	19821	19840	GAAGAGAAACCCTTCAGG CC	36	776

1339045	Н/П	Н/П	27736	27755	GAGGGTCCCAAACCCAGC AA	41	777
1339055	Н/П	Н/П	86959	86978	CCACAGTCCCAGCCCCCG GA	24	778
1339107	Н/П	н/п	89298	89317	ATGAGCTTCTCTCCACGC CA	47	779
1339108	Н/П	н/п	76135	76154	CCAGACACATCACATA TC	96	780
1339162	н/П	н/п	19092	19111	TCCCTCCCGTCCTATAGA CA	59	781
1339182	н/п	н/п	21370	21389	CGCACCTCCACTGCCACA GA	39	782
1339250	Н/П	Н/П	39106	39125	GCGCTGGCACCAACAAGA TC	54	783
1339266	Н/П	Н/П	82774	82793	CTGTGAACTTCCTCCCCT TC	59	784
1339292	Н/П	Н/П	31638	31657	GGTGGAAACTTCTGCAGG AC	49	785
1339305	Н/П	Н/П	60572	60591	ATCTGTATCCCCTCGCCC GG	55	786
1339320	Н/П	Н/П	40137	40156	TACAGCTCCCATGCTGCA CT	53	787
1339378	4062	4081	94441	94460	CGTTGCCCTCCCAGCCAG CC	35	788
1339420	Н/П	Н/П	79242	79261	TCACCAAACATCCCCCGT GA	75	789
1339453	Н/П	Н/П	68874	68893	ATTTTGAGCCTCCCTAGA AC	87	790
1339476	Н/П	Н/П	67937	67956	ACGATCCACCCTAAATGG TC	47	791
1339525	Н/П	Н/П	56379	56398	CTTGCATCTCTCACTGGG CT	21	792
1339538	Н/П	Н/П	49143	49162	TGTTGTTCTCCCCTCCGC TC	44	793
1339567	Н/П	Н/П	32655	32674	GAGGTCCGAAATCCCAAG	39	794

					CC		
1339573	н/п	н/п	68256	68275	GGTCCACCCCACATGATC	23	795
1333373	11/ 11	11/11	00230	00273	TA	2)	755
1339593	н/п	н/п	86205	86224	GGAGTCCTATCATTCAGA	61	796
1333333	11/11	11/11	00200	00224	AC	01	, , , 0

Таблица 11. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	94233	94252	GTCACGCTAGTGCCACCGTG	19	283
1080862	4032	4051	94411	94430	GTTGCGGTACATCTGTGTAA	14	362
1080878	4496	4515	94875	94894	GCACCATCTTCCGCCCAATG	13	209
1337245	Н/П	Н/П	30373	30392	TCTGCCCCACATAGAAACCA	31	797
1337250	Н/П	Н/П	86199	86218	CTATCATTCAGAACAGGGAC	32	798
1337269	Н/П	Н/П	44807	44826	GCAAAGCACTTACTGAGACA	46	799
1337276	Н/П	Н/П	45593	45612	GCACGGCTTCTATCTCACAC	27	800
1337279	Н/П	Н/П	62055	62074	GACTCCATCATTACCCACCA	14	801
1337388	Н/П	Н/П	72183	72202	GGCATGGATCCCCTCCCTAT	26	802
1337425	Н/П	Н/П	79229	79248	CCCGTGAACACCCAGCCGTT	54	803
1337434	Н/П	Н/П	23640	23659	CCTGCTCCAATAAACCAGAC	27	804
1337472	Н/П	Н/П	62924	62943	AACTGGCTTCTTCTAGAACA	30	805
1337487	Н/П	Н/П	86884	86903	GGCTGCCCCAGAACCTCCGA	22	806
1337488	Н/П	Н/П	56330	56349	GGCTGGGAACTCACAATTCT	13	807
1337493	Н/П	Н/П	18409	18428	CATTGTGAAATCCCATGCCA	54	808
1337513	Н/П	Н/П	28635	28654	ACAGAATTAATTAGCTAATC	10 9	809
1337522	Н/П	Н/П	89294	89313	GCTTCTCTCCACGCCAGGCA	31	810
1337534	Н/П	Н/П	57058	57077	TAGTGTCCCCCAGCCACCCT	49	811
1337578	Н/П	Н/П	65912	65931	CTGTCAGACACCCCAGGGCT	22	812

1337583	Н/П	Н/П	85103	85122	TCGGGTCATTCTTCAGCGGA	40	813
1337584	Н/П	Н/П	40682	40701	AGCAAGTGCCCTCCCCGAC	52	814
1337603	Н/П	Н/П	64957	64976	GAGGGACCCCACTGTGGACA	16	815
1337644	621	640	58879	58898	AGGAAGCTTATTATGGCCAC	25	816
1337667	Н/П	Н/П	43059	43078	AGAGGATCCACCCAGGGACT	40	817
1337686	Н/П	Н/П	87767	87786	ATCCCTCTTGCAAACACACC	16	818
1337732	Н/П	Н/П	78185	78204	TTGCTTTCCTGATCTCAACA	35	819
1337740	Н/П	Н/П	33664	33683	AGGTCTAGGACTATTATACC	27	820
1337752	Н/П	Н/П	76083	76102	TTGACACACACACACATTA	78	821
1337770	Н/П	Н/П	77308	77327	GGGTAGCCCTTCACATACCT	18	822
1337798	Н/П	Н/П	49142	49161	GTTGTTCTCCCCTCCGCTCC	70	823
1337815	Н/П	Н/П	91677	91696	CCCAACCCGCTTCCTAACCC	72	824
1337837	Н/П	Н/П	17574	17593	CGGATTTGCTAGCTGAGCCC	13	825
1337967	Н/П	Н/П	22926	22945	CTGACTGTCCCCCTCTGTTT	61	826
1337991	Н/П	Н/П	38852	38871	ACGCAGGTGCAGCCAGCCA	39	827
1338041	Н/П	Н/П	75528	75547	TAGGCCAGGACAACAACTCA	49	828
1338066	Н/П	Н/П	50453	50472	TTTGATGTCACTGCCTGGCC	59	829
1338072	Н/П	Н/П	55618	55637	CCAACAGCAACACACTGGTT	29	830
1338118	Н/П	Н/П	32654	32673	AGGTCCGAAATCCCAAGCCT	26	831
1338212	Н/П	Н/П	31556	31575	CAGCAGCACCCACTTATCAC	39	832
1338222	4739	4758	95118	95137	CCTCCAGAATGCATCCATTT	18	833
1338237	Н/П	Н/П	47905	47924	CCAAGCCTCCTTGCTGCGGC	15	834
1338256	Н/П	Н/П	27058	27077	TCATGTGTCCACCACACGCC	33	835
1338268	Н/П	Н/П	67936	67955	CGATCCACCCTAAATGGTCC	28	836
1338313	Н/П	Н/П	58147	58166	CTTCAGCATTCACTGAGCCT	7	837
1338375	Н/П	Н/П	60571	60590	TCTGTATCCCCTCGCCCGGC	22	838
1338459	Н/П	Н/П	18005	18024	GGGAGATAAACTAAACTCTT	44	839
1338525	Н/П	Н/П	42216	42235	CCCCAGGCTAACATGCTGAA	53	840
1338560	Н/П	Н/П	21309	21328	CCGTCAGGACCCAAGCCCTC	48	841
1338619	Н/П	Н/П	48744	48763	TCCAAGGCAACACCCAGCCA	63	842
1338700	Н/П	Н/П	31113	31132	ACTTAATTATATCTCCCGTG	25	843
1338766	Н/П	Н/П	19692	19711	TAGGGCACCCTCTCTTACAT	70	844
1338797	Н/П	Н/П	73619	73638	CACTGCGACCTCATTCCGCC	51	845
1338819	Н/П	Н/П	92408	92427	CGGCCTGACACCTGCCCCTC	19	846

1338833	 н/П	 н/П	8841	8860	TGCTCAGAAAATGACCAACT	36	847
1330033	11/11		37285	37304	IOCICAOAAAIOACCAACI		047
1338907	Н/П	Н/П	93873	93892	GTGCTACTCACACAATGTCA	54	848
1338917	Н/П	Н/П	82773	82792	TGTGAACTTCCTCCCCTTCC	62	849
1339030	Н/П	Н/П	54205	54224	CAGGCCTTCTCTCCAGGGAA	10	850
1339044	Н/П	Н/П	27697	27716	TGGGAACCTCCTTAGTGGCC	49	851
1339048	Н/П	Н/П	36362	36381	AGCAGCAGTCCCAGAAGCCC	17	852
1339070	Н/П	Н/П	51582	51601	GCTATGGGCCACTGCAGCCT	33	853
1339082	Н/П	Н/П	71041	71060	GTCCTGCCCCAGACGCACCG	21	854
1339118	Н/П	Н/П	24530	24549	ACACTTACACCCATTCCATT	37	855
1339121	Н/П	Н/П	69795	69814	AGCTTGTCCCTAAGTTGGCC	20	856
1339163	Н/П	Н/П	25671	25690	GCTCCGGACACCCACCAGGA	27	857
1339283	Н/П	Н/П	90645	90664	TTGGAGTCCCCACCCCTGCA	36	858
1339300	Н/П	Н/П	46981	47000	CGCAGCCACACACTCGCCAC	50	859
1339331	Н/П	Н/П	81829	81848	TACTGGCCAACCTATGTGGA	37	860
1339332	Н/П	Н/П	32254	32273	CCACGGAACTCCATGGGTCC	31	861
1339336	Н/П	Н/П	68853	68872	TGACAAAGATTTCCCTAGAC	59	862
1339342	Н/П	Н/П	20449	20468	CACACCAGCCCTTCCGTCCA	47	863
1339356	Н/П	Н/П	53032	53051	CGTGGCCCACCATCCGATGC	46	864
1339427	Н/П	Н/П	83762	83781	GTGTATGCCATCTCCACCTC	32	865
1339477	Н/П	Н/П	22117	22136	TCTGCACCCATTCCTGCTCC	44	866
1339480	Н/П	Н/П	34648	34667	GGCACTGTGTCAACTTGATA	20	867
1339582	Н/П	Н/П	40095	40114	CTGGGCAGAACCTGCTATCC	46	868
1339585	Н/П	Н/П	93286	93305	GACCCCTGCACACTCACTCA	37	869
1339586	Н/П	Н/П	68252	68271	CACCCCACATGATCTACACT	70	870
1339648	Н/П	Н/П	19051	19070	CCCCTCCTGTCCTATAGACA	53	871

Таблица 12. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Crapr caŭr	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCGTG	14	283
1337217	н/П	н/п	3155 4	3157	GCAGCACCCACTTATCACTT	34	872
1337220	н/п	Н/П	9387	9389	GCTACTCACACAATGTCACT	49	873
1337264	н/п	Н/П	4695 1	4697 0	GCCCGTCTCACCTCTGCCAG	43	874
1337298	н/п	н/п	7815 4	7817 3	GAGAAGCTGCTAACTCCAGA	43	875
1337304	н/п	н/п	6056 0	6057 9	TCGCCCGGCCCTGCTTGCCT	14	876
1337383	н/п	н/п	7730 5	7732 4	TAGCCCTTCACATACCTGGG	53	877
1337393	н/п	н/п	1897 9	1899 8	GGGCCAGGTCCACTCCCATC	16	878
1337439	н/п	Н/П	3878 1	3880	CGCGCGCCCTACCTCTGGC	38	879
1337463	н/п	Н/П	3366 2	3368 1	GTCTAGGACTATTATACCCA	40	880
1337618	н/п	Н/П	5632 9	5634 8	GCTGGGAACTCACAATTCTC	14	881
1337640	н/п	н/п	6584 1	6586 0	GCACGGCAACCCTCCAGGGC	13	882
1337641	н/п	н/п	5697 2	5699 1	AAAGGAGCCTACCTTGCCTT	23	883
1337648	4031	4050	9441	9442	TTGCGGTACATCTGTGTAAA	12	884

1337726	Н/П	н/п	7103 9 7107 9 7115	7105 8 7109 8 7117	CCTGCCCCAGACGCACCGTC	19	885
1337727	н/п	Н/П	9 9328 4	9330	CCCCTGCACACTCACTCATA	56	886
1337750	н/п	н/п	6489	6491	GGGCTGTCGGTCACTTGTCA	20	887
1337787	Н/П	н/п	8838 3728 2	8857 3730 1	TCAGAAAATGACCAACTCAC	45	888
1337842	н/п	н/п	8277	8279	GTGAACTTCCTCCCCTTCCG	46	889
1337851	Н/П	Н/П	8688	8690	TGCCCCAGAACCTCCGAGGT	49	890
1337860	Н/П	Н/П	8776 4	8778 3	CCTCTTGCAAACACACCCTT	29	891
1337864	1598	1617	7196 0	7197 9	CGTACTTGCACTCCTCCA	23	892
1337905	Н/П	Н/П	2566 7	2568 6	CGGACACCCACCAGGAGAGC	42	893
1338005	Н/П	н/п	6292 3	6294	ACTGGCTTCTTCTAGAACAC	11	894
1338020	Н/П	н/П	6205 1	6207 0	CCATCATTACCCACCATGCT	38	895
1338075	н/п	н/П	2042	2044	CCAGGACCCCATCCCAGTGT	63	896
1338077	Н/П	н/п	1752 6	1754 5	ACAGTGACAACCCCGACCCT	59	897
1338107	Н/П	н/п	6793 5	6795 4	GATCCACCCTAAATGGTCCA	13	898
1338130	Н/П	н/п	2452 5	2454	TACACCCATTCCATTTCAGC	32	899

1338131	Н/П	Н/П	5561 7	5563 6	CAACAGCAACACACTGGTTC	19	900
1338150	Н/П	н/п	2769	2771	GGGAACCTCCTTAGTGGCCC	37	901
1338169	Н/П	н/п	7361 8	7363 7	ACTGCGACCTCATTCCGCCA	34	902
1338178	Н/П	н/п	4008	4010	AACCTGCTATCCCTATGGGC	29	903
1338181	Н/П	н/п	4215 7	4217 6	AGACGAGGCCTTTAAAGCGG	34	904
1338211	Н/П	Н/П	4785 3	4787 2	TCCGCTAGCTCCTCAGAGTC	52	905
1338213	Н/П	Н/П	7608 2	7610	TGACACACACACACATTAC	66	906
1338232	Н/П	н/п	3224	3226 2	CATGGGTCCACACCTGATGC	20	907
1338271	Н/П	н/п	5303 1	5305	GTGGCCCACCATCCGATGCC	28	908
1338294	Н/П	Н/П	5043	5044 9	GGCTGGTGACCCCAACATCT	28	909
1338333	н/п	н/п	5724 0 5813 0	5725 9 5814 9	CCTGGGTTCCCTACTTACTG	10	910
1338340	Н/П	н/п	4559 2	4561 1	CACGGCTTCTATCTCACACC	36	911
1338341	Н/П	Н/П	8376 0	8377 9	GTATGCCATCTCCACCTCCT	28	912
1338352	Н/П	н/п	3458 8	3460 7	AGCCTGTTCATCTCAGCAGC	48	913
1338355	Н/П	н/п	5873 9	5875 8	GCCTTGACCCTCACTCCCAT	35	914
1338399	Н/П	н/п	9167	9169 5	CCAACCCGCTTCCTAACCCT	64	915
1338420	Н/П	Н/П	4874	4876	CAAGGCAACACCCAGCCAGC	36	916

			2	1			
1338427	Н/П	н/п	5414 5	5416 4	GCAGGGTTCACCCCGATGGC	12	917
1338488	Н/П	н/п	2862 7	2864 6	AATTAGCTAATCATCAGGTT	65	918
1338519	4494	4513	9487	9489	ACCATCTTCCGCCCAATGCC	46	919
1338535	Н/П	Н/П	1800	1802 3	GGAGATAAACTAAACTCTTC	37	920
1338575	Н/П	Н/П	7552 5	7554 4	GCCAGGACAACAACTCAGGA	29	921
1338581	Н/П	н/П	1840 5	1842	GTGAAATCCCATGCCAGCTT	31	922
1338663	Н/П	н/П	6979 4	6981 3	GCTTGTCCCTAAGTTGGCCA	21	923
1338686	Н/П	н/п	2121 5	2123	AGTCTGTGTCCTCCAAGGGC	14	924
1338781	н/п	н/П	4068	4070	GCAAGTGCCCTCCCCGACA	52	925
1338812	Н/П	н/п	6824 9	6826 8	CCCACATGATCTACACTGGA	49	926
1338839	Н/П	н/п	8182	8184	ACTGGCCAACCTATGTGGAA	42	927
1338846	Н/П	н/п	8597 1	8599 0	GCCGAGGTCCCTCCAGTGGC	53	928
1338952	Н/П	Н/П	2363	2365	CTGCTCCAATAAACCAGACC	43	929
1338996	н/п	Н/П	2199	2201	TTGTGGTCCACTTCTCAGCT	27	930
1339076	Н/П	Н/П	8502 5	8504 4	CACGGAGGCCACACTTCCCC	80	931
1339125	н/п	Н/П	3618 9	3620 8	AGAGGCTCGACCCTATGGCT	37	932
1339155	Н/П	Н/П	4477	4479 3	GCTGAAATCTTCTACAGGAA	49	933

1339181	 н/П	 н/П	2705	2707	ATGTGTCCACCACACGCCCC	23	934
1339101	П/ 11	П/ 11	6	5	AIGIGICCACCACACGCCCC	23	934
1339223	н/п	Н/П	3109	3111	ATACCTGTCTCCCCATTCCT	29	935
1333223	117 11	117 11	2	1			
1339225	Н/П	Н/П	9061	9063	CCAGGCTTCACCGAGCTCCT	31	936
	,	,	9	8			
1339227	Н/П	Н/П	9237	9239	GCTCTTTTCCCAAAACCCAT	16	937
	·	, i	7	6			
1339235	Н/П	Н/П	4296	4298	AGCTCTGTGCAAACAAGGTC	39	938
			1	0			
1339288	Н/П	Н/П	7922	7924	GAACACCCAGCCGTTAGCCT	32	939
			4	3			
1339395	Н/П	Н/П	3034	3036	CCGATGTTCTCCCTCCAAAC	47	940
			1	0			
1339455	4736	4755	9511	9513	CCAGAATGCATCCATTTAAT	17	941
			5	4			
1339457	Н/П	Н/П	5153	5155	GAAGTGGTCATCCCTGCACC	33	942
			2	1			
1339502	Н/П	н/п	6885	6887	GACAAAGATTTCCCTAGACT	43	943
			2	1			
1339518	Н/П	н/п	3256	3258	CGGTGACCACCACCCTCCCC	48	944
			4	3			
1339521	Н/П	н/п	4914	4916	TTGTTCTCCCCTCCGCTCCG	65	945
			1	0			
1339549	Н/П	Н/П	1968	1970	GGCACCCTCTCTTACATCCA	69	946
			9	8			
1339557	Н/П	н/п	2292	2294	TGACTGTCCCCCTCTGTTTC	60	947
			5	4			
1339602	Н/П	Н/П	8925	8927	AGCCCAAGCACACTTCCCAC	39	948
			6	5			

Таблица 13. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	94252	GTCACGCTAGTGCCACCG TG	33	283
1081085	н/п	н/п	7103 8 7107 8 7115 8	71057 71097 71177	CTGCCCCAGACGCACCGT CA	17	477
1337229	н/п	Н/П	2452	24543	ACACCCATTCCATTTCAG CT	27	949
1337280	н/п	н/п	5723 9 5812 9	57258 58148	CTGGGTTCCCTACTTACT GA	35	950
1337291	Н/П	Н/П	9041	90432	GGGCAGTCGCCACTCTGC CT	57	951
1337347	Н/П	Н/П	6204 9	62068	ATCATTACCCACCATGCT GA	44	952
1337468	н/п	Н/П	3618 8	36207	GAGGCTCGACCCTATGGC TA	65	953
1337507	Н/П	Н/П	8675 6	86775	CTCGGTGATTTTCATCTG CA	45	954
1337526	н/п	н/П	8178	81802	GAGTTCTGACCAACTGAC CA	44	955
1337536	н/п	Н/П	1968 7	19706	CACCCTCTCTTACATCCA GT	60	956
1337577	н/П	н/П	8273 8	82757	GAGCACACCCCTCTGCCG GC	38	957

1337607	Н/П	Н/П	3109	31110	TACCTGTCTCCCCATTCC TC	50	958
1337615	Н/П	Н/П	7720 8	77227	TCGAGGGCACCCACTCCA CC	54	959
1337646	Н/П	Н/П	4559 1	45610	ACGGCTTCTATCTCACAC CC	31	960
1337653	Н/П	Н/П	5042	50448	GCTGGTGACCCCAACATC TC	35	961
1337662	Н/П	н/П	7361 6	73635	TGCGACCTCATTCCGCCA AC	38	962
1337670	н/п	н/п	3252 6	32545	ATCGCTCCAGTCCTTGCT TC	45	963
1337714	Н/П	Н/П	6055	60570	CCTGCTTGCCTCTCGGGC CC	24	964
1337806	Н/П	н/п	6488	64905	TCACTTGTCACCATGGCC AT	38	965
1337850	Н/П	н/п	3224	32261	ATGGGTCCACACCTGATG CT	45	966
1337886	Н/П	н/п	4695	46969	CCCGTCTCACCTCTGCCA GT	73	967
1337937	Н/П	н/п	8374	83762	CCTCCCTTTTTCCTTCCG GA	45	968
1337942	Н/П	н/п	3366	33680	TCTAGGACTATTATACCC AG	39	969
1337951	Н/П	н/п	3155	31570	GCACCCACTTATCACTTC TC	39	970
1338004	Н/П	Н/П	7921 7	79236	CAGCCGTTAGCCTCTCGG CC	59	971
1338082	Н/П	Н/П	7815 0	78169	AGCTGCTAACTCCAGAAG GA	38	972
1338087	Н/П	н/п	5412	54142	GATGGTGACAACCACACC AC	23	973
1338099	1597	1616	7195	71978	GTACTTGCACTCCTCCTC AC	59	974
1338103	Н/П	н/п	1750	17524	CCGTACCCTACACGCTGG	28	975

			5		AA		
1338139	Н/П	Н/П	8597	85989	CCGAGGTCCCTCCAGTGG	65	976
			0		CA		
1338158	Н/П	Н/П	3845	38471	GCTCAAACCACCGCCAGG	37	977
			4215		AC GACGAGGCCTTTAAAGCG		
1338188	Н/П	Н/П	6	42175	GT	25	978
			5153		AGTGGTCATCCCTGCACC		
1338228	Н/П	Н/П	0	51549	CA	51	979
1338231	Н/П	11 / 11	3032	30348	CTCCAAACAATTATGCGA	50	980
1330231	П/11	Н/П	9	30340	TT	30	900
1338270	Н/П	Н/П	4062	40648	TGGAGACCTCTCCTCTGC	56	981
	,		9		TT		
1338276	Н/П	Н/П	5551	55530	GAGCTGCCTTGAACAAGG	32	982
			1		СТ		
1338304	Н/П	Н/П	6823	68253	CTGGATGGTCCACCCTGA	40	983
			9237		AC CTTTTCCCAAAACCCATG		
1338343	Н/П	Н/П	4	92393	GT	52	984
			6792		CTAAATGGTCCACCCGG		
1338348	Н/П	Н/П	7	67946	AC	61	985
1338367	Н/П	Н/П	8502	85043	ACGGAGGCCACACTTCCC	49	986
1330307	11/11	117 11	4	03043	CC	17	
			8836	8855	AGAAAATGACCAACTCAC		
1338398	Н/П	Н/П	3728	37299	TG	59	987
			0		CCCCACCTCCACTCCCAT		
1338440	Н/П	Н/П	1897	18997	GGCCAGGTCCACTCCCAT	47	988
			4477		GAAATCTTCTACAGGAAG		
1338462	Н/П	Н/П	1	44790	CC	49	989
1338479	Н/П	Н/П	4774	47764	CCGGCTGTTCCCCTCCAC	36	990
1004/9		Π/11	5	4//04	СТ		<i>J J J J</i>
1338492	н/п	Н/П	2199	22009	TGTGGTCCACTTCTCAGC	30	991
			0		TT		
1338521	Н/П	Н/П	6972	69740	CTGGATTTGTCCATACTC	57	992

			1		CC		
1338537	3982	4001	9436	94380	TAGGTTAAAAAACTCTCC TC	27	993
1338555	н/п	Н/П	6885	68870	ACAAAGATTTCCCTAGAC TT	70	994
1338556	н/п	Н/П	4294	42959	GTCGGCTGCACAAACCCT GC	30	995
1338574	н/п	Н/П	9325 5	93274	GCATGCCGTCCTCCACAT CC	27	996
1338604	н/п	Н/П	8766 6	87685	CTGGGTGGCACCTTCAGA AA	33	997
1338641	4490	4509	9486	94888	TCTTCCGCCCAATGCCCC CT	39	998
1338649	н/п	Н/П	2363 7	23656	GCTCCAATAAACCAGACC TT	35	999
1338656	Н/П	Н/П	2758 9	27608	AACTGAGTGCCCAAAACT AC	45	100
1338660	Н/П	Н/П	5632 7	56346	TGGGAACTCACAATTCTC AA	19	100
1338684	Н/П	Н/П	1800	18022	GAGATAAACTAAACTCTT CA	62	100
1338687	Н/П	н/п	2042	20443	CAGGACCCCATCCCAGTG TC	42	100
1338746	н/п	н/п	9167	91689	CGCTTCCTAACCCTGCAG GC	42	100
1338758	4735	4754	9511 4	95133	CAGAATGCATCCATTTAA TA	30	100 5
1338798	н/п	н/П	9368	93707	GAGCTGAGTCTTTCCGGC CT	44	100
1338849	н/п	н/П	8925 1	89270	AAGCACACTTCCCACCAC AA	35	100
1338863	н/п	н/П	2566 5	25684	GACACCCACCAGGAGAGC CA	68	100
1338887	н/п	н/п	5302	53048	GGCCCACCATCCGATGCC CA	25	100

1338977	Н/П	Н/П	1840	18419	ATCCCATGCCAGCTTCTC CT	52	101 0
1338990	н/п	Н/П	2854	28568	GTCCGTAGCAGAACTTGG CT	25	101
1339023	Н/П	Н/П	6290	62922	AGAGACTCGCTCATCAGC GA	38	101
1339057	Н/П	н/п	5697 1	56990	AAGGAGCCTACCTTGCCT TT	32	101 3
1339080	Н/П	Н/П	7534 2	75361	CCCAGCTCCATCCTGATT CA	65	101
1339172	Н/П	Н/П	2291 8	22937	CCCCCTCTGTTTCAAAGC TC	54	101 5
1339209	Н/П	Н/П	4874	48759	AGGCAACACCCAGCCAGC TC	55	101 6
1339265	Н/П	Н/П	4008 6	40105	ACCTGCTATCCCTATGGG CC	45	101 7
1339285	Н/П	н/п	5873 6	58755	TTGACCCTCACTCCCATG TC	62	101
1339385	Н/П	Н/П	4904 6	49065	GGTGACTTCCCAACTGGC TC	48	101
1339443	Н/П	Н/П	7601 3	76032	GACACACCCCCTTGCAC AC	56	102
1339450	Н/П	н/п	2705 5	27074	TGTGTCCACCACACGCCC CC	38	102
1339516	н/п	н/п	2103	21051	ATGCTGCTCCATGGGAGC AC	63	102
1339607	Н/П	н/п	6583 9	65858	ACGGCAACCCTCCAGGGC CG	50	102
1339653	н/п	н/п	3455 5	34574	GGAGACCACAGAACTCCA GA	41	102

Таблица 14. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCGTG	34	283
1337227	н/п	н/п	7810 2	7812 1	CTACTGACCCCAGCTTGCCA	79	102 5
1337248	н/п	н/п	7524 7	7526 6	GCCTGACAGCCCCTGTGCCA	34	102 6
1337290	н/п	н/п	8766 2	8768 1	GTGGCACCTTCAGAAAGGCC	22	102 7
1337326	Н/П	Н/П	9367 9	9369	CTTTCCGGCCTTCCTGACCA	34	102
1337331	н/п	н/п	6881 5	6883 4	GAGCTCGCAAAAGGCTGCCC	55	102 9
1337338	н/п	н/п	3612 9	3614 8	AACTGCCCTTTTAGAGAGCA	50	103
1337342	н/п	н/п	4062 8	4064 7	GGAGACCTCTCCTCTGCTTC	39	103
1337346	н/п	н/п	2195 2	2197 1	TGGTGTTGCTCAACTCCAGA	27	103
1337351	н/п	н/п	8501 9	8503 8	GGCCACACTTCCCCCCGGAA	54	103
1337358	н/п	н/П	2101	2103	ACCCGAGACACCATCTGGTA	63	103
1337359	н/п	Н/П	2552 9	2554 8	CGCACAGGCACAAAATGCCC	41	103 5
1337363	н/п	н/П	9325 4	9327	CATGCCGTCCTCCACATCCA	24	103 6
1337386	Н/П	Н/П	4473 8	4475 7	GGGCATCAACCAGAATGCGG	50	103 7

1337427	Н/П	Н/П	6823	6825	GGATGGTCCACCCTGAACAG	47	103
1337428	Н/П	Н/П	2362	2364	GACCTTGACTCAATCATGCA	22	103
1337500	н/п	Н/П	1836	1838 7	GGCATGGTTCTCTCTAGGCG	12	104
1337587	н/п	н/п	8260 5	8262 4	CGAGCATCCCCCTACGCCTC	47	104
1337626	н/п	Н/П	8177 4	8179	CCAACTGACCATGCCAGGAC	19	104
1337647	н/п	Н/П	8924 8	8926 7	CACACTTCCCACCACAAGGC	33	104
1337741	н/п	Н/П	4774 4	4776 3	CGGCTGTTCCCCTCCACCTG	47	104
1337768	н/п	н/п	3455 1	3457 0	ACCACAGAACTCCAGAAGCA	43	104 5
1337796	Н/П	н/п	4869	4871	CCCCCAACCCTCCATCGGTC	63	104
1337804	Н/П	н/п	2758 8	2760 7	ACTGAGTGCCCAAAACTACA	53	104
1337813	4733	4752	9511 2	9513 1	GAATGCATCCATTTAATAGA	30	104
1337823	н/п	Н/П	7103 6	7105 5	GCCCCAGACGCACCGTCACA	26	104
1337877	н/п	н/п	9229 9	9231 8	AGGGAGACACCCTCCCCA	69	105
1337955	Н/П	н/п	8374	8375 9	CCCTTTTTCCTTCCGGAGTC	37	105
1337989	Н/П	Н/П	2704 8	2706 7	ACCACACGCCCCCCCACGCA	60	105
1338104	Н/П	Н/П	4559 0	4560 9	CGGCTTCTATCTCACACCCG	42	105
1338145	н/п	н/п	6290 0	6291 9	GACTCGCTCATCAGCGAGAA	65	105
1338148	Н/П	Н/П	2042	2044	AGGACCCCATCCCAGTGTCC	76	105

			3	2			5
1338168	Н/П	Н/П	3812	3814	TTGCCTGTCCTCACCAGGGT	26	105 6
1338171	Н/П	Н/П	5042 8	5044 7	CTGGTGACCCCAACATCTCC	24	105 7
1338183	Н/П	Н/П	6972 0	6973 9	TGGATTTGTCCATACTCCCA	49	105
1338287	Н/П	Н/П	3155 0	3156 9	CACCCACTTATCACTTCTCA	44	105 9
1338298	Н/П	Н/П	5632 4	5634 3	GAACTCACAATTCTCAAACT	44	106
1338315	Н/П	н/п	5810 8	5812 7	CCTGTCTGTCTTCAGCATTC	17	106 1
1338323	н/п	Н/П	7598 9	7600 8	CCCCATGCCCTACTCGGTCT	55	106
1338383	н/п	н/п	8584 0	8585 9	CATGTGTGCATACACCGGCA	39	106 3
1338388	н/п	н/п	2452	2454	CACCCATTCCATTTCAGCTG	26	106
1338396	н/П	н/П	5873 5	5875 4	TGACCCTCACTCCCATGTCA	25	106 5
1338430	Н/П	н/п	7360 7	7362 6	ATTCCGCCAACTCCTGGCCC	42	106 6
1338432	Н/П	Н/П	1968 4	1970 3	CCTCTCTTACATCCAGTCGA	52	106 7
1338433	Н/П	Н/П	1744 1	1746 0	CGTGAGTCCTCAGAGCACTT	23	106
1338435	1596	1615	7195 8	7197 7	TACTTGCACTCCTCCTCACA	47	106 9
1338508	Н/П	Н/П	3108	3110	CCCCATTCCTCCTTTGTATA	45	107
1338546	Н/П	Н/П	1800	1802	GATAAACTAAACTCTTCACC	53	107
1338626	4489	4508	9486	9488	CTTCCGCCCAATGCCCCCTA	25	107

1338629	Н/П	Н/П	5152	5153 9	CCTGCACCCACCTCGCAGGC	104	107 3
1338634	Н/П	Н/П	4293 8	4295	CGGCTGCACAAACCCTGCCA	47	107
1338638	н/п	н/п	8675 5	8677	TCGGTGATTTTCATCTGCAG	77	107 5
1338675	н/п	н/п	6578 7	6580 6	CCGTAGTGACCCTAAAAGTC	49	107
1338716	н/п	н/п	4904 5	4906 4	GTGACTTCCCAACTGGCTCT	60	107
1338755	н/п	н/п	2851 9	2853 8	GCCTCGCTTTACCCTCCCAA	41	107
1338789	н/п	н/п	3365 9	3367 8	TAGGACTATTATACCCAGCC	18	107
1338800	н/п	н/п	5412	5413 9	GGTGACAACCACACACA	13	108
1338828	Н/П	н/п	4008	4010	CCTGCTATCCCTATGGGCCC	28	108
1338869	Н/П	Н/П	6203 6	6205 5	ATGCTGAGCACCACCGGACC	31	108
1338881	Н/П	Н/П	4215	4217	ACGAGGCCTTTAAAGCGGTC	37	108
1338882	н/п	н/п	3221	3222 9	TCCAGGGAACCCCTTTCCTT	35	108
1338923	Н/П	Н/П	9039	9041	GCCTGGCGGCCAACAGCACC	22	108 5
1338961	Н/П	Н/П	1897 4	1899 3	AGGTCCACTCCCATCCTTCA	28	108
1339007	Н/П	Н/П	2291 6	2293 5	CCCTCTGTTTCAAAGCTCCA	27	108 7
1339060	Н/П	Н/П	6487 7	6489	ACCATGGCCATACCCATCGA	48	108
1339063	н/п	н/п	5692 4	5694	GAAGGTTCCCCAAGAGAGGA	29	108
1339067	Н/П	Н/П	7921	7923	GCCGTTAGCCTCTCGGCCCA	39	109

			5	4			0
1339073	Н/П	Н/П	9166	9168	GCTTCCTAACCCTGCAGGCC	14	109
1939073	11/11	11/11	9	8	delicerancerochooce	1 4	1
1339099	Н/П	Н/П	3018	3020	GCTACGCTTCCTTGGAGGCC	27	109
1939099	11/11	11/ 11	7	6	delacoeliceliooaooce	27	2
1339280	Н/П	Н/П	3725	3727	CGCTCCCGATACCTGCCCTA	48	109
1339200	11/11	11/ 11	9	8	CGCTCCCGATACCTGCCCTA	40	3
1339340	Н/П	Н/П	3251	3253	GTCCTTGCTTCCCCTGCTCA	42	109
1339340	11/11	11/ 11	7	6	GICCIIGCIICCCIGCICA	42	4
1339380*	Н/П	Н/П	5294	5296	AACAGCCGGATCCTCAGGCC	13	109
1339300	П/ 11	П/ 11	1	0	AACAGCCGGATCCTCAGGCC	13	5
1339431	Н/П	Н/П	5546	5548	AGAGGAAGCTCCTATCCCCA	10	109
1339431	П/ 11	П/ 11	9	8	AGAGGAAGCICCIAICCCCA	10	6
1339437	3981	4000	9436	9437	AGGTTAAAAAACTCTCCTCA	17	109
1339437	3901	4000	0	9	AGGITAAAAACTCTCCTCA	1 /	7
1339482	Н/П	Н/П	6791	6793	CCGGACGATCCACCCTGGAC	53	109
1339462	П/ 11	П/П	3	2	CCGGACGATCCACCCTGGAC	33	8
1339529	Н/П	Н/П	6051	6053	GGTGCTCACACTGACGGCCG	16	109
1339329	П/ 11	П/ 11	7	6	GGIGCICACACIGACGCCG	10	9
1339601	Н/П	Н/П	4684	4686	CCGGTGAGACTCATGGGCAT	36	110
1333001	11/11	11/11	7	6	CCGGIGADACICAIGGCAI	30	0
1339616	Н/П	Н/П	7720	7722	GAGGGCACCCACTCCACCCA	80	110
1222010	11/11	11/11	6	5	UNUSUCACCICCACTA	00	1

Таблица 15. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCGTG	12	283

1337219	Н/П	Н/П	6791	6793	CGGACGATCCACCCTGGACA	38	110
1337242	Н/П	Н/П	5809	5811	CTTCAGCATTCACTAAAGTC	20	110
1337315	Н/П	Н/П	7103 5	7105	CCCCAGACGCACCGTCACAC	17	110
1337373	н/п	н/п	7517 2	7519 1	TAGCCCAGCACCCCATCT	67	110 5
1337410	н/п	Н/П	8501 8	8503 7	GCCACACTTCCCCCCGGAAC	40	110
1337430	Н/П	Н/П	6487	6489	TGGCCATACCCATCGATGCA	23	110 7
1337436	Н/П	Н/П	6192 8	6194 7	TGCCACAGCCTCAGTGGCAC	54	110
1337530	Н/П	Н/П	5542 5	5544 4	CCTAAGCTGCTTCTGAGGAC	20	110 9
1337546	Н/П	н/п	4678	4680	TCAGACAGTCCCTTGTGTAC	56	111
1337558	Н/П	н/п	7350 4	7352 3	GTTGAGCTGCCAACCGGTCC	55	111
1337573	н/п	Н/П	4901	4903 6	CCGTCCAGCCCCACTCTACC	49	111
1337594	н/п	Н/П	8258 6	8260 5	CAGGCTGGCATCTCTAAGGC	39	111
1337600	Н/П	Н/П	4768 7	4770 6	GGACAGGGACCAACTCCCGG	29	111
1337617	Н/П	Н/П	3250	3251 9	TCATCTCCTTCTCCAGCGAC	33	111 5
1337671	Н/П	Н/П	5681 9	5683 8	CCTGCAGCCCATGACACTAC	38	111
1337682	Н/П	Н/П	2446	2448	GCATTGGGAATTACAACCTG	27	111
1337683	Н/П	Н/П	7177	7179	GTCTGTGGACCTCAACCCCC	10	111
1337685	Н/П	Н/П	9362	9364	AGCCAGGGCCCATCCCTGAC	36	111

			8	7			9
1337722	Н/П	Н/П	4215	4217	CGAGGCCTTTAAAGCGGTCA	10	112
1337737	Н/П	Н/П	7597 9	7599 8	TACTCGGTCTTTCTCCTCCC	33	112
1337814	Н/П	н/п	9221 7	9223 6	GAGGGCAGCTCTAGTAGGTT	13	112
1337866	н/п	н/п	6822 8	6824 7	GGTCCACCCTGAACAGTCCA	20	112 3
1337878	н/п	н/п	5143 6	5145 5	ACTGGTTCCCAGACACCCCT	35	112 4
1337882	Н/П	Н/П	8583 6	8585 5	TGTGCATACACCGGCAGGCC	20	112 5
1337931	Н/П	Н/П	1897 3	1899	GGTCCACTCCCATCCTTCAC	22	112 6
1337977	Н/П	Н/П	6965 7	6967 6	GTGGAGACCCCACCTAGGTG	28	112 7
1338039	Н/П	Н/П	6578 6	6580 5	CGTAGTGACCCTAAAAGTCC	28	112
1338121	Н/П	Н/П	8924 7	8926 6	ACACTTCCCACCACAAGGCG	50	112 9
1338138	Н/П	Н/П	9325	9327	ATGCCGTCCTCCACATCCAC	35	113
1338152	Н/П	Н/П	2699	2701 3	CGCTGCTTCCACCAAGATTA	27	113
1338167	Н/П	Н/П	4868 6	4870	CCTCCATCGGTCATAGGCCT	35	113 2
1338175	Н/П	Н/П	5279 5	5281 4	ACGCAGAGCTCTGTGTGCCC	20	113 3
1338210	Н/П	Н/П	3154 7	3156 6	CCACTTATCACTTCTCAGTT	32	113
1338223	Н/П	Н/П	6040	6042 5	GTGGAAGTCATTCTGTGGAA	58	113 5
1338230	Н/П	Н/П	3007 6	3009 5	TCACACGGCCATCTCCTTCT	55	113

1338253	Н/П	Н/П	2758	2760	TGAGTGCCCAAAACTACAGC	36	113 7
1338259	Н/П	Н/П	6874	6876 6	GGCTGCTCCACAGTGGGTAT	22	113
1338275	Н/П	Н/П	4000	4002	GATCACTGCCCTCCCCCTTC	37	113
1338356	Н/П	Н/П	3365	3367 7	AGGACTATTATACCCAGCCA	13	114
1338359	Н/П	н/п	7720 5	7722 4	AGGGCACCCACTCCACCCAC	66	114
1338397	Н/П	Н/П	5873	5875 0	CCTCACTCCCATGTCAGGAC	52	114
1338442	Н/П	Н/П	5411 9	5413 8	GTGACAACCACACACAC	17	114
1338450	Н/П	Н/П	2291	2293	CTGTTTCAAAGCTCCAGCTA	22	114
1338453	Н/П	Н/П	1799 6	1801 5	ACTAAACTCTTCACCTGGGC	10	114 5
1338500	Н/П	Н/П	3725 5	3727 4	CCCGATACCTGCCCTAGCGC	26	114
1338512	Н/П	Н/П	3612 8	3614 7	ACTGCCCTTTTAGAGAGCAC	23	114 7
1338530	Н/П	Н/П	3811	3813	CACCAGGGTCCTCACCCCCC	45	114
1338543	Н/П	Н/П	7920 0	7921 9	GCCCACAGCCCTTTCACGGC	35	114
1338578	Н/П	Н/П	1968 0	1969 9	TCTTACATCCAGTCGAGGCA	66	115
1338635	Н/П	Н/П	7810 1	7812 0	TACTGACCCCAGCTTGCCAT	31	115
1338744	Н/П	Н/П	9162	9164	GCTCTTGGCATCCACGGTCA	20	115 2
1338759	Н/П	Н/П	2101	2103	CCCGAGACACCATCTGGTAA	23	115
1338784	Н/П	Н/П	9038	9040	AACAGCACCTTGACTAGCAC	16	115

			6	5			4
1338802	4483	4502	9486	9488	CCCAATGCCCCCTAGATGCA	22	115 5
1338823	Н/П	Н/П	6281 2	6283	GGCCGACAACCAGATGGAAA	13	115 6
1338830	Н/П	Н/П	2552 8	2554 7	GCACAGGCACAAAATGCCCC	15	115 7
1338844	Н/П	н/п	4293 7	4295 6	GGCTGCACAAACCCTGCCAA	41	115 8
1338866	Н/П	н/п	2039	2041	CCTAAGGGCTTTCTCACCCA	47	115 9
1338868	Н/П	н/П	8675 2	8677	GTGATTTTCATCTGCAGGGT	50	116 0
1338872	Н/П	Н/П	3220 9	3222 8	CCAGGGAACCCCTTTCCTTG	19	116
1338970	4730	4749	9510 9	9512 8	TGCATCCATTTAATAGAAGT	18	116 2
1338972	Н/П	Н/П	4558 8	4560 7	GCTTCTATCTCACACCCGTC	40	116 3
1338989	Н/П	Н/П	3108	3110	CCCATTCCTCCTTTGTATAA	53	116 4
1339003	Н/П	Н/П	5040	5042	AAGTGATTAAAACATTCGAT	63	116 5
1339043	Н/П	Н/П	1742	1744 3	CTTGCCTTCACTTGCAGGCA	36	116
1339083	Н/П	Н/П	8174 8	8176 7	CCTTGGCCTCCAGATACGGC	57	116 7
1339202	Н/П	н/п	4062 7	4064 6	GAGACCTCTCCTCTGCTTCA	36	116 8
1339239	Н/П	Н/П	2362	2363 9	CTTGACTCAATCATGCAGGT	21	116 9
1339312	Н/П	Н/П	5632 2	5634 1	ACTCACAATTCTCAAACTGC	10	117
1339444	Н/П	н/п	2851 8	2853 7	CCTCGCTTTACCCTCCCAAC	33	117

1339463	 н/П	 н/п	1836	1838	 GCATGGTTCTCTCTAGGCGG	29	117
1333403	11/11	11/11	7	6			2
1339487	н/п	Н/П	8370	8372	TCTTTATCCTTCCACTGGGC	52	117
1333407	11/11	11/11	5	4	TCTTTATCCTTCCACTGGGC	J2	3
1339489	н/п	н/п	3455	3456	CCACAGAACTCCAGAAGCAA	57	117
1339409	П/ 11	II/ II	0	9	CCACAGAACICCAGAAGCAA		4
1339492	н/п	Н/П	4441	4443	GTGACAACCACACTCGAGGA	44	117
1339492	П/ 11	П/ 11	3	2	GIGACAACCACACICGAGGA	44	5
1339511	н/п	Н/П	8756	8758	CACCTGGTGTCCAAACTCAC	40	117
1333311	11/11	11/11	4	3	CACCIGGIGICCAAACICAC	40	6
1339614	3980	3999	9435	9437	GGTTAAAAAACTCTCCTCAC	22	117
1339014	3900		9	8	GGITAAAAACTCTCCTCAC		7
1339658	н/п	Н/П	2195	2196	GTGTTGCTCAACTCCAGAGA	32	117
1339036	11/11	11/11	0	9	GIGIIGCICAACICCAGAGA	32	8

Таблица 16. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	387	9423	9425	GTCACGCTAGTGCCACCGT	20	283
		3	3	2	G		
1337237	Н/П	Н/П	7346	7347	CACTTGGACACAGTGAGCA	33	1179
100,20,	11, 11	11, 11	0	9	A		
1337310	Н/П	Н/П	5632	5633	TCACAATTCTCAAACTGCT	22	1180
1337310	11/11	11/11	0	9	С	22	
1337334	н/п	н/п	2548	2550	TGCACAAGAACTTCCTGCC	18	1181
1337334	11/11	11/11	4	3	A	10	1101
1337387	н/п	Н/П	6191	6193	AGTGGCACCCTCCCTCTAC	26	1182
1337307	11/11	11/ 11	6	5	Т	0	1102
1337418	Н/П	Н/П	2758	2760	AGTGCCCAAAACTACAGCG	30	1183

			4	3	G		
1227427		11 / 17	2699	2701	GCTGCTTCCACCAAGATTA	4.0	1104
1337437	Н/П	Н/П	3	2	С	48	1184
1337484	Н/П	н/п	4864	4866	TCCCTTTACCTCCCCGTGG	63	1185
133/404	П/11	П/11	8	7	A	03	1103
1337492	Н/П	н/п	2038	2040	GGCTTTCTCACCCAGAGCC	39	1186
1337492	П/ 11	П/П	6	5	G	39	
1337495	Н/П	н/п	8582	8583	GGCCTGAACCAGCTCTATC	47	1187
1337433			0	9	Т	7 /	
1337542	4729	474	9510	9512	GCATCCATTTAATAGAAGT	6	1188
1337342	1723	8	8	7	Т		
1337551	Н/П	н/п	8666	8668	GGCAGGTGCCCATCCACCC	37	1189
	117 11	11, 11	8	7	A		
1337620	Н/П	н/п	7177	7179	TCTGTGGACCTCAACCCCC	31	1190
		,	4	3	T		
1337687	Н/П	н/п	6278	6280	GCGCACGGCCCCATCTGAA	21	1191
		,	9	8	С		
1337703	Н/П	Н/П	8174	8176	CTTGGCCTCCAGATACGGC	72	1192
	,	,	7	6	С		
1337723	3979	399	9435	9437	GTTAAAAAACTCTCCTCAC	26	1193
		8	8	7	Т		
1337738	Н/П	 Н/П	6821	6823	GAACAGTCCATCCCAGATG	38	1194
			8	7	A		
1337743	Н/П	Н/П	7919	7921	CCCACAGCCCTTTCACGGC	54	1195
			9	8	С		
1337827	Н/П	Н/П	4047	4049	CCACACCTGCCTCTCGGCT	17	1196
			1	0	С		
1337838	Н/П	Н/П	3105	3107	GGCCTTAGTCCTATTGAAT	32	1197
			6	5	Т		
1337844	Н/П	Н/П	3217	3219	AGGCTGCAATTCAACACTG	25	1198
			6	5	C		
1337900	Н/П	н/п	3722	3724	GCTGAGTAAGGAAAATCCC	23	1199
			2	1	C		
1337908	Н/П	н/п	5802	5804	GGTCCCCTGTTTACTGATC	21	1200
			7	6	С		

1337909	н/п	 н/П	7714	7716	GCCCGTTCTTCCCTTAACC	33	1201
1337303		117 11	5	4	A		
1007010	11./11	11./17	5039	5041	TTCGATGTTTCCCAAAGCT	1.0	1000
1337919	Н/П	Н/П	2	1	С	13	1202
1227057	11 / 11	11./17	2352	2354	ATGGCCGGCACCCTCCCCC	20	1000
1337957	Н/П	Н/П	9	8	G	30	1203
1337976	Н/П	Н/П	6958	6960	GAGACATTCACCCAGGGCT	11	1204
1337970	П/ 11	II/ II	3	2	G	11	1204
1338002	Н/П	Н/П	5540	5542	GACAAGCGGCCCCCAAGCC	21	1205
1330002	117 11	117 11	8	7	A	21	
1338003	Н/П	Н/П	6791	6793	GGACGATCCACCCTGGACA	28	1206
1330003			1	0	G	20	
1338010	Н/П	Н/П	8756	8758	ACCTGGTGTCCAAACTCAC	15	1207
1330010		117 11	3	2	A		1207
1338046	Н/П	Н/П	5679	5680	CAAAGCTTCTCCTCTCTGG	24	1208
1330010		117 11	0	9	A		
1338051	Н/П	Н/П	5872	5873	TGTCAGGACAGTCTTAGCC	22	1209
1330001		117 11	0	9	A		
1338094	Н/П	Н/П	2446	2447	GGGAATTACAACCTGAAGC	18	1210
		117 11	0	9	С	10	
1338135	Н/П	Н/П	3453	3454	GCGGAGAGCCCACACGCCA	41	1211
1000100	117 11	117 11	0	9	T		
1338176	Н/П	Н/П	1736	1738	GCTGGGTGTTTACCCAAGA	26	1212
1330170	117,11	117 11	8	7	С	20	
1338195	Н/П	Н/П	7597	7599	ACTCGGTCTTTCTCCTCCC	32	1213
1000130	117,11	117 11	8	7	A	02	
1338199	Н/П	Н/П	6487	6489	GCCATACCCATCGATGCAA	16	1214
1000133	117, 11	117 11	1	0	Т		
1338202	Н/П	Н/П	5142	5143	CCCTCAACCCCCATGCACG	50	1215
1000202	117,11	117 11	0	9	С		
1338215	Н/П	Н/П	9216	9218	GTGACGAGCACCCAGTGGG	10	1216
			4	3	A		
1338225	Н/П	Н/П	8924	8926	CACTTCCCACCACAAGGCG	36	1217
			6	5	С		
1338226	Н/П	Н/П	8499	8501	CAGAACTCGATTCACAGGT	20	1218

			8	7	A		
1338303	Н/П	Н/П	5407	5409	CGCCTGAGCACTCTTACGC	20	1219
1336303	11/11	117 11	9	8	A	20	1219
1338328	Н/П	Н/П	1892	1894	TCTGAGGCCATCTTGAGGG	49	1220
1330320	11/11	11/11	4	3	A	4.9	1220
1338387	Н/П	Н/П	4439	4441	GGAGAGGCCACCCTTCAG	41	1221
	11/ 11	11/ 11	6	5	С		
1338392	Н/П	Н/П	6864	6866	TCTACCCCAGACAATCCAC	56	1222
			1	0	С		
1338460	Н/П	Н/П	2194	2196	TGTTGCTCAACTCCAGAGA	43	1223
			9	8	A		
1338627	 н/П	Н/П	4190	4192	GCAAACACCCCTGAAAGAC	41	1224
			2	1	A		
1338724	Н/П	Н/П	1835	1837	TAGGCGGACAGCAAAAGCC	36	1225
			4	3	Т		
1338760*	Н/П	Н/П	5275	5276	TGGGTCAGCCTCCAAGAGG	21	1226
			0	9	С		
1338786	Н/П	Н/П	1799	1801	CTAAACTCTTCACCTGGGC	28	1227
			5	4	A		
1338854	Н/П	Н/П	8258	8260	AGGCTGGCATCTCTAAGGC	22	1228
			5	4	A		
1338861	Н/П	н/п	4285	4287	ATCCGCAGCATCCAAACCC	41	1229
			7	6	A		
1338934	Н/П	Н/П	6577	6579	CCTAAAAGTCCTATCTGCC	28	1230
			7	6	C		
1338939	Н/П	Н/П	4667	4669	CCATGGCGAACAACTTGTC	29	1231
			2 1966	1 1968	C C C C C C A A TITUTC TO CA C C		
1338941	Н/П	Н/П	9	1968	GTCGAGGCAATTTCTCAGG A	26	1232
			9362	9364	CCAGGGCCCATCCCTGACC		
1338960	Н/П	Н/П	9362	5	G	65	1233
			3355	3357	GTTGGGAGAAAAACAACCA		
1339027	Н/П	Н/П	1	0	C	24	1234
			3584	3586	TTATGACACCCATTCTGGA		
1339031	Н/П	Н/П	8	7	C	67	1235
			<u> </u>				

1339040	Н/П	Н/П	3154	3156 5	CACTTATCACTTCTCAGTT C	38	1236
1339072	н/п	Н/П	9038	9039	ACCTTGACTAGCACAAGCC C	15	1237
1339085	Н/П	Н/П	7516 8	7518 7	CCAGCACACCCCATCTCAG T	50	1238
1339111	Н/П	Н/П	4762 5	4764	GCTGAGATAGAAACAATGG C	31	1239
1339135	Н/П	Н/П	2290 9	2292 8	TTTCAAAGCTCCAGCTACA C	45	1240
1339165	Н/П	Н/П	6012	6014	CCCACGGCCACACCTGTGT C	49	1241
1339189	н/п	Н/П	4901 5	4903	GTCCAGCCCCACTCTACCC T	65	1242
1339190	н/п	Н/П	9161	9163 7	ATCCACGGTCACTCCCGCC T	32	1243
1339216	4481	450 0	9486	9487	CAATGCCCCCTAGATGCAG T	20	1244
1339221	н/п	Н/П	7807 8	7809 7	ATCCAAGTAAACATCGCCA G	43	1245
1339297	н/п	Н/П	7103	7105	CCAGACGCACCGTCACACA T	29	1246
1339346	н/п	Н/П	2098	2100	GAGGGTCCACCATCAGGTC C	31	1247
1339392	н/п	Н/П	3810 4	3812	TCCTCACCCCCAATTCCT A	44	1248
1339447	н/п	Н/П	3998 7	4000	CCTTCCCCCCACGCCAGCA T	51	1249
1339468	н/п	Н/П	3249 1	3251 0	TCTCCAGCGACTCTGAACC T	24	1250
1339552	н/п	Н/П	8370	8372	CTTTATCCTTCCACTGGGC C	47	1251
1339566	Н/П	Н/П	2851	2853	CTCGCTTTACCCTCCCAAC A	35	1252
1339579	Н/П	Н/П	3006	3008	CCATCTCCTTCTGCCTGTT	42	1253

			8	7	A		
1339588	Н/П	н/п	9325	9327	TGCCGTCCTCCACATCCAC	24	1254
1339366	П/11	П/П	2	1	A	∠4	1234
1339644	Н/П	н/п	4558	4560	CTTCTATCTCACACCCGTC	34	1255
1009044	11/ 11	11/ 11	7	6	A) 1	1233

Таблица 17. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCGT G	29	283
1337254	н/п	Н/П	1957 9	1959 8	GGCAGAAGCCCCCAACTCA C	48	1256
1337263	н/п	Н/П	5678 9	5680 8	AAAGCTTCTCCTCTCTGGA C	45	1257
1337275	н/п	Н/П	5127 5	5129 4	CGTGGCTCACCTACCGTGG C	68	1258
1337285	н/п	Н/П	9325 1	9327	GCCGTCCTCCACATCCACA C	19	1259
1337317	н/п	Н/П	6789 7	6791 6	GGACAGTCCACCTAGATGG T	34	1260
1337344	Н/П	н/п	3998 0	3999 9	CCCACGCCAGCATCCAGGA A	55	1261
1337372	Н/П	Н/П	1834 5	1836 4	AGCAAAAGCCTCTGCTGTC C	57	1262
1337398	Н/П	Н/П	4858 5	4860	CTGGCAAGACCACGAAGCC A	71	1263
1337447	н/п	Н/П	6482	6484	GTTCCGTGAATTTCCCTGA A	18	1264

1007405			3452	3454	GGAGAGCCCACACGCCATA		1005
1337485	Н/П	Н/П	8	7	C	50	1265
1007540	TT / TT	TT / TT	8666	8668	GCAGGTGCCCATCCACCCA	60	1000
1337540	Н/П	Н/П	7	6	С	68	1266
1007560	TT / TT	/	7919	7921	CCACAGCCCTTTCACGGCC		1067
1337560	Н/П	Н/П	8	7	T	77	1267
1227500	TT / TT	11 / 11	6577	6579	CTAAAAGTCCTATCTGCCC	2.0	1000
1337589	Н/П	Н/П	6	5	A	26	1268
1227600	TT / TT	TT /TT	4762	4764	TGAGATAGAAACAATGGCC	2.4	1000
1337602	Н/П	Н/П	3	2	T	34	1269
1227625	2076	2005	9435	9437	AAAAAACTCTCCTCACTAG	22	1070
1337625	3976	3995	5	4	С	33	1270
1227602	TT /TT	TT /TT	1799	1801	AAACTCTTCACCTGGGCAT		1071
1337693	Н/П	Н/П	3	2	T	28	1271
1007710	TT /TT	TT /TT	3248	3250	TCCAGCGACTCTGAACCTC	37	1070
1337712	Н/П	Н/П	9	8	T	3 /	1272
1007750	TT /TT	TT /TT	3217	3219	GGCTGCAATTCAACACTGC	10	1070
1337753	Н/П	Н/П	5	4	С	40	1273
1337791	TT / TT	TT / TT	4047	4048	CACACCTGCCTCTCGGCTC	54	1274
1337791	Н/П	Н/П	0	9	T	34	12/4
1337845	TT / TT	11 / 11	9362	9364	CAGGGCCCATCCCTGACCG	38	1075
133/845	Н/П	Н/П	5	4	A	38	1275
1227000	11 /11	11 / 11	8581	8583	CCAGCTCTATCTTCCCAGA	35	1076
1337880	Н/П	Н/П	2	1	С	35	1276
1337899	Н/П	Н/П	5407	5409	GCCTGAGCACTCTTACGCA	9	1277
1337099	П/11	П/11	8	7	Т	9	12//
1337910	11 / 11	TT / TT	6821	6823	AACAGTCCATCCCAGATGA	51	1278
1337910	Н/П	Н/П	7	6	С	31	12/0
1337934	Н/П	Н/П	2699	2700	GCTTCCACCAAGATTACCC	29	1279
1337934	П/11	П/ 11	0	9	Т	29	12/9
1337959	Н/П	Н/П	4633	4635	TCATGGTGCCCACCCCCAC	71	1280
1331333	11/11	11/11	1	0	A	' 1	1200
1337965	Н/П	Н/П	4185	4187	ACACAGCCCCACCCCTGCG	54	1281
133/303			4	3	G	04	1201
1337998	Н/П	Н/П	9030	9032	GAGGCCTTGCCCAACAGGG	72	1282

			1	0	С		
1220020	11 / 11	17 / 17	4900	4902	CCCACTCTACCCTCTGGCA	77	1283
1338030	Н/П	Н/П	8	7	T		1283
1338063	Н/П	Н/П	5267	5269	AGGCCACTCCACTTCTTGG	47	1284
*	П/11	П/П	4	3	A	4 /	1204
1338064	Н/П	Н/П	7177	7179	GTGGACCTCAACCCCCTAC	38	1285
1336004	П/11	П/П	1	0	T	30	1203
1338101	Н/П	Н/П	2851	2853	GCTTTACCCTCCCAACAGG	44	1286
1330101	П/П		4	3	T	44	1200
1338134	Н/П	Н/П	8250	8252	AACTGACTCCAGGATCCCT	33	1287
1330134	П/ 11		6	5	A		1207
1338143	Н/П	Н/П	2290	2292	TTCAAAGCTCCAGCTACAC	44	1288
1330143	П/ 11		8	7	С	44	1200
1338196	4721	4740	9510	9511	TTAATAGAAGTTTCCAGCG	31	1289
1330190	4/21	4/40	0	9	С		1209
1338318	Н/П	Н/П	6937	6939	GCAGGGAACCCCACCACAT	72	1290
1330310	11/11	11/11	4	3	С	12	1290
1338350	Н/П	Н/П	9213	9214	GGCCACCAGCTCATTTCAC	33	1291
1330330	11/11	11/11	0	9	Т		1291
1338463	Н/П	Н/П	7516	7518	AGCACACCCCATCTCAGTG	45	1292
1330403	11/11	11/11	6	5	A	45	1232
1338468	Н/П	Н/П	7714	7716	CGTTCTTCCCTTAACCACC	31	1293
1330400	11/11	11/11	2	1	Т		1293
1338481	Н/П	Н/П	4285	4287	TCCGCAGCATCCAAACCCA	34	1294
1330401	11/11	11/11	6	5	С	74	1294
1338489	Н/П	Н/П	3105	3107	GCCTTAGTCCTATTGAATT	64	1295
1330403	11/11	11/11	5	4	A	04	1233
1338499	н/п	Н/П	5039	5041	TCGATGTTTCCCAAAGCTC	47	1296
1330433	117 11	11/ 11	1	0	A	1/	1230
1338504	Н/П	Н/П	5539	5541	CCCCAAGCCACCTGGAACC	12	1297
1330304	117 11	11/ 11	8	7	A		1237
1338548	Н/П	Н/П	2346	2348	GGCCATTTCTCAGGCTGGC	66	1298
1000040	**/ **	11/11	6	5	С		
1338592	Н/П	Н/П	9160	9162	CCCGCCTGAATCCCCCACG	41	1299
1000002	**/ **	11/11	5	4	С		

1338674	 н/П	 _{Н/П}	6863	6865	GACAATCCACCCCAGAGGG	49	1300
1550074	11/11		2	1	T	47	
1000705	TT / TT	TT / TT	3718	3720	GGTCTGAGCACACGCTCCT		1 2 0 1
1338705	Н/П	Н/П	4	3	A	29	1301
1220720	TT / TT	11./11	7597	7599	CTCGGTCTTTCTCCTCCCA	2.2	1 2 0 0
1338730	Н/П	Н/П	7	6	С	33	1302
1338748	Н/П	Н/П	8924	8926	ACTTCCCACCACAAGGCGC	43	1303
1330740	П/ 11	П/ 11	5	4	A	43	1303
1338897	Н/П	Н/П	7807	7809	TCCAAGTAAACATCGCCAG	59	1304
1330097	П/11	П/11	7	6	T	39	1304
1339016	Н/П	Н/П	5871	5873	AGGACAGTCTTAGCCACCA	28	1305
1339010	П/ 11	П/ 11	6	5	A	20	1303
1339039	Н/П	Н/П	2534	2536	GATGGACGATATCTCCTGG	22	1306
1339039	11/11	11/11	9	8	A	22	1300
1339053	Н/П	Н/П	3584	3586	TATGACACCCATTCTGGAC	63	1307
1339033	11/11	11/11	7	6	A	03	1307
1339059	Н/П	Н/П	8174	8176	TTGGCCTCCAGATACGGCC	120	1308
1333033	11/11	11/11	6	5	A	120	
1339088	Н/П	Н/П	4439	4441	GAGAGGCCACCCTTCAGC	54	1309
1333000	11/11		5	4	С		
1339158	Н/П	Н/П	3353	3355	ACCACAGCCACCTCAAAGA	106	1310
1333130	117 11		6	5	T		
1339198	Н/П	н/п	4558	4560	TTCTATCTCACACCCGTCA	66	1311
	117 11		6	5	С		
1339200	Н/П	Н/П	3810	3812	CTCACCCCCCAATTCCTAC	70	1312
1333200	117 11		2	1	С	, 0	
1339205	Н/П	Н/П	7073	7075	AGGTCTCTTCCCTCAGGGA	70	1313
1333203	117 11		3	2	С	, 0	
1339244	Н/П	Н/П	2999	3001	TGTGCATAACACAAATATT	58	1314
1333211	117 11		8	7	G		
1339275	Н/П	Н/П	2095	2097	AGTGAGCTCCCAACTCTGT	41	1315
10002,0	/	/	7	6	С		
1339318	Н/П	Н/П	8755	8757	GGTGTCCAAACTCACAGGC	13	1316
1000010	11/ 11	/	9	8	T		
1339325	Н/П	Н/П	8498	8500	TCACAGGTAAAAGACACGA	71	1317

			7	6	C		
1220202	TT / TT	TT / TT	7344	7346	GAGCAATGCCCACAAAGGT	20	1210
1339393	Н/П	Н/П	6	5	G	39	1318
1339404	4425	4444	9480	9482	GTCTTCTGCTTCCTTCAGA	28	1319
1339404	4423	4444	4	3	A	20	1319
1339405	Н/П	Н/П	8356	8358	TAAATTGGCATTAATGTCT	90	1320
1339403	П/ 11	П/11	7	6	Т	90	1320
1339414	TT /TT	Н/П	6278	6280	CGCACGGCCCCATCTGAAC	28	1 2 2 1
1339414	Н/П	H/II	8	7	T	28	1321
1220420	TT /TT	TT / TT	2035	2036	GGGCTCAGCCCTTTCAGAC	50	1200
1339430	Н/П	Н/П	0	9	С	50	1322
1220424	TT /TT	TT / TT	6191	6193	GGCACCCTCCCTCTACTGG	2.2	1 2 2 2
1339434	Н/П	Н/П	3	2	С	33	1323
1220426	TT /TT	TT / TT	2758	2760	GTGCCCAAAACTACAGCGG	20	1 2 2 4
1339436	Н/П	Н/П	3	2	Т	20	1324
1220456	TT / TT	TT / TT	6012	6014	CCACGGCCACACCTGTGTC	2.2	1205
1339456	Н/П	Н/П	1	0	T	23	1325
1220400	TT / TT	11 / 11	2445	2447	AACCTGAAGCCCAAACGGT	7.0	1226
1339488	Н/П	Н/П	1	0	T	70	1326
1220522	TT /TT	11 / 11	5793	5795	GTCACCTGTTTTACTGAGC	34	1207
1339533	Н/П	Н/П	3	2	С	34	1327
1220600	TT /TT	TT /TT	1736	1738	GGGTGTTTACCCAAGACAG	22	1220
1339609	Н/П	Н/П	5	4	С	22	1328
1220624	TT /TT	TT / TT	3151	3153	GTCTGCGCACAGCTGAGCT	2.4	1 2 2 0
1339624	Н/П	Н/П	4	3	T	34	1329
1220620	TT /TT	11 / 11	5631	5633	CACAATTCTCAAACTGCTC	1.4	1220
1339639	Н/П	Н/П	9	8	С	14	1330
1339649	Н/П	Н/П	1886	1888	CCGAAGCTCTAATCCCTGG	32	1331
1333049			9	8	С]] _	1221
1339660	Н/П	Н/П	2194	2196	GTTGCTCAACTCCAGAGAA	44	1332
1333000	11/11	11/11	8	7	С	1 4 4	1002

Таблица 18. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCG TG	15	283
1080891	4702	4721	9508 1	9510 0	CTGACCGTACAAACCAGT AA	18	289
1337256	н/п	н/п	4858	4860	TGGCAAGACCACGAAGCC AA	99	133
1337339	Н/П	Н/П	5038	5040	CCCAAAGCTCACAACACT CA	66	133
1337353	Н/П	н/п	5127 4	5129	GTGGCTCACCTACCGTGG CC	95	133 5
1337366	н/п	н/п	7802 4	7804	GGCTGGCCCCACATGCAG GC	58	133
1337404	н/п	н/п	8342	8344	CCCTGGTGCCTTCTACAG GC	52	133 7
1337537	н/п	н/п	3248 7	3250 6	CAGCGACTCTGAACCTCT GC	30	133
1337547	н/п	н/п	2851	2853	CTTTACCCTCCCAACAGG TT	62	133
1337554	н/п	н/п	8250	8251 9	CTCCAGGATCCCTATGGG CT	31	134
1337588	н/п	н/п	7915 6	7917 5	AGGCACCACCAGATGCCA CA	78	134
1337604	н/п	н/п	7597 5	7599 4	CGGTCTTTCTCCTCCCAC CA	36	134
1337619	3975	3994	9435	9437	AAAAACTCTCCTCACTAG CC	28	134
1337669	н/п	Н/П	2034	2036	GGCTCAGCCCTTTCAGAC CT	56	134

1337742	Н/П	Н/П	5533	5535	TGTCCCAGACCATCATCG	23	134
			6	5	AT		5
1337748	4368	4387	9474	9476	ACGCACCCCTCTCACATG	24	134
			7	6	CC		6
1337793*	н/п	Н/П	5260	5262	GGGAAACCCCCCAAGTCC	39	134
	11/ 11		7	6	TC		7
1337824	Н/П	Н/П	3810	3812	TCACCCCCAATTCCTAC	67	134
1007021	11/ 11		1	0	CT		8
1337881	Н/П	Н/П	7177	7178	TGGACCTCAACCCCCTAC	52	134
	11, 11	111/11	0	9	TT		9
1337888	Н/П	Н/П	9160	9162	CCGCCTGAATCCCCCACG	59	135
	11, 11	,	4	3	CC		0
1337903	Н/П	Н/П	8755	8757	GTGTCCAAACTCACAGGC	19	135
		,	8	7	TA		1
1337950	Н/П	Н/П	2999	3001	GTGCATAACACAAATATT	18	135
	,		7	6	GC		2
1337958	н/п	Н/П	2698	2700	ACCAAGATTACCCTCAGG	27	135
1337330	11, 11	117, 11	4	3	AT		3
1338007	Н/П	н/п	7516	7518	GCACACCCCATCTCAGTG	28	135
	,		5	4	AC		4
1338009	н/П	н/п	3584	3586	ATGACACCCATTCTGGAC	50	135
			6	5	AT		5
1338029	н/п	н/п	6191	6193	GCACCCTCCCTCTACTGG	21	135
			2	1	CA		6
1338098	Н/П	Н/П	1833	1835	TCTGCTGTCCACTCCTGA	99	135
		,	5	4	AC		7
1338142	н/П	н/п	3217	3219	GCTGCAATTCAACACTGC	54	135
			4	3	CT		8
1338154	Н/П	Н/П	3990	3992	CGGAGGCTGCCCATTAGC	99	135
			4	3	TG		9
1338220	н/п	н/п	4178	4180	AAACAGGTGCATTCTAGG	41	136
			5	4	GT		0
1338250	Н/П	н/п	6477	6479	ACCTGGTGCACCTGGAGT	25	136
	11/11		9	8	CA		1
1338265	Н/П	Н/П	4433	4435	GCCCTGCTCAGCACGAAG	53	136

			8	7	CC		2
1338325	н/п	н/п	9315	9317	TGGACAGGCCATTCCCAC		136
			4	3	TC	34	3
1338357	н/п	11 / 11	3452	3454	GCCCACACGCCATACAGT	61	136
		Н/П	3	2	TA	OI	4
1338393	н/п	Н/П	5629	5630	GGACATTCCCAGCATTGA	22	136
1336393			0	9	CC		5
1338415	Н/П	11./11	1886	1888	CGAAGCTCTAATCCCTGG	43	136
1330413	П/ 11	Н/П	8	7	CC	40	6
1338507	Н/П	TT /-	8498	8500	CACAGGTAAAAGACACGA	61	136
1336307	П/11	Н/П	6	5	CA	0.1	7
1338513	н/п	ц/п	2345	2346	GGCCGTGTCCTCCCAAGC	27	136
1330313	П/11	Н/П	0	9	CT	2/	8
1338516	Н/П	ц/п	5871	5873	AGTCTTAGCCACCAAGGC	56	136
1336316	П/П	Н/П	1	0	CT	30	9
1338528	н/п	Н/П	5999	6001	GGACGGGTCCCCATCTTG	70	137
1330320			4	3	CC		0
1338557	Н/П	н/п	1736	1738	GTGTTTACCCAAGACAGC	34	137
1336337	П/11		3	2	TA) 4 	1
1338680	н/п	Н/П	6937	6939	CAGGGAACCCCACCACAT	41	137
1330000	117 11		3	2	CA	41	2
1338710	Н/П	Н/П	4557	4559	ACACCCGTCACCCTCTGC	64	137
1330710	117 11		7	6	AC		3
1338727	Н/П	І Н/П	4759	4761	GTCCCAGGCTTCTCTTGG	61	137
1330727			9	8	GA		4
1338731	н/п	Н/П	2438	2440	GTGTTCTGTTTTACACTA	10	137
1330731	117 11		4	3	AT		5
1338756	н/п	Н/П	4043	4045	GTGAGATCCACACTCCAG	36	137
			1	0	AA		6
1338761	н/п	н/п	2758	2760	TGCCCAAAACTACAGCGG	25	137
			2	1	TC		7
1338769	Н/П	Н/П	9016	9017	CGCCAGGGCAGAATTACC	29	137
1000,00	11/11		0	9	TT	49	8
1338811	ц/п	Н/П	7344	7346	GCAATGCCCACAAAGGTG	65	137
	Н/П		4	3	GC		9

1338815	Н/П	Н/П	1957	1959	GCAGAAGCCCCCAACTCA	46	138
			8	7	CT		0
1338899	н/п	Н/П	2290	2292	TCAAAGCTCCAGCTACAC	49	138
			7	6	CT		1
1338900	Н/П	Н/П	2194	2196	TTGCTCAACTCCAGAGAA	53	138
	11/11	11/11	7	6	CC		2
1338908	н/п	Н/П	3100	3102	CCTTAATTACCTCTAAAG	55	138
1330300	117 11		9	8	AA		3
1338938	Н/П	Н/П	8168	8169	TCCCAGTGCCTCACACGC	49	138
1330330	11/ 11	^{Π/11}	0	9	GG		4
1338959	Н/П	Н/П	8581	8583	CAGCTCTATCTTCCCAGA	51	138
	11/ 11	11/ 11	1	0	CA		5
1338982	Н/П	Н/П	5678	5680	AAGCTTCTCCTCTCTGGA	33	138
1000002	11/ 11	11/ 11	8	7	CA		6
1339005	Н/П	Н/П	5793	5795	TCACCTGTTTTACTGAGC	6	138
	11/ 11		2	1	CT		7
1339029	н/п	Н/П	9212	9214	GCCACCAGCTCATTTCAC	24	138
1333023	117 11	11/ 11	9	8	TC		8
1339052	н/п	Н/П	4900	4902	CCACTCTACCCTCTGGCA	58	138
1003002	11/ 11	117 11	7	6	TC		9
1339120	н/п	н/п	1796	1798	GGTGGGCTCATTATTAGA	32	139
1000120			5	4	GC		0
1339150	Н/П	Н/П	4285	4287	GCAGCATCCAAACCCACG	39	139
1333130			3	2	GT		1
1339161	н/п	Н/П	4624	4626	CAACAGTTCTCCCTGCTG	63	139
1000101			6	5	AC		2
1339187	Н/П	Н/П	8666	8668	TGCCCATCCACCCACTTG	70	139
1000107			2	1	GA	'	3
1339208	Н/П	Н/П	6861	6863	AGAGGGTCCACCCCAGAC	28	139
	1/	/	9	8	AG		4
1339215	1415	1434	7061	7063	AGCAGGCCTCCCCATTGT	29	139
	1415		3	2	CC		5
1339251	Н/П	Н/П	6576	6578	ATCTGCCCAGAACCTCGC	19	139
	Π/11		5	4	CA		6
1339267	Н/П	Н/П	3148	3150	GCAGAGGGTCCCATGAGG	26	139

			6	5	CT		7
1339343	Н/П	Н/П	5407	5409	CCTGAGCACTCTTACGCA	20	139
1339343	11/11	11/11	7	6	TA	20	8
1339368	Н/П	Н/П	8908	8910	CCCCAAAGTCTCCCCCCT	50	139
1339300	П/П	П/П	2	1	AC	30	9
1339375	Н/П	Н/П	3353	3355	CACAGCCACCTCAAAGAT	72	140
1339373	11/11	11/11	4	3	GA	12	0
1339403	Н/П	Н/П	2532	2534	GCAGGACAATTTCTAGGT	29	140
1333403	11/ 11	11/11	2	1	AC	23	1
1339498	Н/П	Н/П	7713	7715	TTCCCTTAACCACCTGTG	79	140
1333430	11/ 11	11/ 11	7	6	CA		2
1339507	Н/П	Н/П	6789	6791	ACAGTCCACCTAGATGGT	21	140
1333307	117 11	11/11	5	4	CC	21	3
1339527	Н/П	н/п	9361	9363	CCTGACCGACACCTGTCC	32	140
1333327	11/ 11	11/ 11	4	3	CA	32	4
1339537	Н/П	Н/П	6278	6280	GCACGGCCCCATCTGAAC	18	140
1333337	11/ 11		7	6	TC		5
1339541	Н/П	Н/П	6821	6823	AGTCCATCCCAGATGACC	44	140
1333341	11/ 11	11/11	4	3	CA	111	6
1339659	Н/П	Н/П	2095	2097	GTGAGCTCCCAACTCTGT	30	140
1333003	11/11	11/ 11	6	5	CC		7
1339664	Н/П	Н/П	3717	3719	GAGCACACGCTCCTATGC	63	140
100004	11/ 11	11/11	9	8	AT		8

Таблица 19. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACC GTG	31	283

100000	1,000	1717	9507	9509	CCGTACAAACCAGTAAG	21	
1080888	4698	4717	7	6	GAA	31	55
1337224	Н/П	Н/П	7337	7339	CAGAGAGACTCCACCTG	72	140
1337224	П/ П	П/ П	9	8	TCC	/ 2	9
1337241	Н/П	Н/П	4431	4433	CCCAGGCCCCATGTGTG	33	141
1337241	11/11	11/11	6	5	GTC		0
1337261	Н/П	н/п	7595	7597	ACCACAGCCTAGACCAG	35	141
1337201	117 11	11/11	9	8	GCT		1
1337278	Н/П	Н/П	6817	6819	CTGGACAGTTCACCCCA	23	141
1007270	11/ 11	11/11	8	7	GAT		2
1337320	Н/П	Н/П	6414	6416	GTCTTACTTCTTAATGG	10	141
	12, 22	,	1	0	AGA		3
1337361	Н/П	Н/П	6562	6564	GGCTGAGGTTTCTACAG	59	141
	11, 11	,	2	1	CCA		4
1337362	Н/П	Н/П	5037	5039	AAGCTCACAACACTCAG	36	141
	11, 11	11, 11	8	7	GGT		5
1337368	Н/П	Н/П	2998	3000	ATATTGCCATTTTAACC	36	141
	11, 11	11, 11	4	3	CTC		6
1337370	Н/П	Н/П	7800	7802	GCAGAGTCCCACCACCA	63	141
	,	,	6	5	AGA		7
1337397	Н/П	Н/П	9314	9316	AGGCCATTCCCACTCGC	32	141
			9	8	TGT		8
1337443	Н/П	Н/П	8666	8667	CCCATCCACCCACTTGG	88	141
			0	9	ACA		9
1337454	Н/П	Н/П	2094	2096	ACTCTGTCCACTTCCTC	39	142
	,		5	4	CAC		0
1337466	Н/П	Н/П	1954	1956	GAAAGTTGCCCACTCCT	63	142
	,	·	2	1	GTA		1
1337469	Н/П	Н/П	8493	8494	GGGTTCGCCCTTACTCA	33	142
	·		0	9	TCA		2
1337478	Н/П	Н/П	2437	2439	CTGTTTTACACTAATGC	68	142
			9	8	GGG		3
1337548	4366	4385	9474	9476	GCACCCTCTCACATGC	46	142
			5	4	CCG		4
1337574	3973	3992	9435	9437	AAACTCTCCTCACTAGC	28	142

			2	1	CTG		5
1227507	TT / TT	17 / 77	7515	7517	AGTGACACTCAAAAGTG	43	142
1337597	Н/П	Н/П	1	0	CTC	4.3	6
1227610	TT / TT	17./77	5530	5532	CCAAGGAGACCTCACTG		142
1337610	Н/П	Н/П	2	1	CTC	29	7
1227620	TT / TT	17 / 77	5869	5870	TGGCTGACCCCGCCAG	34	142
1337639	Н/П	Н/П	0	9	GGC	34	8
1337724	Н/П	Н/П	5114	5116	GATGCGGGCCAGGCTAG	21	142
133//24	H/II	П/11	1	0	GCC		9
1337746	Н/П	Н/П	1885	1887	GCCACTCTCCCTCCAAT	43	143
133//40	П/П	П/11	1	0	AGA	43	0
1337747	Н/П	Н/П	6860	6862	AGACAGTCCACCCTGGA	45	143
133//4/	П/П	П/11	5	4	TGA	45	1
1337756	Н/П	Н/П	8580	8582	TCTATCTTCCCAGACAC	66	143
1337730	П/П	П/11	7	6	ACT		2
1337759	Н/П	Н/П	4617	4619	TAGTCATACACAGATGG	73	143
1337739	11/11	11/11	4	3	CCA	/ 3	3
1337788	Н/П	Н/П	5999	6001	CGGGTCCCCATCTTGCC	57	143
1557700	11/11	11/11	1	0	TAC		4
1337836	Н/П	Н/П	3801	3803	GCACCGGGCACAGATCC	35	143
1337030	11/11	11/11	9	8	CAC		5
1337857	Н/П	Н/П	5670	5672	CCGGGCTCCCATGAATG	33	143
1557657	11/11	11/11	3	2	TCC		6
1337902	Н/П	Н/П	3094	3096	GGGCTTTGATATAAA	42	143
1557902	11/11	11/11	7	6	TCT	42	7
1337935	Н/П	н/п	4139	4141	GCCAAGGAACATCAGGG	55	143
1337333	11/ 11	11/11	9	8	CGA		8
1337943	Н/П	н/п	8246	8248	TGGCCGGAACACACTTT	59	143
1337343	117 11	117 11	7	6	CAC		9
1338037	1413	1432	7061	7063	CAGGCCTCCCCATTGTC	45	144
1330037	1413	1432	1	0	CAT		0
1338119	Н/П	Н/П	2282	2284	GCCCTAGCTTCCCCAGA	27	144
	11/11	11/11	5	4	GCA		1
1338123	Н/П	Н/П	2698	2700	CAAGATTACCCTCAGGA	52	144
1000120	11/11	11/11	2	1	TCA]] _	2

122222			3574	3576	GTCTGAGACCCATCTGG		144
1338238	Н/П	Н/П	4	3	GTC	74	3
1338267	Н/П	Н/П	4277	4279	TCTCTGCCAGCCCTAAC	58	144
1330207	П/11	П/11	1	0	TTA	70	4
1338272	Н/П	Н/П	3709	3711	AGCACGAGTACCCTCTG	36	144
1330272	11/11		5	4	CCA		5
1338307	Н/П	Н/П	3350	3352	AGCTGCTAAAAGAAATG	26	144
	117 11	117 11	9	8	CCA		6
1338311	Н/П	Н/П	7176	7178	CTCAACCCCCTACTTGG	57	144
			5	4	TCT		7
1338372	Н/П	Н/П	4557	4559	ACCCGTCACCCTCTGCA	40	144
			5	4	CCA		8
1338412	Н/П	Н/П	8754	8756	CTCACAGGCTACTCCCC	35	144
			9	8	CCA		9
1338485	Н/П	Н/П	6245	6247	GGTCCCCTCCTTCTCCC	22	145
			2	1	ATC		0
1338495	Н/П	Н/П	7711	7712	ACGCTCCTCCAGCTGAG	53	145
	,	,	0	9	CCT		1
1338538	 н/П	 _{Н/П}	3217	3219	TGCAATTCAACACTGCC	29	145
	·	,	2	1	TTA		2
1338564	Н/П	 н/П	5404	5406	TTTGAGGAAATCTACGG	28	145
			3	2	GTA		3
1338583	Н/П	Н/П	9159	9161	TGAATCCCCCACGCCAG	34	145
			9	8	GCC		4
1338609	Н/П	 _{Н/П}	7913	7915	GCTGTACCCACAGGCGG	68	145
			6	5	CAC		5
1338632	Н/П	 _Н /П	4756	4758	ACAGGCTCCATTGAGAG	52	145
			5	4	GCT		6
1338637	Н/П	 _Н /П	2330	2332	ATGTTAAATATAACCAC	70	145
			9	8	CCC		7
1338645	Н/П	Н/П	9354	9356	CCCGCACCCACCTCTGG	75	145
		<u> </u>	2	1	TGC		8
	Н/П	Н/П	5605	5607	TGGAGTGGAGACTCATC		145
1338719			4	3	CCA	18	9
	Н/П	Н/П	5611	5613			

			8	7			
1338813	Н/П	Н/П	1794	1796	ACTGAGTTCAACAAGAT	28	146
1330013	П/11	П/11	5	4	GAA	40	0
1338860*	11 / 11	Н/П	5234	5235	GCCCCACTCACCATGCA	47	146
1330000^	Н/П	П/11	0	9	GAC	4 /	1
1338862	Н/П	Н/П	2756	2758	GCGGTCTCTTCTCTCTG	23	146
1330002	П/ П		8	7	TTC	23	2
1338913	Н/П	Н/П	1728	1730	GATGAATTATTCCCATG	31	146
1330313	11/11	11/11	1	0	GGC		3
1338924	Н/П	Н/П	5790	5792	CCTTGGCATTCACTGAG	19	146
1330324	11/11	11/11	4	3	CCT		4
1338984	Н/П	Н/П	2529	2531	TCCTGACACCCCACCAA	85	146
1330304	117 11	117 11	3	2	CGC		5
1339015	Н/П	Н/П	1833	1835	TGCTGTCCACTCCTGAA	83	146
1000010	11/ 11	117 11	3	2	CAC		6
1339021	Н/П	Н/П	8901	8903	GTCTTGTTCTCTGCGAG	13	146
1000021	11/11	117 11	6	5	AAC		7
1339066	1068	1087	6181	6183	GCCACGCAGATCATGAT	54	146
100000			8	7	GAC		8
1339087	Н/П	Н/П	3985	3987	CTCAACCGCCTCTTCTG	86	146
	11/ 11	11/ 11	2	1	CAA		9
1339095	Н/П	Н/П	2026	2027	CACACGGCTCCTGTGAG	31	147
	117 11		0	9	TCA		0
1339169	Н/П	Н/П	3141	3142	CCCAGGCTCATTCCCGC	50	147
	,		0	9	CAT		1
1339179	Н/П	Н/П	4897	4898	CGAGGCAGAATTCTCCA	34	147
		,	0	9	TTC		2
1339206	Н/П	Н/П	8341	8343	TCTACAGGCTCCTTGCA	47	147
		,	3	2	TGC		3
1339271	Н/П	Н/П	6937	6939	GGGAACCCCACCACATC	56	147
			1	0	ACT		4
1339413	Н/П	Н/П	2194	2196	GCTCAACTCCAGAGAAC	49	147
			5	4	CAA		5
1339432	Н/П	Н/П	9212	9214	ACCAGCTCATTTCACTC	21	147
			6	5	CGG		6

1339500	 н/П	 н/П	2850	2852	CAACAGGTTCTACCTAC	93	147
1339300	11/11	11/11	2	1	CAA	93	7
1339509	Н/П	Н/П	3248	3250	CGACTCTGAACCTCTGC	70	147
1339309	П/11	П/11	4	3	CTC	/ 0	8
1339553	н/п	н/п	9015	9017	AGGGCAGAATTACCTTG	33	147
1339333	11/11	11/11	6	5	CAA		9
1339560	н/п	н/п	4042	4044	TCCACACTCCAGAAGAA	49	148
1333300	11/11	I H/II	5	4	CAA	49	0
1339565	н/п	Н/П	6785	6787	TCTCATGGCTCTCATTG	41	148
1339303	11/11	11/11	2	1	GCC	41	1
1339575	Н/П	Н/П	3450	3452	CAGTTATGACTCAATGA	48	148
1333373	11/11	11/11	9	8	GCC	40	2
1339618	Н/П	Н/П	8163	8165	TCCTGGTTCCACCATCA	63	148
1339010	11/11	11/11	6	5	AGA		3
1339622	Н/П	Н/П	4851	4853	GCAACCCTGCCCATTGC	70	148
1339022	11/11	11/11	4	3	CAG	, 0	4

Таблица 20. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCG	18	283
			3	2	TG		
1337222	Н/П	н/п	1945	1947	GGGCTGGACACCAGCCGA	65	148
1337222	11/11	11/ 11	5	4	CC		5
1337239	н/п	Н/П	4894	4896	CACCAGGCCAACCATCCC	57	148
1337233	11/11	117 11	3	2	CC		6
1337318	н/п	н/п	8569	8571	CTTGCCATCCCGAAATTC	33	148
133/310	11/11	11/11	1	0	CA		7
1337348	Н/П	Н/П	2997	2999	ATTTTAACCCTCTTTGCC	58	148

			6	5	GC		8
1227452	17 / 17	Н/П	6401	6403	TGCACATCCCGATTTGGC	36	148
1337452	Н/П	П/П	9	8	CC	30	9
1227457	TT / TT	17./77	8479	8480	GTGATTTGCATCCAGAAT	47	149
1337457	Н/П	Н/П	0	9	TC	47	0
1227517	17 / 17	17./77	7157	7159	TGGTCCCTGCCCATAGAG	36	149
1337517	Н/П	Н/П	5	4	GT	36	1
1227520	TT /TT	11 / 11	1884	1886	CTCCCTCCAATAGAACCT	36	149
1337538	Н/П	Н/П	5	4	CA	30	2
1337649	Н/П	Н/П	9010	9012	CACTGGCTGTTAAATTTG	18	149
133/049	П/11	П/П	7	6	CT	10	3
1337668	Н/П	Н/П	2094	2095	GTCCACTTCCTCCACCGG	23	149
1337000	П/ П	П/П	0	9	GC	23	4
1337680	Н/П	Н/П	8331	8333	GTCTCTGTATATGCCTGG	65	149
1337000	11/11	11/11	6	5	CC		5
1337690	Н/П	Н/П	3208	3210	GCACAGCTCCCATGGATG	19	149
1337090	11/11	11/11	6	5	AA		6
			5602	5604			
			5	4			
1337697	Н/П	Н/П	5608	5610	GGTCCCAGGCCTCTGAGC	10	149
1337097	11/11	11/11	9	8	GC		7
			5615	5617			
			3	2			
1337700	Н/П	н/п	7699	7701	GGTGCCGAACCTTAAGGA	41	149
1337700	11/11	11/11	6	5	CC	41	8
1337725	н/п	н/п	2751	2753	GCAGGTCCACCCTCCCCC	25	149
1337723	11/ 11	117 11	8	7	GC		9
1337771	н/п	н/п	3792	3794	TAACCGTTCCCTTCCATG	41	150
	11/ 11	117 11	7	6	TC	1 11	0
1337777	н/п	н/п	5529	5531	ACCTCACTGCTCACAAGG	18	150
	11/11	/	4	3	CC		1
1337784*	н/п	н/п	5223	5225	GCCTTCGCCATCGCCAGG	14	150
100,104	11/11	/	8	7	CT		2
1337795	н/п	н/п	8640	8642	GGGCTCGCCACCCCTCAT	43	150
	11/11	/	6	5	GC		3

1337855	 _{Н/П}	 _{Н/П}	2189	2191	GCTAATGAAACAGCCTGG	43	150
1337000			6	5	TC		4
1337978	Н/П	Н/П	7895	7897	CTTGGTTTCCAATCATCA	36	150
			2	1	TT		5
1337981	н/п	Н/П	3243	3245	TTGGCTCACCCAGATCAT	31	150
	117 11	117 11	9	8	CC		6
1337992	н/п	Н/П	5864	5866	AACCATGGTCCTCCTGGG	38	150
	11, 11	117 11	9	8	CC		7
1337997	Н/П	Н/П	1784	1786	CTCTTGGTTCACACAACC	17	150
	11, 11	117 11	1	0	AA		8
1338015	Н/П	Н/П	6743	6745	GGGCTGCCACCTCACTG	51	150
	,	11, 11	1	0	AA		9
1338071	Н/П	Н/П	6236	6238	GCCCAAGCACTTCACACC	26	151
		11, 11	6	5	CT		0
1338078	Н/П	Н/П	6813	6815	GATGGTCCACACTAAATG	48	151
	11/11	117 11	3	2	GT		1
1338085	Н/П	Н/П	6909	6911	CACTATGCCACTAAGGAC	60	151
100000		117 11	8	7	AC		2
1338088	Н/П	Н/П	3337	3339	AGGTAAGCATTTAAACCT	34	151
		,	8	7	TG		3
1338109	Н/П	Н/П	3704	3706	ATGGAAGCCCCCTTCAAC	324	151
			8	7	CC		4
1338189	Н/П	Н/П	2423	2424	TCTCAGGGTCTCCCTGGA	50	151
			0	9	TA		5
1338200	Н/П	Н/П	2839	2841	AGCTCAGGCCACCCAAGA	43	151
		,	7	6	CT		6
1338204	Н/П	Н/П	3138	3140	TGCGGAATCCCCTCCTGC	47	151
		,	9	8	AC		7
1338283	 н/П	Н/П	9341	9343	TCTGTTCACCTCACATGC	45	151
		,	5	4	AT		8
1338301	Н/П	Н/П	2012	2014	GGGATGGCTTCTAATGGC	24	151
	,	,	9	8	AG		9
1338308	Н/П	Н/П	2688	2690	CAGGGTCATCCTCGAAGC	25	152
			6	5	CA		0
1338332	Н/П	Н/П	7799	7801	CCACCAAGAAACATCGCA	52	152

			5	4	GA		1
1220251	тт / пт	Н/П	9134	9136	GCTCCGCTTGAATCTAAA	15	152
1338351	Н/П	П/ 11	4	3	CA	13	2
1338402	Н/П	Н/П	7326	7328	GTCTCCCGCCCTGCCTGG	21	152
1336402	П/ 11	П/ 11	7	6	TC		3
1338467	Н/П	Н/П	1725	1727	CCTGTTGGTCCTTAACTG	30	152
1330407			7	6	AA		4
1338474	Н/П	Н/П	3442	3444	ACCAGCACAGCAAAGGCA	36	152
1000171			5	4	CA		5
1338520	Н/П	Н/П	8245	8247	CTTTCACTCTCCATCGGG	31	152
			4	3	TT		6
1338536	Н/П	Н/П	8895	8896	GCTGGCCCAACTCTAGCT	26	152
		,	0	9	GA		7
1338562	Н/П	Н/П	2310	2312	CACCCTTCCCAAACTCAG	45	152
			1	0	CT		8
1338631	Н/П	Н/П	3092	3093	CACAGTTCAATCCCGAAC	23	152
			0	9	AC		9
1338639	Н/П	Н/П	7584	7586	GCCTTGGGCTCTTACCCA	31	153
			7	6	CA		0
1338683	Н/П	Н/П	4751	4753	GCTCAAACCATCAGGACC	20	153
			1	0	CA		1
1338690	Н/П	Н/П	9212	9213	TCATTTCACTCCGGCAGG	15	153
			0	9	CA		2
1338725	Н/П	Н/П	4269	4271	CTCGCTGTCAACACACGA	38	153
			1	0	AC		3
1338773	Н/П	Н/П	3570	3572	TCTGAAGCCCCAAACTAG	63	153
			6	5	CT		4
1338776	Н/П	Н/П	9309	9311	GCATCAGCCCAGAGCACC	22	153
			4 4 4 2 7	3	CC TCACCTCACCTCATCCC		153
1338779	Н/П	Н/П		4429	TGAGCTCCACCTCATGCC	22	
			2 5667	5668	GA GGTCGGGCTATCTAACCC		6 153
1338795	Н/П	Н/П	0	9	AC	12	7
			5965	5967	GGGTTTGTCACACCCTTC		153
1338806	Н/П	Н/П		0	AC	22	8
			1		AC		

1338817	 н/П	 н/п	6555	6557	GCATGGGACAATCTCCCC	19	153
1330017	17 11	П/11	3	2	CA	19	9
1220025	11./11	TT / TT	7494	7496	AGGCAGCACTCACTCTAC	60	154
1338835	Н/П	Н/П	3	2	CA	62	0
1000040	TT / TT	TT / TT	5028	5030	TAGAGTCCCAGCACCTGC	20	154
1338840	Н/П	Н/П	5	4	CT	32	1
1338865	Н/П	Н/П	1830	1832	TACAGCATTACAATTTGA	23	154
1330003	п/п	П/ 11	6	5	TC	23	2
1338871	4363	4382	9474	9476	CCCCTCTCACATGCCCGG	28	154
1330071	4303	4302	2	1	CT	20	3
1338895	Н/П	н/п	6855	6857	ATGGATGGTCCACCCCAG	17	154
1330033	117 11	11/11	1	0	AC	- '	4
1338914	Н/П	н/п	5110	5111	AGGAAAACTCCAATGCTG	56	154
1330311	117 11	11/ 11	0	9	CC		5
1338918	Н/П	Н/П	6148	6150	TCTGTCCCCAAGCTCTGC	21	154
1000010	117 11	11/ 11	5	4	CG		6
1338949	3938	3957	9431	9433	GAGCTGGCCCTCCCCCG	32	154
1000010			7	6	CA		7
1339004	Н/П	Н/П	5769	5770	GGCCTGGTTTCCCTATTT	26	154
			0	9	AC		8
1339013	 н/П	Н/П	3966	3967	CCTGATGAAACTTCAGCC	41	154
			0	9	CT		9
1339037	Н/П	Н/П	4041	4043	CCAGAAGAACAAACCTAC	58	155
			7	6	CA		0
1339129	Н/П	Н/П	4528	4530	CAAAGCCTCTTCCATTTG	68	155
			8	7	AC		1
1339149	4695	4714	9507	9509	TACAAACCAGTAAGGAAC	19	155
			4	3	CA		2
			4116	4118			
1339246	Н/П	Н/П	7	6	TGAGCTCCTCAGCATGGG	25	155
			5077	5079	CC		3
			8	7			4 = -
1339278	Н/П	Н/П	5394	5396	CTGGAGACACCATCTTCG	13	155
1000000	 	 	8	7	GA	1.0	4
1339367	Н/П	Н/П	2508	2510	TCAGCCTTCACTCACACA	40	155

			9	8	GT		5
1339373	11 / 11	11 / 11	7035	7037	AGTGGGCATCCCCATACT	62	155
1339373	Н/П	Н/П	8	7	GC	02	6
1339397	Н/П	Н/П	2273	2275	GGCTCAGTGCCCTTCAGG	26	155
1339397	11/11	11/11	5	4	GA	20	7
1339535	н/п	Н/П	8146	8147	GCTGCTCACCTTTTCTAG	66	155
1339333	П/11	П/11	0	9	TT	00	8
1339544	Н/П	Н/П	8754	8756	AGGCTACTCCCCCCAGGC	41	155
1339344	П/11	П/11	4	3	СТ	4	9
1339594	Н/П	Н/П	4615	4616	GGGAAGCTCCACACCAGC	42	156
1339394	П/П	П/ 11	0	9	TC	42	0
1339665	н/п	н/п	4846	4848	AGTTCCTCCCCAGACACC	34	156
1339003	Π/ II 	II II	9	8	GT) 1	1

Таблица 21. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCG TG	23	283
1337253	2743	2762	8076 2	8078	CATGTAGTCCTCCTCGGC GC	28	156 2
1337270	н/п	н/п	2260 2	2262 1	GCAAAGCTCCCTCTGGAG GA	53	156 3
1337295	н/п	н/п	3242 0	3243 9	CACGATAATTTCCCATCT TC	27	156 4
1337305	н/п	н/п	7151 9	7153 8	TGACCCTGCCTTCACTGA CC	66	156 5
1337384	н/п	н/п	2010	2012	GGCATCAGACCCCACCCC AA	30	156 6

1337489	 н/П	 н/П	6357	6359	AAAGCAGGTCCCCCTGCA	43	156
	,	,	5	4	CC		7
1337511	Н/П	Н/П	3965	3967	CTGATGAAACTTCAGCCC	54	156
133/311	П/П	П/11	9	8	TC	34	8
1007500	0000	0001	7301	7303	CGAGAAGGCCCTCTTCTT	10	156
1337533	2002	2021	5	4	CC	49	9
1337545	Н/П	Н/П	8640	8642	GGCTCGCCACCCCTCATG	37	157
1337343	11/11	11/ 11	5	4	CA		0
1337586	Н/П	н/п	6909	6910	CACTAAGGACACATTCAG	34	157
1337360	П/ 11	П/ 11	0	9	GC	34	1
1337591	Н/П	н/п	9010	9012	ACTGGCTGTTAAATTTGC	18	157
1337391	П/ 11	П/ 11	6	5	TA	10	2
1337611	Н/П	Н/П	3792	3794	AACCGTTCCCTTCCATGT	43	157
133/011	П/11	п/ П	6	5	CA	43	3
1337638	TT / TT	Н/П	8754	8756	GGCTACTCCCCCCAGGCC	25	157
133/030	Н/П	П/ П	3	2	TC	25	4
1337676	Н/П	Н/П	2508	2510	CCTTCACTCACACAGTGG	36	157
1337070	П/П	П/ 11	5	4	CC	30	5
1337707	TT / TT	TT / TT	8328	8330	GGCATCTGTCCCACATGG	4 5	157
133//0/	Н/П	Н/П	1	0	AC	45	6
1337776	Н/П	Н/П	2833	2835	GGTACGGCCTCATCCAGG	38	157
133///0	П/11	П/11	9	8	TC	30	7
1337846	Н/П	Н/П	5964	5966	GTTTGTCACACCCTTCAC	38	157
133/040	П/11	П/11	9	8	TT	30	8
1337917	Н/П	Н/П	1884	1885	TCCAATAGAACCTCACTG	51	157
133/91/	П/11	П/11	0	9	TA	31	9
1227004	17 / 17	11 / 11	3138	3140	GCGGAATCCCCTCCTGCA	10	158
1337984	Н/П	Н/П	8	7	CA	48	0
	Н/П	Н/П	5605	5607			
1338036	П/П	П/ 11	3	2	GGAGTGGAGACTCATCCC	17	158
1220020	ц/п	ц/п	5611	5613	AC	17	1
	Н/П	Н/П	7	6			
1220072	11 / 17	п/п	2751	2753	AGGTCCACCCTCCCCGC	41	158
1338073	Н/П	Н/П	6	5	AA	41	2
1338105	Н/П	Н/П	3337	3339	AGCATTTAAACCTTGGTG	26	158

			3	2	GA		3
1220100	17 / 17	11 / 11	1783	1785	CTTGGTTCACACAACCAA	41	158
1338108	Н/П	Н/П	9	8	AT	41	4
1220147	Н/П	Н/П	5666	5668	GTCGGGCTATCTAACCCA	12	158
1338147	П/11	П/11	9	8	CA	12	5
1338205	Н/П	Н/П	2189	2191	CTAATGAAACAGCCTGGT	78	158
1330203	11/11	П/ П	5	4	CA	10	6
1338236	Н/П	Н/П	1725	1727	CTGTTGGTCCTTAACTGA	26	158
1330230	11/11	11/11	6	5	AA	20	7
1338242	н/п	н/п	6236	6238	CCAAGCACTTCACACCCT	32	158
1330242	117 11	117,11	4	3	GA	32	8
1338254	н/п	н/п	4528	4530	AAAGCCTCTTCCATTTGA	59	158
1330234	117 11	117,11	7	6	CC		9
1338274	н/п	н/п	9211	9212	CCGGCAGGCACAGACTGG	26	159
1330274	117 11	11/11	0	9	CC	20	0
1338290	н/п	н/п	7799	7801	CACCAAGAAACATCGCAG	70	159
1330230	11/11	11/11	4	3	AC	'	1
1338296	н/п	Н/П	3704	3706	TGGAAGCCCCCTTCAACC	48	159
1330230	11/11	11/11	7	6	CT	10	2
1338331	н/п	Н/П	5100	5102	GCACATGTCCCCCTAAAC	55	159
1330331	11/ 11	11/11	4	3	GG		3
1338426	н/п	н/п	1830	1832	ACAGCATTACAATTTGAT	37	159
1330120	11/ 11	11/11	5	4	CA		4
1338443	н/п	н/п	3441	3443	AGCAAAGGCACAACAAGA	83	159
1330443	11/11		7	6	TC		5
1338449	н/п	Н/П	3570	3572	CTGAAGCCCCAAACTAGC	49	159
1000110	117 11	117,11	5	4	TG		6
1338451	4362	4381	9474	9476	CCCTCTCACATGCCCGGC	27	159
1330431	4502	4501	1	0	TT	2 /	7
1338456	н/п	Н/П	2309	2311	CCTTCCCAAACTCAGCTC	67	159
1000100	11/ 11	117,11	8	7	CA		8
1338497	н/п	Н/П	4269	4270	TCGCTGTCAACACACGAA	36	159
1000101	11/11	11/11	0	9	CA		9
1338506	н/п	Н/П	4041	4043	CAGAAGAACAAACCTACC	69	160
1330300	11/11	11/11	6	5	AA		0

	Н/П	Н/П	6727	6729			
1338540			6	5	CTGAGAGGACTCAGGGAC	31	160
	Н/П	Н/П	6739	6741	TT		1
			7	6			
1338544	Н/П	Н/П	8569	8570	TTGCCATCCCGAAATTCC	59	160
	,		0	9	AA		2
1338608	3937	3956	9431	9433	AGCTGGCCCTCCCCCGC	32	160
			6	5	AT	32	3
1338622	Н/П	Н/П	4840	4841	CTTTGAGGCCCCTTGACC	65	160
1550022	11/ 11	11/11	0	9	TC		4
1338702	Н/П	TT / TT	5856	5857	GAGCGGCTATCCCGCTGC	110	160
1330/02	П/11	Н/П	0	9	CC	110	5
1220725	TT / TT	TT / TT	4424	4426	AGGCTGTCCCCTTGTCTC	4.0	160
1338735	Н/П	Н/П	4	3	CA	40	6
1000747			4981	4983	GGCTTGTCACCCCACCGG		160
1338747	Н/П	Н/П	9	8	GC	55	7
1000751		/	6854	6856	GGATGGTCCACCCCAGAC	1.5	160
1338751	Н/П	Н/П	9	8	GA	15	8
1338792	Н/П	Н/П	4610	4612	GGGCCCACCATAGCCCTG	62	160
1330/92	П/11	П/11	7	6	CA	02	9
1220016	TT / TT	TT / TT	7699	7701	GTGCCGAACCTTAAGGAC	47	161
1338816	Н/П	Н/П	5	4	CC	47	0
1220042	TT / TT	TT /TT	5768	5770	GCCTGGTTTCCCTATTTA	1.0	161
1338843	Н/П	Н/П	9	8	CT	13	1
1220047	TT / TT	TT / TT	8478	8480	ATCCAGAATTCCAGCCGT	1.4	161
1338847	Н/П	Н/П	1	0	AC	44	2
1220006			7035	7037	GTGGGCATCCCCATACTG	C 1	161
1338896	Н/П	Н/П	7	6	CC	61	3
1220026	TT / TT	TT / TT	5526	5528	TGGCCAGCTCCTCTTGTC	1.0	161
1338936	Н/П	Н/П	6	5	TT	10	4
1220055	TT / TT	11 / 17	5394	5396	TGGAGACACCATCTTCGG		161
1338955	Н/П	Н/П	7	6	AA	28	5
1220050	п / п	п / п	2417	2419	CGCTTGAGTCATAAAGAC	20	161
1338956	Н/П	Н/П	5	4	GC	39	6
1	Н/П	Н/П	5217	5219	CAGGCACCCCACTCACTC	58	161

			4	3	GA		7
1220072	11 / 11	17 / 17	7494	7496	GGCAGCACTCACTCTACC	52	161
1338973	Н/П	Н/П	2	1	AC	52	8
1338987	Н/П	Н/П	4746	4748	CTTCGACTCACCGTGGCT	34	161
1330907	H/II	П/11	5	4	CC	34	9
	Н/П	Н/П	4116	4118			
1338998	П/ П	П/ П	5	4	AGCTCCTCAGCATGGGCC	50	162
1330990	Н/П	Н/П	5077	5079	CC		0
	11/11	11/11	6	5			
1339006	Н/П	н/п	7584	7586	CCTTGGGCTCTTACCCAC	46	162
1333000	117 11	11/ 11	6	5	AT		1
1339019	Н/П	н/п	2997	2999	TTTTAACCCTCTTTGCCG	71	162
1003013	117 11	11, 11	5	4	CC		2
1339038	Н/П	Н/П	6555	6557	CATGGGACAATCTCCCCC	34	162
		,	2	1	AA		3
1339058	Н/П	Н/П	9339	9341	CATGCATGCCTTCATCTA	22	162
	,	,	8	7	CA		4
1339077	Н/П	Н/П	4894	4896	ACCAGGCCAACCATCCCC	59	162
	,	,	2	1	CA		5
1339166	Н/П	Н/П	2681	2683	GAGGAAGCTCCAATCCAG	43	162
	·	,	6	5	GT		6
1339211	4681	4700	9506	9507	GAACCAGCAGCAAAGGAC	42	162
			0	9	GC		7
1339226	Н/П	Н/П	7895	7897	TTGGTTTCCAATCATCAT	31	162
			1	0	TT		8
1339339	Н/П	Н/П	3091	3093	CAATCCCGAACACCATGT	61	162
			3	2	CA		9
1339347	Н/П	Н/П	8894	8896	GCCCAACTCTAGCTGATG	23	163
			6	5	CC		0
1339351	Н/П	н/П	9131	9133	GCAGCTCCCCAGCCCCAG	15	163
			7	6	AA		1
1339472	Н/П	н/п	6813	6815	ATGGTCCACACTAAATGG	40	163
			2	1	TC		2
1339496	Н/П	н/п	6146	6148	GCCGGAGCCACCTCCTGC	16	163
			9	8	СТ		3

1339501	 н/П	Н/П	9306	9308	GCAGCTCATCCCTCCGAG	26	163
1333301	117 11	117 11	8	7	AA	20	4
1339526	Н/П	Н/П	3190	3192	CCACAGGCCACCTTGAGG	56	163
1339320	П/11	П/11	8	7	TG	30	5
1339577	Н/П	н/п	1943	1945	GCCCCCACCTTCCAGAT	40	163
1339377	П/ 11	п/п	1	0	CT	40	6
1339605	н/п	н/п	8233	8235	CCACGGTGTCACAATCCT	38	163
1339003	117 11	117 11	8	7	GC		7
1339655	н/п	н/п	2084	2086	GCCGAGCTCTTCTCTGTC	25	163
1337033	11/11	11/ 11	6	5	CA	20	8

Таблица 22. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCGT G	26	283
1337255	Н/П	Н/П	5666 6	5668 5	GGGCTATCTAACCCACAGC C	28	163 9
1337274	Н/П	Н/П	7493 9	7495 8	AGCACTCACTCTACCACGG A	68	164
1337314	Н/П	Н/П	6236 0	6237 9	GCACTTCACACCCTGAGGC A	18	164
1337324	н/П	н/П	8568 4	8570 3	TCCCGAAATTCCAAATCCT C	51	164
1337349*	н/П	Н/П	5217 3	5219 2	AGGCACCCCACTCACTCGA T	52	164
1337385	н/П	Н/П	2417	2419	GCTTGAGTCATAAAGACGC A	32	164
1337403	Н/П	Н/П	3183	3185	CCATCAGGCCATCTTTGAC	55	164

			7	6	A		5
1337421	Н/П	Н/П	2735	2737	GATCTGAGCCCCTCGGTCC	22	164
133/421	П/11	П/11	8	7	A		6
1337445	Н/П	Н/П	2305	2307	GCATGGTTCCCCGACTCCT	23	164
133/443	П/11	П/11	1	0	С	23	7
			5605	5607			
1337470	 н/П	Н/П	1	0	AGTGGAGACTCATCCCACC	29	164
1337470	П/11	П/11	5611	5613	С	29	8
			5	4			
1337512	Н/П	Н/П	7692	7694	GACTTAGCCCCATCAGGGC	83	164
1337312	11/11	11/11	2	1	С		9
1337520	Н/П	Н/П	5768	5770	CCTGGTTTCCCTATTTACT	26	165
1337320	11/11	117 11	8	7	G	20	0
1337543	Н/П	н/п	3961	3963	GCCCATCTCCCCATGCTTG	52	165
1337343	117 11		2	1	T	52	1
1337581	Н/П	Н/П	4839	4841	CCCCTTGACCTCCTCCTGG	41	165
1557501	117 11	11/11	2	1	С	1 11	2
1337593	Н/П	Н/П	5100	5102	CACATGTCCCCCTAAACGG	85	165
1337333	117 11	117 11	3	2	С		3
1337661	Н/П	Н/П	4738	4740	TCTCCGCTTCCTGTCAGGG	53	165
1337301	117 11	117 11	4	3	С		4
1337695	Н/П	Н/П	5393	5395	CGGAAGGACATTCAGAGAA	33	165
	117 11	117 11	2	1	A		5
1337705	Н/П	Н/П	3792	3794	CCGTTCCCTTCCATGTCAC	42	165
1001700	11/ 11	117 11	4	3	A	12	6
1337713	Н/П	Н/П	8474	8476	GTGAAATTCCAGAACAACT	77	165
2001120	117 11	117 11	6	5	Т		7
1337719	Н/П	Н/П	8063	8065	GGATGCGGCCCACTCCCCA	66	165
	117 11	117 11	8	7	С		8
1337745	Н/П	Н/П	2084	2086	GCTCTTCTCTGTCCAAGGC	34	165
			1	0	С		9
1337757	Н/П	Н/П	3441	3443	GGCACAACAAGATCCAGGC	15	166
			1	0	A		0
1337762	Н/П	Н/П	8640	8642	CTCGCCACCCTCATGCAT	41	166
			3	2	A		1

1000000			4041	4043	GAAGAACAAACCTACCAAG		166
1337797	Н/П	Н/П	4	3	Т	59	2
1000011			2808	2810	TTGCCGGCCCTTCTGTGGA		166
1337811	Н/П	Н/П	3	2	T	38	3
1005010	/	/	9306	9308	CAGCTCATCCCTCCGAGAA		166
1337812	Н/П	Н/П	7	6	С	20	4
1227065	TT / TT	TT / TT	4268	4270	GTCAACACACGAACAGAAC	17	166
1337865	Н/П	Н/П	5	4	С	47	5
			6726	6728			
1227012	17./17	17./17	8	7	ACTCAGGGACTTGCCAAGC		166
1337913	Н/П	Н/П	6738	6740	A	55	6
			9	8			
1337921	11 /11	11 /11	2996	2998	TCTTTGCCGCCCTCTTTTA	1.6	166
133/921	Н/П	Н/П	6	5	A	46	7
1227005	TT / TT	TT / TT	5850	5852	CCTGGTTTTCCCCCACGGA	2.5	166
1337985	Н/П	Н/П	5	4	A	35	8
1220022	TT / TT	TT / TT	5964	5966	TTTGTCACACCCTTCACTT		166
1338033	Н/П	Н/П	8	7	T	65	9
1338035	Н/П	Н/П	3704	3706	GGAAGCCCCCTTCAACCCT	47	167
1330033	П/11	П/11	6	5	С	4 /	0
1338054	Н/П	Н/П	8328	8329	GCATCTGTCCCACATGGAC	69	167
1330034	П/11	П/11	0	9	С	09	1
1338068	Н/П	Н/П	2673	2675	GCTAGGGATCCCAATGAAA	25	167
1330000	П/11	П/11	9	8	T	23	2
1338084	Н/П	Н/П	6357	6359	AAGCAGGTCCCCCTGCACC	29	167
1330004	П/ П	П/ П	4	3	T	29	3
1338116	4638	4657	9501	9503	CGCCGCCCGGGATCTCGCC	21	167
1330110	4030	4037	7	6	T		4
1338122	Н/П	Н/П	6813	6815	TGGTCCACACTAAATGGTC	43	167
1330177	11/11	11/11	1	0	С	⁴)	5
1338172	Н/П	Н/П	2007	2009	CAGGAGGGTCCTCCAAGCG	37	167
10001/2	11/11	11/11	9	8	G		6
1338235	Н/П	Н/П	1714	1716	GGACAAGCTCCCTCATTGA	42	167
100000	11/11	11/11	5	4	A	⁴	7
1338239	Н/П	Н/П	4981	4983	CTTGTCACCCCACCGGGCA	51	167

			7	6	Т		8
1220252	11 /11	11 /11	9010	9012	CTGGCTGTTAAATTTGCTA	38	167
1338353	Н/П	Н/П	5	4	С	30	9
1338358	Н/П	Н/П	4411	4413	GACCTGGACACCACCCT	75	168
1330330	П/П	П/11	9	8	С	/3	0
1338378	Н/П	Н/П	2246	2248	GAGGAGGCACTTATGCAA	23	168
1330370	П/11	П/11	9	8	T	23	1
1338461	Н/П	Н/П	4595	4597	GCTTCAGGCCCACTGCCAA	69	168
1330401	11/11		2	1	С		2
1338491	н/п	н/п	5525	5527	GTCTTTTCTTTCAACTGAT	8	168
1000101	117 11	11/ 11	1	0	С		3
1338563	3935	3954	9431	9433	CTGGCCCTCCCCCGCATG	35	168
			4	3	A		4
1338593	Н/П	н/п	7894	7896	GGTTTCCAATCATCATTTT	59	168
		,	9	8	С		5
1338603	Н/П	Н/П	2508	2510	CTTCACTCACACAGTGGCC	39	168
		,	4	3	G		6
1338711	 Н/П	 н/П	8851	8853	CCGTGTGCCCTTACCGTAG	29	168
	,	·	6	5	С		7
1338722	 Н/П	 н/П	4528	4530	AAGCCTCTTCCATTTGACC	41	168
			6	5	T		8
1338742	Н/П	 Н/П	8752	8754	GCTTCCCCACCACCAGTGC	18	168
			2	1	A		9
1338750	Н/П	Н/П	7584	7586	CTTGGGCTCTTACCCACAT	64	169
			5	4	A		0
1338774	Н/П	Н/П	7035	7037	GGCATCCCCATACTGCCCC	36	169
			4	3	С		1
1338827	Н/П	Н/П	2181	2183	AAGGCGGCCACTCCCTTCC	35	169
			3	2	С		2
1338876	Н/П	н/п	1829	1831	ACAATTTGATCAACCACAG	56	169
			7	6	C		3
1338909	Н/П	н/п	1883	1885	CAATAGAACCTCACTGTAT	70	169
			8	7	A		4
1338966	2000	2019	7301	7303	AGAAGGCCCTCTTCTTCCG	30	169
			3	2	С		5

1339036	 _{Н/П}	 н/П	6554	6556	GACAATCTCCCCCAAAGCG	27	169
1339030	П/ 11	П/ 11	7	6	G		6
1339051	Н/П	Н/П	8233	8235	CACGGTGTCACAATCCTGC	71	169
1339031	П/ 11	П/11	7	6	A	/ 1	7
1339096	Н/П	Н/П	6908	6910	TAAGGACACATTCAGGCTC	53	169
1339090	П/ 11	П/11	7	6	С	33	8
1339134	Н/П	Н/П	7798	7800	ATCGCAGACCCACCTGCCA	55	169
1333134	117 11	11/11	3	2	С		9
1339138	Н/П	Н/П	3241	3243	ACGATAATTTCCCATCTTC	42	170
1333130		11/ 11	9	8	A	12	0
1339191	Н/П	Н/П	7149	7151	CCAGGATCCCAGCATAAGA	25	170
1333131		117 11	9	8	С		1
1339263	Н/П	Н/П	3335	3337	GGTGGAGTAAAAACAATGA	52	170
1333203		11/11	9	8	T		2
1339309	Н/П	Н/П	3566	3568	GGTACAGCCTGAAACTGGC	26	170
1333303		11/ 11	7	6	С		3
1339322	Н/П	Н/П	6146	6148	CGGAGCCACCTCCTGCCTG	27	170
1333322	117 11	117 11	7	6	A		4
1339329	Н/П	Н/П	6854	6856	GATGGTCCACCCCAGACGA	23	170
1333323	117 11	117 11	8	7	T		5
1339357	Н/П	Н/П	1933	1935	AGCTAAGTCCCCTCCCTGT	85	170
1333337	117 11	11/ 11	1	0	С		6
1339377	Н/П	Н/П	4894	4896	CCAGGCCAACCATCCCCCA	53	170
1333311	117 11	117 11	1	0	С		7
1339445	Н/П	Н/П	1783	1785	GTTCACACAACCAAATGTT	46	170
	117 11	11, 11	5	4	A		8
1339508	Н/П	Н/П	9339	9341	TGCATGCCTTCATCTACAC	29	170
	117 11	11, 11	6	5	С		9
1339531	Н/П	Н/П	3087	3089	GTCTCAGATTCACAATCCC	24	171
	117 11	11, 11	3	2	G		0
1339580	Н/П	Н/П	9210	9212	CGGCAGGCACAGACTGGCC	32	171
	, -		9	8	С		1
1339583	Н/П	Н/П	4097	4099	GCTCAGGGCCTCCTGATGC	59	171
			4	3	A		2
1339603	4353	4372	9473	9475	ATGCCCGGCTTCCCCGGGC	75	171

			2	1	С		3
1339615 Н/П	н/п	н/п	3136	3137	GAGGACCCCCTTTCTTGCT	52	171
1339013	11/ 11	11/11	0	9	G	52	4
1339663 Н/П	н/п	9129	9131	CACCGTCACCCTCCCGGGC	30	171	
1333003	Н/П	П/11	1	0	A	50	5

Таблица 23. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCG TG	33	283
1337281	н/п	Н/П	2305	2306 9	CATGGTTCCCCGACTCCT CC	29	171 6
1337287	н/п	н/п	3791 6	3793 5	TTCCATGTCACAGACGCG GC	29	171 7
1337288	н/п	н/п	2181	2183	AGGCGGCCACTCCCTTCC CA	46	171 8
1337299	н/п	н/п	6550 9	6552 8	GCCAACCCCTCCACTTCC GA	21	171 9
1337442	3882	3901	9426	9428	ATGGTGAGTAGAGTGTGC CA	23	172 0
1337465	н/п	н/п	2006	2008	GCGGCTGATCCCCTCCTC CA	49	172 1
1337482	н/п	н/п	9339	9341	GCATGCCTTCATCTACAC CT	16	172 2
1337539	н/п	н/п	7462 6	7464 5	CAGGTGAACACAGTCAGC TC	31	172 3
1337580	Н/П	Н/П	7692 1	7694 0	ACTTAGCCCCATCAGGGC CT	59	172

	1		6232	6234	GCCTCCACCTTTCCCACT		172
1337592	Н/П	Н/П	6	5	GA	39	5
1007606	/-		5768	5770	CTGGTTTCCCTATTTACT		172
1337636	Н/П	Н/П	7	6	GA	29	6
100000		/	2804	2805	GTCTCTTGCCCTGACAGG	1.0	172
1337730	Н/П	Н/П	0	9	CC	40	7
1337751	Н/П	Н/П	2411	2413	TCACGGACCCTCCTCCAT	73	172
1557751	117 11	11/11	7	6	GC	/ 3	8
1337772	Н/П	Н/П	2673	2675	AGGGATCCCAATGAAATA	72	172
1337772			6	5	CA	12	9
1337778	Н/П	Н/П	4977	4979	GGGACAAGCCTCCCACAG	88	173
1337770			1	0	AC		0
1337789	Н/П	Н/П	7149	7151	CAGGATCCCAGCATAAGA	36	173
1337703			8	7	CT		1
1337818	Н/П	Н/П	8568	8570	CCCGAAATTCCAAATCCT	41	173
1337010			3	2	CC	1 11	2
1337825	Н/П	Н/П	2494	2496	GAGGATTTCCCACGACAT	2	173
1337023		H/11	5	4	CT		3
1337843	Н/П	Н/П	5090	5092	CGTCTGCTCCTATCAGTC	32	173
1007010		117,11	8	7	GG		4
1337849	Н/П	Н/П	6140	6141	CGGCGAATTCCCCGGAGC	35	173
100/015	11, 11	11, 11	0	9	CT		5
1337852	Н/П	Н/П	8640	8642	TCGCCACCCTCATGCAT	60	173
	117, 11	11, 11	2	1	AC		6
1337854	Н/П	Н/П	4894	4895	CAGGCCAACCATCCCCCA	99	173
	,		0	9	CC		7
1337859	Н/П	Н/П	4528	4530	AGCCTCTTCCATTTGACC	45	173
	,		5	4	TA		8
			5604	5606			
1337890	Н/П	Н/П	9	8	TGGAGACTCATCCCACCC	28	173
		,	5611	5613	CA		9
			3	2			
1337907	Н/П	Н/П	4093	4095	GCCCTGTCCCCCCATTGG	77	174
			6	5	GC		0
1337924	Н/П	Н/П	4724	4726	GGGCTAGGAAGAACCTGC	70	174

			1	0	CT		1
1337971	Н/П	Н/П	3331	3333	ACACTGTGATCCAAAATG	70	174
133/9/1	П/11	П/11	1	0	AA	10	2
1338019	Н/П	Н/П	3079	3081	GTTTGTGAATCACCATAA	35	174
1330019	П/11	П/11	2	1	CC	33	3
1338031	Н/П	Н/П	5964	5966	GTCACACCCTTCACTTTG	29	174
1330031	П/ П	П/ 11	5	4	TC	29	4
1338044	Н/П	Н/П	4041	4042	AACAAACCTACCAAGTCC	51	174
1330044	11/11	11/11	0	9	TC		5
1338049	н/п	н/п	3183	3185	CATCAGGCCATCTTTGAC	61	174
1330043	117,11	11/11	6	5	AC		6
			6798	6799			
1338110	 н/П	Н/П	0	9	AATGGTCCATCCCAGAAG	41	174
1550110	11/11	11/11	6811	6813	GT	4.1	7
			9	8			
1338141	н/п	н/п	8748	8750	CAACAGCCTTCTCTGAGC	35	174
1330141		11/ 11	7	6	CG		8
1338162	н/п	Н/П	8233	8235	CGGTGTCACAATCCTGCA	44	174
1330102		11/11	5	4	GC	11	9
1338197	Н/П	н/п	9177	9179	GGCAGGGCCACCTCGCCC	52	175
1000107		117 11	5	4	CT	02	0
1338295	Н/П	н/п	4411	4413	TGGACACACCACCTCCA	49	175
1330233	117,11	11/11	5	4	CC		1
1338310	Н/П	н/п	8995	8997	GAGTCGGTCACCAGAAAG	31	175
1330310	117,11	117 11	2	1	GC		2
1338317	4352	4371	9473	9475	TGCCCGGCTTCCCCGGGC	79	175
1330317	1302	1371	1	0	CC	"	3
1338326	Н/П	н/п	7584	7586	TTGGGCTCTTACCCACAT	34	175
1330320	117,11	117 11	4	3	AC		4
1338382	1999	2018	7301	7303	GAAGGCCCTCTTCTTCCG	25	175
1000002			2	1	CT		5
1338418	Н/П	Н/П	2246	2248	CACTTATGCAATCCCAGG	30	175
1000410	**/ **	11/11	1	0	CT		6
1338439	Н/П	н/п	1714	1716	GACAAGCTCCCTCATTGA	45	175
1000409	11/ 11	11/11	4	3	AT	1 7 7	7

1220454			9306	9308	AGCTCATCCCTCCGAGAA		175
1338454	Н/П	Н/П	6	5	CA	26	8
12205024	TT / TT	TT /TT	5217	5219	GGCACCCCACTCACTCGA		175
1338502*	Н/П	Н/П	2	1	TC	57	9
1220540	11 / 17	TT /TT	3566	3568	GTACAGCCTGAAACTGGC	53	176
1338549	Н/П	Н/П	6	5	CA	53	0
1338572	Н/П	Н/П	1933	1934	GCTAAGTCCCCTCCCTGT	75	176
1330372			0	9	CC	/ 3	1
1338621	Н/П	Н/П	8049	8050	CGGCCACGCCTTACTTGT	47	176
1330021	117 11	117 11	0	9	CC	1	2
1338625	Н/П	Н/П	1882	1884	CACTGTATACTTCATTTC	86	176
	117 11	117 11	7	6	CA		3
1338650	н/п	Н/П	5377	5379	GGGCTGGTCCCCAAAGAC	12	176
	117 11	117 11	2	1	AT		4
1338681	Н/П	Н/П	9129	9130	ACCGTCACCCTCCCGGGC	27	176
	12, 22		0	9	AT		5
1338708	Н/П	Н/П	4268	4269	CACACGAACAGAACCTGC	88	176
		11/11	0	9	AC		6
1338799	Н/П	Н/П	3950	3952	GACATGTGCCCACACCAG	44	176
	·	,	2	1	GC		7
1338814	Н/П	Н/П	5666	5668	GGCTATCTAACCCACAGC	69	176
	·	,	5	4	CC		8
1338831	Н/П	Н/П	3241	3243	TAATTTCCCATCTTCAAG	73	176
			5	4	GC		9
			6726	6728			
1338920	Н/П	Н/П	5	4	CAGGGACTTGCCAAGCAG	58	177
			6738	6740	TC		0
			6	5			
1338993	Н/П	Н/П	5850	5852	CTGGTTTTCCCCCACGGA	65	177
			4	3	AC		1
1338997	Н/П	Н/П	3437	3439	GGACACTTCCACTGGAGG	50	177
			6	5	AT		2
1339018	Н/П	Н/П	8851	8853	CGTGTGCCCTTACCGTAG	40	177
			5	4	CC		3
1339110	Н/П	Н/П	2735	2736	CCCCTCGGTCCAGAATGG	16	177

			0	9	CC		4
1339112	Н/П	11 / 11	3125	3127	GTTCAGTTCCCTGCTGCC	26	177
1339112	H/II	Н/П	5	4	TC	20	5
1339124	Н/П	Н/П	2996	2997	CCGCCCTCTTTTAAGGAC	27	177
1339124	П/ 11	П/ П	0	9	TT	21	6
1339130	4619	4638	9499	9501	TTGCTGAGAAGATCCTCT	27	177
1339130	4019	4030	8	7	CT	21	7
1339157	Н/П	н/п	4839	4841	CCCTTGACCTCCTCCTGG	58	177
		11, 11	1	0	CA		8
1339213	Н/П	Н/П	1783	1785	TTCACACAACCAAATGTT	54	177
	117 11	11, 11	4	3	AT		9
1339268	Н/П	н/п	7798	7800	TCGCAGACCCACCTGCCA	51	178
		,	2	1	CC		0
1339308	Н/П	Н/П	6355	6357	AGGATGAGTCCTCATTTG	11	178
	,	·	3	2	CA		1
1339338	Н/П	н/п	1829	1831	AATTTGATCAACCACAGC	29	178
		·	5	4	CA		2
1339360	Н/П	н/п	5524	5525	CAACTGATCCACTTTCCC	16	178
			0	9	CT		3
1339381	Н/П	Н/П	8327	8329	CATCTGTCCCACATGGAC	60	178
			9	8	CC		4
1339399	Н/П	Н/П	4595		TTCAGGCCCACTGCCAAC	60	178
			0	9	CC		5
1339406	Н/П	Н/П	8468	8470	CAGGAAACAAGAACCACG	35	178
			9	8	AC		6
1339410	Н/П	Н/П	6903	6905	GGAGTGTCCCAGAAAGTG	47	178
			4	3	CA		7
1339448	Н/П	Н/П	7032	7034	CCCAACCCACATCACAGT	49	178
			8	7	GT		8
1339461	Н/П	н/п	3704	3706	GAAGCCCCCTTCAACCCT	54	178
			5	4	CC		9
1339576	Н/П	Н/П	2080	2082	GCTGTGGTGACTCACTGC	35	179
			8	7	CA		0
1339589	Н/П	Н/П	6794	6796	TCCACCCCAGACGATCCA	27	179
			7	6	CC		1

			6854	6856			
			3	2			
1220507	TT / TT	TT / TT	7889	7891	GGTTCATTCCAGACTGGA	2.2	179
1339597	Н/П	Н/П	7	6	GC	33	2

Таблица 24. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCGT G	15	283
1080859	3877	3896	9425	9427	GAGTAGAGTGTGCCATCCC C	13	128
1337244	Н/П	Н/П	4093 5	4095	CCCTGTCCCCCCATTGGGC A	47	179 3
1337262	Н/П	Н/П	2494	2496 3	AGGATTTCCCACGACATCT T	20	179 4
1337313	н/п	н/П	5850	5852 1	GGTTTTCCCCCACGGAACC C	51	179 5
1337356	Н/П	Н/П	5089 6	5091 5	TCAGTCGGCTGCCTTAGCC C	8	179 6
1337367	Н/П	Н/П	4893 9	4895 8	AGGCCAACCATCCCCCACC A	54	179 7
1337474	Н/П	Н/П	6216 6	6218 5	GCCGGCTGTCCACCTTGAC C	46	179 8
1337505	н/п	н/п	5520 6	5522 5	TTGTTGCAAACTAAGTGCC C	6	179 9
1337521	Н/П	Н/П	6808	6809	CCAGACAGTCCATCCTAGA T	22	180

1007500			4527	4529	TCCATTTGACCTACATCTT		180
1337523	Н/П	Н/П	8	7	A	38	1
122755	TT / TT	TT /TT	5376	5378	CCAAAGACATGACTCAGGA	22	180
1337555	Н/П	Н/П	2	1	C	23	2
1337568	TT / TT	TT / TT	5217	5219	GCACCCCACTCACTCGATC	2.6	180
*	Н/П	Н/П	1	0	T	36	3
1337621	Н/П	Н/П	1931	1933	TCCCTGTCCCATCCTATAG	52	180
1337021	11/11	11/11	9	8	A	52	4
1337655	Н/П	Н/П	3182	3184	TTGACACGGGCAACCAGGA	27	180
1337033	117 11	11/ 11	3	2	С	2 /	5
1337678	Н/П	Н/П	7456	7458	GAGGAGCTTCAATCTATGC	40	180
	11/11	117 11	8	7	С		6
1337701	Н/П	Н/П	6127	6129	GGTCTGGCCCTCTACCCCC	14	180
	11, 11	11, 11	1	0	A		7
1337720	Н/П	Н/П	4038	4040	GGAGCCTGCCCTACTCATC	23	180
	,		4	3	Т		8
1337754	Н/П	Н/П	3078	3080	TGTGAATCACCATAACCAG	15	180
	,	,	9	8	A		9
1337781	Н/П	Н/П	3770	3772	CAGGGATCTGTCTCTATTT	30	181
	·	·	5	4	С		0
1337986	Н/П	Н/П	7886	7888	GTGGCTGGAACATCTCCGG	31	181
	·	·	1	0	Т		1
1338008	Н/П	Н/П	8995	8997	AGTCGGTCACCAGAAAGGC	11	181
			1	0	A		2
1338026	Н/П	Н/П	4977	4978	GGACAAGCCTCCCACAGAC	58	181
			0	9	С		3
1338048	Н/П	Н/П	8233	8235	GGTGTCACAATCCTGCAGC	33	181
			4	3	C		4
1338055	Н/П	Н/П	3124	3126	TGCTGCCTCCAGTCACTTC	27	181
			4	3	A		5
1338076	Н/П	Н/П	9295	9297	ACAGCCCCCCATCATCTC	28	181
			4	3	A		6
1338091	Н/П	Н/П	1829	1831	ATTTGATCAACCACAGCCA	39	181
			4	3	С		7
1338146	Н/П	Н/П	2304	2306	GTTCCCCGACTCCTCCTCG	30	181

			6	5	A		8
1220151	17 / 17	17 / 17	1780	1782	TCTGGTAGAATATTCCATT	8	181
1338151	Н/П	Н/П	8	7	С	0	9
1338209	Н/П	Н/П	5666	5668	GCTATCTAACCCACAGCCC	23	182
1336209	П/ П	П/ П	4	3	С	23	0
1338233	Н/П	Н/П	7687	7689	GGTAGGGCCCTCACTGCTG	13	182
1930233	11/ 11	11/ 11	4	3	С		1
1338281	Н/П	Н/П	2246	2247	ACTTATGCAATCCCAGGCT	23	182
	,	,	0	9	С		2
1338289	Н/П	Н/П	8746	8748	GGCCGACACATCCGTGGGA	28	182
	·	·	1	0	С		3
1338299	Н/П	Н/П	3515	3517	GGCTGCACTAACCCAGGAC	26	182
			4	3	A		4
1338322	Н/П	Н/П	6854	6856	CACCCCAGACGATCCACCC	48	182
			1	0	С		5
1338376	1998	2017	7301	7303	AAGGCCCTCTTCTTCCGCT	19	182
			1	0	Т		6
1338413	Н/П	Н/П	4839	4840	CCTTGACCTCCTCCTGGCA	59	182
			0	9	C		7
1338437	4617	4636	9499	9501	GCTGAGAAGATCCTCTCTC	13	182
			6 8637	5 8639	T CACACAGAACCACCAGGTC		8
1338446	Н/П	Н/П	9	8	C	31	9
			9173	9175	TGACTCCTCCACCCAGACC		183
1338470	Н/П	Н/П	91/3	9173	C	49	0
			4592	4594	GGGCCAGCTATTCTGAGCC		183
1338480	Н/П	Н/П	8	7	T	55	1
			8822	8823	CCCGTGTGTCCTCACAGTC		183
1338624	3275	3294	0	9	C	10	2
			2734	2736	CCCTCGGTCCAGAATGGCC		183
1338648	Н/П	Н/П	9	8	T	28	3
	_		3328	3329	CGACTGAGATTCTAACGCG		183
1338701	Н/П	Н/П	0	9	A	30	4
4000=	/-	/-	2993	2995	GTTTTGGGCCAGGATGGCC		183
1338723	Н/П	Н/П	1	0	T	26	5

1220720	1250	12.60	9472	9474	CCCGGCTTCCCCGGGCCCT		183
1338739	4350	4369	9	8	Т	21	6
1220752	TT /TT	TT /TT	8468	8470	AACAAGAACCACGACAGGG	4.5	183
1338752	Н/П	Н/П	4	3	С	45	7
1220010	TT / TT	TT / TT	2673	2675	TCCCAATGAAATACATGAC	4.0	183
1338810	Н/П	Н/П	1	0	A	42	8
1338834	н/п	Н/П	3703	3705	CCCTTCAACCCTCCTGTGG	50	183
1330034	11/11	11/11	9	8	A		9
1338912	н/п	н/п	9126	9128	GCCGAGCCCAGGAAATGCC	12	184
1330312	11/11	11/11	6	5	Т	12	0
1339008	н/п	н/п	6903	6905	GAGTGTCCCAGAAAGTGCA	27	184
1333000	11/11	11/11	3	2	С	2 /	1
1339042	н/п	н/п	4403	4405	CAGTTGTCCCAGACTGGCC	27	184
1555012	117 11		9	8	A	2 /	2
1339049	н/п	н/п	1995	1997	GTCAGCATCCTGATTTCCC	12	184
	11, 11	11, 11	1	0	Т		3
1339050	н/п	н/п	1714	1716	ACAAGCTCCCTCATTGAAT	37	184
	11, 11	11/ 11	3	2	A		4
			6726	6728			
1339069	Н/П	Н/П	4	3	AGGGACTTGCCAAGCAGTC	59	184
	,	,	6738	6740	C		5
			5	4			
1339074	Н/П	Н/П	7584	7586	TGGGCTCTTACCCACATAC	15	184
			3	2	Т		6
1339100	Н/П	Н/П	7146	7148	GAGTTTGGACCCCCTAGGT	18	184
			9	8	С		7
1339127	Н/П	Н/П	5598	5600	TGTGGACTCACCAGTTGAT	15	184
			5	4	C		8
1339143	Н/П	Н/П	7798	7800	CGCAGACCCACCTGCCACC	28	184
			1	0	A		9
1339174	н/п	н/п	2079	2081	GCCAGAGGCTCTACTCCCG	45	185
			2	1	G		0
1339218	н/п	н/п	7032	7034	CCAACCCACATCACAGTGT	53	185
			7	6	С		1
1339248	Н/П	Н/П	8568	8570	CCGAAATTCCAAATCCTCC	30	185

1339260 H/П H/П 9 8 T	iG	
	1 2 2	185
	33	3
1339307 H/П H/П 4718 4720 GCAGAAGAATCTACTTCC	T 24	185
1339307 H711 H711 4 3 G	24	4
1339326 H/П H/П 4267 4269 AGAACCTGCACCCGAAGC	C 39	185
1 0 G		5
3241 3243 AATTTCCCATCTTCAAGG	C 54	185
4 3 C		6
3434 3436 GTAGAAGCCTCAACTAGT	'T 53	185
1 0 T		7
5964 5966 TCACACCCTTCACTTTGT	'C 28	185
1133377		8
1339416 H/П H/П 6550 6552 CCAACCCCTCCACTTCCG	A 10	185
8 7 T		9
1882 1884 CTGTATACTTCATTTCCA	A 14	186
5 4 C		0
6355 6357 GGATGAGTCCTCATTTGC	A 19	186
1 2 1 A		1
2411 2413 ACGGACCCTCCTCCATGC	C 17	186
5 4 C	+ /	2
8327 8329 ATCTGTCCCACATGGACC	C 26	186
8 7 C		3
2799 2801 CGAGCCCCACAGCCATG	iG 23	186
1 3 C		4
1339600 2643 2662 8047 8048 ACAGAGCCCTCCATGTAG	T 42	186
1333000 2043 2002 0 9 A	= 2	5
3947 3949 GTCTGATTCATCCTCATT	T 22	186
9 8 C		6
5768 5770 GTTTCCCTATTTACTGAG	C 15	186
1333041 11/11 4 3 C		7
9339 9341 GCCTTCATCTACACCTGC	A 22	186
1 0 C		8

Таблица 25. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора

праймеров-зондов RTS39496 для человеческого КСNT1

праймеров -	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCGT G	18	283
1337294	3274	3293	8821 9	8823 8	CCGTGTGTCCTCACAGTCC T	12	186 9
1337303	н/п	н/п	9339	9340 9	CCTTCATCTACACCTGCAC A	27	187
1337343	н/п	Н/П	3124 0	3125 9	GCCTCCAGTCACTTCACCT C	25	187
1337350	н/п	Н/П	1829 3	1831 2	TTTGATCAACCACAGCCAC A	52	187
1337357	4616	4635	9499	9501 4	CTGAGAAGATCCTCTCT C	21	187
1337401	н/п	Н/П	8037 8	8039 7	CCCACCCTGCTTCAAGGCC T	42	187
1337416	Н/П	Н/П	5517 5	5519 4	TGGACATCCATCTATCATC C	18	187 5
1337424	н/п	н/п	6727 7 6739 8	6729 6 6741 7	GCTGAGAGGACTCAGGGAC T	36	187
1337491	Н/П	Н/П	6339 9	6341	CCTCACTCCCGCCCTTGCC T	25	187 7
1337496	Н/П	Н/П	3770 2	3772 1	GGATCTGTCTCTATTTCTT C	30	187
1337527	н/П	н/П	8327	8328 9	CACATGGACCCCAGCACCA T	98	187 9

1337552			2673	2674	CCCAATGAAATACATGACA	59	188
133/552	Н/П	Н/П	0	9	С	59	0
1337563	Н/П	Н/П	9295	9297	CAGCCCCCCATCATCTCA	33	188
	11/11	11/11	3	2	С		1
1337590	н/п	Н/П	8993	8995	CAGTTGCTCCTTCCTTGCC	20	188
1337330	117 11		3	2	A	20	2
1337633	Н/П	Н/П	3515	3517	GCTGCACTAACCCAGGACA	30	188
100,000	11/ 11	11/ 11	3	2	A		3
1337691	Н/П	Н/П	1877	1878	TGCCCTGTACCCCATGGGC	93	188
	117 11	117 11	0	9	С		4
1337717	н/п	Н/П	4587	4589	AAAGGGCACACACATGTCT	38	188
	,	,	6	5	С		5
1337734	Н/П	Н/П	6802	6804	TGACAGTTCACTCCAGATG	5 49 6 15 7	188
	11, 11	11, 11	2	1	A		6
1337761	Н/П	Н/П	6113	6115	CCAGATGCTATCCTCATGG	15	188
	11, 11	11, 11	4	3	A		7
1337826	Н/П	Н/П	1994	1996	ATCCTGATTTCCCTCATTG	27	188
	11, 11	117 11	5	4	T		8
1337863	Н/П	Н/П	3702	3704	GTGGAGTGCCCCAGAACGG	31	188
	,	117 11	4	3	С		9
1337895	Н/П	Н/П	5849	5851	CCCACGGAACCCCTCTCAG	53	189
			4	3	С		0
1337911	Н/П	і н/п	5768	5770	TTTCCCTATTTACTGAGCC	22	189
			3	2	T		1
1337930	Н/П	Н/П	7886	7887	TGGCTGGAACATCTCCGGT	42	189
	,	·	0	9	Т		2
1338025	Н/П	Н/П	2180	2182	GGCCACTCCCTTCCCAGGT	47	189
			8	7	G	- '	3
1338070	Н/П	/п н/п	3241	3243	ATTTCCCATCTTCAAGGCC	41	189
			3	2	С		4
1338083	1868	1868 1887	7288	7290	TCTTGTTGTCCTCCCGCTT	31	189
			1	0	С		5
1338113	Н/П	1/П Н/П	8567	8569	AAATCCTCCTGATAATCCT	59	189
			2	1	С		6
1338117	Н/П	Н/П	2408	2410	AGGTGATGCCCCACAAGAC	38	189

			7	6	A		7
1338173	Н/П	ц/п	6853	6855	CCAGACGATCCACCCCAGA	54	189
	11/11	Н/П	7	6	Т	04	8
1220260	17 / 17	11 / 11	1780	1782	AGAATATTCCATTCCCCGC	23	189
1338260	Н/П	Н/П	2	1	A	23	9
1338329	н/п	Н/П	2991	2992	CCCACTGCAACATCTTTCC	47	190
1330323	11/ 11	11/ 11	0	9	С	47	0
1338344	н/п	Н/П	3078	3080	GTGAATCACCATAACCAGA	19	190
1330311	117 11	117 11	8	7	С		1
			4116	4118			
1338361	Н/П	 н/П	6	5	GAGCTCCTCAGCATGGGCC	66	190
	117 11	117 11	5077	5079	C		2
			7	6			
1338363	Н/П	Н/П	9173	9175	GACTCCTCCACCCAGACCC	19 19 19 1 19 1 19 1 19 1 19 1 19 1 19	190
1330303 11/11	117 11	11, 11	8	7	Т		3
1338416	Н/П	н/п	4717	4719	AGAATCTACTTCCTGTGTC	20	190
1000110	117 11		9	8	С		4
1338458	3872	2 3891	9425	9427	GAGTGTGCCATCCCCAGGG	12	190
			1	0	Т		5
1338511	Н/П	Н/П	7031	7033	CACAGTGTCCCCCACGGGC	28	190
	11, 11	117 11	6	5	A	20	6
1338587	Н/П	Н/П	3407	3409	GTGAGCTGAAATATCATGC	51	190
			7	6	С		7
1338590	Н/П	Н/П	5666	5668	CTATCTAACCCACAGCCCC	52	190
100000	117 11	11, 11	3	2	С		8
1338595	Н/П	Н/П	9113	9115	GACGCAGGCATCCCACTCA	34	190
		,	9	8	T		9
1338644	Н/П	Н/П	5589	5590	CCCTGGCCCCTCTAGCACC	24	191
		,	0	9	A		0
1338737	Н/П	П Н/П	1714	1715	AGCTCCCTCATTGAATAAT	43	191
			0	9	Т		1
1338754	Н/П	Н/П	6216	6218	CCGGCTGTCCACCTTGACC	30	191
			5	4	С		2
1338767	Н/П	Н/П	2493	2495	TTCCCACGACATCTTTTGC	43	191
		/ 11 11/11	9	8	A		3

1338796	 _{Н/П}	 н/п	4092	4094	CCATTGGGCACTTTTACTC	50	191
	11, 11	11, 11	5	4	A		4
1338801	н/п	н/п	4837	4839	GGCACCCCAGAAACAAGAG	38 5 18 6 26 7 39 8 50 9	191
	11/11	11/11	5	4	С	30	5
1220000	TT / TT	TT / TT	6901	6903	GTGCACCGACACATTCTGG	1.0	191
1338809	Н/П	Н/П	9	8	A	18	6
1338837	4344	4363	9472	9474	TTCCCCGGGCCCTTTGCTG	26	191
1330037		1303	3	2	С		7
1338848	н/п	н/п	8233	8235	GTGTCACAATCCTGCAGCC	30	191
1330040	11/11	11/11	3	2	A		8
1338857	Н/П	TT / TT	4976	4978	GACAAGCCTCCCACAGACC	50	191
1330037	П/11	Н/П	9	8	A	30	9
1338892	н/п	н/п	2304	2306	TCCCCGACTCCTCCTCGAA	64	192
1330032	11/11	11/11	4	3	С	04	0
1338929	Н/П	TT / TT	7780	7782	CCTCGGCCCAATCTGAACT	58	192
1338929	H/II	Н/П	1	0	T	38	1
1338932*	360	379	5212	5214	TTGAGCCGCTCCTTGAAGG	3	192
1330932	300		9	8	Т	J	2
1338980	н/п	Н/П	4038	4039	CCTGCCCTACTCATCTCAG	33	192
1330300	11/11		0	9	С		3
1339014	тт / пт	/п н/п	8462	8464	TCAGGACCTTCCAGAGATT	48	192
1339014	11/11		6	5	Т		4
1339144	н/п		1931	1933	CCTGTCCCATCCTATAGAC	17	192
1339144	П/11	Н/П	7	6	A	47	5
1339219	н/п	н/п	7456	7458	AGGAGCTTCAATCTATGCC	25	192
1339219	11/11	11/11	7	6	Т	2.5	6
1339220	н/п	н/п	2243	2245	AGGGATGATTCTAGAAGGC	48	192
1339220	П/11	П/11	2	1	С	40	7
1339243	н/п	Н/П	5960	5962	CCATTTCATTTCCAGGCTT	24	192
1333243	11/11	11/11	8	7	A	_	8
1339272	н/п		3947	3949	TTCATCCTCATTTCCCCCG	42	192
1333212	11/11	Н/П	3	2	С	44	9
1339290	Н/П	и/п н/п	4266	4267	CCGAAGCCGTCACCTCCCT	30	193
1333230			0	9	С	39	0
	i .	L		7683	GGGCTCACCCCTCACCTGG	46	193

			0	9	T		1
1339341	Н/П	Н/П	4893	4895	GGCCAACCATCCCCCACCA	83	193
	H/11	П/11	8	7	A		2
1339353	Н/П	TT / TT	8636	8638	TCCCCAAGCACCACATGAC	47	193
1339333	П/11	Н/П	2	1	С	4 /	3
1339362	Н/П	н/п	2733	2735	AATGGCCTCACCTTGAGAT	25	193
1339302	11/11	11/11	7	6	С	23	4
1339371	Н/П	н/п	2073	2075	TGCTCGCTCACAGCCTGCC	23	193
1339371	11/11	П/ 11	8	7	A	23	5
1339391	Н/П	н/п	2791	2792	CCAGGTGGTTCCTCCTGCC	35	193
1339391	II/ II	П/ 11	0	9	A	33	6
1339408	17./77	н/п	8738	8740	AGGCTTCTCCATGTGAAGC	39	193
1339400	Н/П	П/11	3	2	Т	39	7
1339419	н/п	п н/п	4527	4529	ATTTGACCTACATCTTAGC	77	193
1339419	11/11	11/11	5	4	Т		8
1339424	Н/П	П Н/П	7584	7586	GGCTCTTACCCACATACTT	34	193
1339424	11/11		1	0	G	34	9
1339486	Н/П	н/п	6550	6552	CAACCCCTCCACTTCCGAT	32	194
1333400	11/11	11/11	7	6	Т	32	0
1339517	Н/П	н/п	5375	5377	GACATGACTCAGGACAGGC	8	194
1339317	11/11	11/11	7	6	С	0	1
1339554	Н/П	Н/П	7146	7148	AGTTTGGACCCCCTAGGTC	36	194
1333334			8	7	С		2
1339598	Н/П	н/п н/п	3327	3329	CTGAGATTCTAACGCGAGC	32	194
1333330	117 11	117 11	7	6	С	32	3
1339632	н/п	н/п н/п	3180	3182	CCTGAGGCCACACGCAGAC	51	194
1333032	11/11		4	3	A		4
1339662	Н/П	Н/П	4400	4402	AAGGTGGTTGCAACCTGCA	46	194
1333002	11/ 11	11/11	3	2	С		5

Таблица 26. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCG TG	26	283
1337240	н/п	Н/П	5371 5	5373	TGCTGATGTCCCCTGGGA CC	29	194 6
1337309	Н/П	Н/П	8318	8320 7	GTCCCTGTCACACAACTG CC	36	194 7
1337312	н/п	Н/П	2790 8	2792 7	AGGTGGTTCCTCCTGCCA GA	34	194 8
1337336	Н/П	Н/П	5756 3	5758 2	GAGTTTGTCCCCAGTGCT CA	31	194 9
1337374	н/п	Н/П	5582 3	5584 2	GGGCCTCCTACTCACCCA CC	24	195 0
1337382	н/П	Н/П	3762 8	3764 7	GCCTAGGACCCCCTGACA GC	68	195 1
1337402	н/п	Н/П	8992 9	8994 8	TGCTCCTTCCTTGCCAAG CT	31	195 2
1337407	н/п	Н/П	4037 8	4039	TGCCCTACTCATCTCAGC GC	41	195 3
1337458	н/п	Н/П	2732 8	2734 7	ACCTTGAGATCCTCAACT AA	51	195 4
1337459	Н/П	Н/П	6338	6340	GCCTGGTTATGAAATGCG CA	19	195 5
1337503	н/п	Н/П	3327 6	3329 5	TGAGATTCTAACGCGAGC CG	60	195 6
1337508	Н/П	Н/П	9336	9338 7	CCTGCAGATTCACCTCTG TA	43	195 7
1337585	Н/П	Н/П	2990	2992	GCAACATCTTTCCCTCAC	52	195

			4	3	TC		8
1337601	Н/П	Н/П	4583	4585	TGTTTTGACACCCTTGGG	43	195
133/001	П/11	П/11	9	8	CC	4.5	9
1337609	Н/П	Н/П	4891	4893	ACCTCAGGCTCCTGTACC	39	196
1337609	П/11	П/11	9	8	СТ	39	0
1337692	Н/П	Н/П	6113	6115	CAGATGCTATCCTCATGG	36	196
1337092	П/ 11	П/ 11	3	2	AT		1
1337774	Н/П	Н/П	1874	1876	CTGGAGAGGACCCACAGC	40	196
1337774	11/11	11/11	6	5	CA	40	2
1337832	н/п	Н/П	2405	2406	GCCCTGGTCACCGACAGC	21	196
1337032	117 11	117 11	0	9	CT		3
1337834	н/п	Н/П	8231	8233	CACGCAGGTCCCAGCAGC	45	196
1337031	117 11	117 11	5	4	TC		4
1337841	Н/П	Н/П	6801	6803	AGTTCACTCCAGATGATC	24	196
	11, 11	11, 11	8	7	CA		5
			4115	4117			
1337869	Н/П	Н/П	4	3	ATGGGCCCCCTGCCCAGT	27	196
	11, 11		5076	5078	GC		6
			5	4			
1337885	Н/П	Н/П	3388	3390	ACGGAGTCCCAGGAAAAC	52	196
	ŕ		4	3	AA		7
1337906	Н/П	Н/П	6901	6903	TGCACCGACACATTCTGG	38	196
		,	8	7	AA		8
1337920	Н/П	Н/П	5849	5851	CCACGGAACCCCTCTCAG	48	196
	·	, i	3	2	CA		9
1337960	Н/П	Н/П	6853	6855	CGATCCACCCCAGATGGT	28	197
	·		2	1	CC		0
1337973	Н/П	Н/П	1713	1714	TTGAATAATTAATCAAGG	61	197
	·		0	9	AC		1
1338047	Н/П	Н/П	5662	5664	CCTCATCCATAAACAGGC	35	197
	·		1	0	AG		2
1338096	Н/П	Н/П	3688	3690	TCACCGCGCCATGACTGC	13	197
			3	2	AC		3
1338106	Н/П	Н/П	7965	7967	AAGGAGAGTCCCCCTTTT	100	197
			2	1	TA		4

1220202			9113	9115	GCAGGCATCCCACTCATG		197
1338203	Н/П	Н/П	6	5	AA	42	5
1338219	Н/П	TT / TT	9294	9296	CCCCCATCATCTCACAG	55	197
1330219	H/II	Н/П	9	8	TC	33	6
1220255	Н/П	TT / TT	4970	4972	AGAGTGCCCCATCATGCC	32	197
1338255	H/II	Н/П	7	6	CT	32	7
1338337	Н/П	Н/П	3515	3516	GCACTAACCCAGGACAAC	25	197
1330337			0	9	AA	25	8
1338354	Н/П	Н/П	8636	8637	CCCAAGCACCACATGACC	64	197
1330331	117 11	117 11	0	9	CA		9
1338370	Н/П	Н/П	1994	1996	CTGATTTCCCTCATTGTT	39	198
1330370	117 11	117 11	2	1	GC		0
1338373	Н/П	Н/П	7456	7458	GGAGCTTCAATCTATGCC	30	198
1330373	117 11	117 11	6	5	TC		1
1338389	Н/П	Н/П	5948	5950	TTCCCGGTCCTCTACAGG	28	198
	117 11	117 11	9	8	TC		2
1338408	Н/П	Н/П	3078	3080	TGAATCACCATAACCAGA	29	198
1330100	117 11	117 11	7	6	CC		3
1338417	Н/П	Н/П	2304	2306	CCCCGACTCCTCCTCGAA	39	198
	117 11	117 11	3	2	CC		4
1338448	н/п	Н/П	4527	4529	TTTGACCTACATCTTAGC	47	198
	117 11	117 11	4	3	TG	1 '	5
1338534	н/п	Н/П	9173	9175	CCACCCAGACCCTCCGAC	57	198
1330331	117 11	117 11	1	0	CT		6
1338545	Н/П	Н/П	8461	8463	TTCCAGAGATTTCCTCCT	56	198
	117,11	117 11	8	7	GC		7
1338558	Н/П	Н/П	4265	4267	GAAGCCGTCACCTCCCTC	46	198
	117,11	117 11	8	7	CC		8
1338565	Н/П	Н/П	7031	7033	ACAGTGTCCCCCACGGGC	41	198
	117 11	117 11	5	4	AT		9
1338614	Н/П	Н/П	2242	2244	CTAGAAGGCCCTCAGCAC	45	199
	/	1/	2	1	AC		0
1338665	Н/П	Н/П	3179	3181	CACGCAGACACCAAGGGC	27	199
	/	11/11	4	3	AC	_ ′	1
1338778	Н/П	Н/П	6216	6218	CGGCTGTCCACCTTGACC	24	199

			4	3	СТ		2
1338783	Н/П	Н/П	1931	1933	CTGTCCCATCCTATAGAC	34	199
1330/03	П/П	П/11	6	5	AC	34	3
1338791	Н/П	Н/П	4716	4718	CTGTGTCCATTCTCATCC	67	199
1330/91	П/П	П/11	7	6	AC	07	4
1338794	Н/П	Н/П	4388	4390	CCTTCACTGACTATGTGC	45	199
1330794	П/П	П/ П	4	3	CT	45	5
1338807	Н/П	Н/П	1826	1828	ATCGAGTCATCTGGGAGC	26	199
1330007	11/11	11/ 11	7	6	CC	20	6
1338841	н/п	н/п	8721	8723	GCACGGAACATGCTTAGG	7	199
1330041	117 11	117,11	6	5	GC	'	7
			6727	6729			
1338842	Н/П	Н/П	5	4	TGAGAGGACTCAGGGACT	38	199
1000012	117 11	117,11	6739	6741	TG		8
			6	5			
1338859	Н/П	н/п	4825	4827	CCCACCTGCACAGATGGC	53	199
	11, 11		2	1	AC		9
1338891	3870	3889	9424	9426	GTGTGCCATCCCCAGGGT	25	200
			9	8	CA		0
1338902	Н/П	Н/П	6550	6552	CTCCACTTCCGATTCTGT	38	200
			1	0	CC		1
1338904	4614	4633	9499	9501	GAGAAGATCCTCTCTC	23	200
			3	2	CA		2
1338926	Н/П	Н/П	2672	2674	CCAATGAAATACATGACA	62	200
		,	9	8	CA		3
1338975	Н/П	Н/П	3240	3242	CTTCAAGGCCCTCCACTT	46	200
	,	,	4	3	AA		4
1338979	Н/П	Н/П	7285	7286	GCACACGCCATACCTGGG	42	200
	,	,	0	9	CA		5
1338981	Н/П	н/п	7681	7683	GGCTCACCCTCACCTGG	60	200
			9	8	TC		6
1339101	Н/П	Н/П	7145	7147	CCCTAGGTCCCTTCTCGG	38	200
			8	7	AT		7
1339153	Н/П	Н/П	3123	3125	CCTCCAGTCACTTCACCT	57	200
			9	8	СТ		8

1339231	 н/П	 н/П	4092	4094	TTGGGCACTTTTACTCAA	35	200
1339231	П/ 11	П/ 11	2	1	AA		9
1339238	Н/П	Н/П	3947	3949	TCATCCTCATTTCCCCCG	32	201
1339230	П/П	П/11	2	1	CA	32	0
1339287	Н/П	Н/П	5200	5202	CCTGACTGACTTCTTCCA	58	201
1339207		П/ 11	4	3	AC	30	1
1339310	Н/П	н/п	7584	7585	GCTCTTACCCACATACTT	34	201
1339310	11/11	11/11	0	9	GT	74	2
1339316	Н/П	н/п	2493	2495	TCCCACGACATCTTTTGC	37	201
1339310	П/ 11	П/ П	8	7	AG		3
1339327	Н/П	н/п	7880	7882	TCAGAAGCACCCAGAAGC	82	201
1339327	П/11	П/11	2	1	CG	02	4
1339382	11 / 11	тт / пт	1777	1779	GTTTTAAGACCCCCTTTT	70	201
1339382	Н/П	Н/П	3	2	TA	/ 0	5
1339389	Н/П	Н/П	7777	7779	TGGATCAGACACCCATGC	77	201
1339309	H/11	П/ П	5	4	CG		6
1339483	Н/П	н/п	2169	2171	GGACGAAGCTTCCTCTTG	49	201
1339403	П/П	П/ 11	8	7	CC	49	7
1339513	Н/П	н/п	5517	5519	GGACATCCATCTATCATC	23	201
1339313	П/11	П/11	4	3	CA	23	8
1339581	3271	3290	8821	8823	TGTGTCCTCACAGTCCTC	19	201
1333301	3271	3230	6	5	CA		9
1339596	н/п	н/п	8566	8568	TGATAATCCTCTCCCC	54	202
1333330	11/11	11/ 11	3	2	CC]] 4	0
1339646	4343	4362	9472	9474	TCCCCGGGCCCTTTGCTG	40	202
1000040	4040	4002	2	1	CT	1 40	1
1339650	Н/П	н/п	2070	2072	ACCCGCTTCCCTCACAGA	55	202
1333030	11/11	11/11	3	2	GC		2

Таблица 27. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCG TG	16	283
1337216	Н/П	Н/П	6726 7 6738 8	6728 6 6740 7	CTCAGGGACTTGCCAAGC AG	57	202
1337218	н/п	н/п	1872	1874	CTAGCTAGCACACACAGC CA	61	202
1337231	Н/П	Н/П	9172	9174	CCCAGACCCTCCGACCTT TA	50	202 5
1337235	н/п	н/п	8715 5	8717 4	GGGCTGCCCGTATTCTTC CT	23	202 6
1337236	н/п	н/п	2790 7	2792 6	GGTGGTTCCTCCTGCCAG AC	37	202 7
1337238	н/п	н/п	6799 4	6801 3	GTATGGTCCACCTAAATG GT	40	202 8
1337249	4581	4600	9496	9497	GGAGGCTGAATTGTGCTT CA	38	202 9
1337308	н/п	Н/П	3514 4	3516 3	ACCCAGGACAACAA GC	41	203
1337321	н/п	Н/П	7456 5	7458 4	GAGCTTCAATCTATGCCT CA	54	203
1337352	н/П	н/п	4963	4965 1	ACGCCTCTCCTCTGTGTG CC	45	203
1337369	н/П	н/п	4037 7	4039 6	GCCCTACTCATCTCAGCG CG	43	203
1337379	Н/П	Н/П	8800	8802	CCTCTGGAAAGAATGTGC CT	23	203

1005400	90 Н/П		7874	7876	GGTCCGAGCATCAGAATC		203
1337490	H/II	Н/П	7	6	AA	42	5
1227566	TT /TT	TT /TT	6113	6115	GATGCTATCCTCATGGAT	1.0	203
1337566	Н/П	Н/П	1	0	GC	13	6
1337579	Н/П	TT / TT	2241	2243	GCCCTCAGCACACCGAGT	46	203
133/3/9	П/П	Н/П	5	4	CA	40	7
1337666	Н/П	н/п	8985	8987	GGCGGGATCATCCTCTGC	57	203
1337000	11/11	11/11	3	2	CA		8
1337716	Н/П	Н/П	5365	5367	AGAGTAGGTCCCAGCAGC	36	203
1337710	11/11	11/11	4	3	CG		9
1337755	Н/П	Н/П	4716	4718	TGTGTCCATTCTCATCCA	37	204
1337733	11/11	11/11	6	5	CT		0
1337765	3857	3876	9423	9425	AGGGTCACGCTAGTGCCA	27	204
1337703	3037	3070	6	5	CC	2 /	1
1337868	Н/П	Н/П	1825	1827	GCCCCAGGCACCATTAGG	34	204
1337000	11/11	11/11	1	0	CG	74	2
1337872	Н/П	Н/П	6901	6903	GCACCGACACATTCTGGA	34	204
1337072	11/11	11/11	7	6	AA	74	3
1337876	Н/П	н/п	4527	4529	TTGACCTACATCTTAGCT	48	204
1337070	11/11	11/11	3	2	GA	10	4
1337912	Н/П	н/п	4816	4818	GCCAGAGACATTAATGAA	38	204
1337312	11/11	11/11	7	6	GC		5
1337948	Н/П	Н/П	4888	4890	ACCAGAGCCATCAGCAGG	46	204
1337340	11/11	11/11	7	6	TC	10	6
1337949	4342	4361	9472	9474	CCCCGGGCCCTTTGCTGC	36	204
100/010	1912	1301	1	0	TT		7
1337983	Н/П	Н/П	3325	3327	GAAAGACCCATCCCCAGA	79	204
	11/ 11	117,11	2	1	GA	'	8
1337995	Н/П	Н/П	4386	4387	TGGACCAGCTCCTCA	43	204
	,	11, 11	0	9	AA		9
1338011	Н/П	Н/П	8216	8217	GTGCTGTCCCAGCTTGAG	56	205
			0	9	CA		0
1338013	Н/П	Н/П	6549	6551	CCGATTCTGTCCTCCAGG	10	205
			3	2	GC		1
1338052	Н/П	Н/П	1694	1696	TCTGGAAGACTCCGCAGC	27	205

			2	1	TC		2
1338081	17 / 17	11 / 17	2304	2305	CGACTCCTCCTCGAACCT	31	205
1330001	Н/П	Н/П	0	9	TC	21	3
1338093	Н/П	Н/П	7142	7144	TCTGCCGTCCCCTCCAGC	27	205
1336093	П/11	П/П	2	1	AC	2/	4
1338128	Н/П	Н/П	8318	8320	TCCCTGTCACACAACTGC	37	205
1330120	11/11	11/ 11	7	6	CA		5
1338170	н/п	Н/П	1931	1933	GTCCCATCCTATAGACAC	20	205
1330170	117 11	11/ 11	4	3	CA		6
1338184	Н/П	Н/П	2493	2495	CCCACGACATCTTTTGCA	21	205
	,		7	6	GC		7
1338187	Н/П	Н/П	9294	9296	CCCCCATCATCTCACAGT	30	205
			8	7	CT		8
1338191	Н/П	Н/П	4088	4090	CCTGACCCCACCACTGAA	61	205
		·	4	3	GC		9
1338194	Н/П	Н/П	7679	7681	CCCAGGACCCCCCATGG	65	206
			7	6	TC		0
1338214	Н/П	Н/П	5074	5076	GCGAGGGCCACAACACAG	59	206
			2	1	TA		1
1338216	Н/П	Н/П	4583	4585	GTTTTGACACCCTTGGGC	55	206
			8	7	CT		2
1338244	Н/П	Н/П		5755	GGTCCCCTACTTACTAAG	59	206
			4	3	CC		3
1338277	Н/П	Н/П	3385	3387	AGGATGCATTCCATCCAG	33	206
			9	8	AT		4
1338330	Н/П	Н/П	9336	9338	TGCAGATTCACCTCTGTA	31	206
			6	5	TT		5
1338406	Н/П	Н/П	2404	2406	ACCGACAGCCTCTGTGGC	34	206
			1	0	CC		6
1338423	Н/П	Н/П	2672	2674	ATACATGACACACCTGGT	50	206
			1776	1770	GA ACACCCCCTTTTTACAAA		<u> </u>
1338469	Н/П	Н/П	1776	1778	AGACCCCCTTTTTACAAA	58	206
			·		TC CACTCACTTCTTCCAACT		
1338482	Н/П	Н/П	5200	5202	GACTGACTTCTTCCAACT	90	206
			1	0	TT		9

	3484 Н/П		9113	9115	GGCATCCCACTCATGAAG		207
1338484	H/Π	Н/П	3	2	GC	21	0
			7282	7284	GCACCGGCAACTTCAGGT		207
1338529	Н/П	Н/П	7	6	AC	73	1
1000506	/	/	4263	4264	GTCTCAGCCCTGCTTAGG	0.6	207
1338596	Н/П	Н/П	0	9	GC	26	2
1220720	TT /TT	TT /TT	6330	6332	ACCCCACCCCACATGGTG	69	207
1338720	Н/П	Н/П	3	2	GT	09	3
1338768	Н/П	Н/П	3758	3759	CCCAAACTCACACCAGAA	64	207
1330700	П/11	П/ 11	0	9	GC	04	4
1338829	Н/П	Н/П	5651	5653	ACAGGTCTTAATCTCTGG	25	207
1330029	117 11	11/11	6	5	AC	25	5
1338880	Н/П	Н/П	3240	3242	CAAGGCCCTCCACTTAAT	55	207
1330000		11/11	1	0	CA		6
1338930	Н/П	Н/П	7777	7779	GGATCAGACACCCATGCC	34	207
1330330			4	3	GG]] 4	7
1338933	Н/П	Н/П	7583	7585	CTCTTACCCACATACTTG	50	207
1330333			9	8	TC		8
1338991	Н/П	Н/П	3677	3679	GCGGCTCGCTCACATTCC	16	207
1000001	117 11	117 11	6	5	CT		9
1338995	н/п	Н/П	2169	2171	GACGAAGCTTCCTCTTGC	29	208
1000000	117 11	117 11	7	6	CT		0
1339025	Н/П	Н/П	3078	3080	CACCATAACCAGACCCGG	28	208
1003020	117 11	117 11	2	1	CA		1
1339032	Н/П	Н/П	8553	8555	GCAATGGACCCACTGAGT	55	208
1003002	117 11	117, 11	7	6	TT		2
1339116	Н/П	Н/П	6849	6851	GGATGGCCCACCCCAGAC	28	208
	11, 11		3	2	AA		3
1339146	н/п	Н/П	8461	8463	CCAGAGATTTCCTCCTGC	41	208
			6	5	TT		4
1339254	Н/П	Н/П	5943	5945	GCACAGTGTCTTCCAGGG	19	208
			8	7	CC		5
1339259	Н/П	Н/П	2990	2992	AACATCTTTCCCTCACTC	38	208
			2	1	GC		6
1339276	Н/П	Н/П	3123	3125	CTCCAGTCACTTCACCTC	66	208

			8	7	TT		7
1339313	Н/П	Н/П	3177	3179	CGTGCAACATTTTCAAGC	27	208
1339313	П/11	П/11	5	4	CT	21	8
1339315	Н/П	Н/П	5579	5581	GCTAACCCCCACATCAGA	13	208
1339313	П/ 11	П/11	9	8	GC	13	9
1339337	н/п	Н/П	2070	2072	CCCGCTTCCCTCACAGAG	34	209
1339337	11/11	11/11	2	1	CC	J4	0
1339384	Н/П	Н/П	7964	7966	GAGAGTCCCCCTTTTTAG	54	209
1339304	П/ 11	П/ 11	9	8	GA	J4 	1
1339435	Н/П	н/п	8635	8637	CACCACATGACCCACAGG	35	209
1339433	П/11	П/11	4	3	CA	33	2
1339438	Н/П	н/п	7030	7032	ACGGGCATCCTTGTGTGC	75	209
1339430	11/11	11/ 11	3	2	CC		3
1339441	н/п	Н/П	5849	5851	CACGGAACCCCTCTCAGC	55	209
1000441	11/11	11/11	2	1	AC		4
1339442	Н/П	Н/П	2732	2734	CTTGAGATCCTCAACTAA	65	209
1339442	11/11	11/11	6	5	TC		5
1339493	Н/П	Н/П	6216	6218	GCTGTCCACCTTGACCCT	17	209
1339493	11/11	11/11	2	1	TC	1 /	6
1339536	н/п	Н/П	1993	1995	CATTGTTGCCCACCCATT	64	209
1339330	11/11	11/11	1	0	CC	04	7
1339539	Н/П	Н/П	5496	5498	ACCATCTGCTCATCATCC	37	209
1009009	11/ 11	11/11	7	6	AT		8
1339631	Н/П	Н/П	3947	3948	ATCCTCATTTCCCCCGCA	61	209
1009001	11/ 11	11/11	0	9	GC		9

Таблица 28. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCGT G	19	283
1337230	Н/П	Н/П	5496 2	5498 1	CTGCTCATCATCCATCCAC T	20	210
1337282	3855	3874	9423	9425	GGTCACGCTAGTGCCACCG T	16	210
1337399	4575	4594	9495	9497	TGAATTGTGCTTCACAAGT C	16	210
1337419	Н/П	Н/П	8314	8316 0	CCAGGACTGTTCACTGCTC T	53	210
1337435	н/П	н/п	3177 4	3179 3	GTGCAACATTTTCAAGCCT C	31	210
1337450	н/п	н/п	1776 5	1778 4	ACCCCCTTTTTACAAATCT T	67	210 5
1337456	н/П	н/П	7874 3	7876 2	CGAGCATCAGAATCAATAA C	32	210
1337477	н/П	н/П	2391	2393 1	CGGGAGCCACAGTCTCCAC A	32	210
1337498	н/п	н/п	4884	4886 8	GATGTTTCTTCCCTCTGAC C	62	210
1337525	н/п	н/п	5849 1	5851 0	ACGGAACCCCTCTCAGCAC A	43	210
1337532	н/п	н/п	7950 2	7952 1	AGGAGCCTCACTTGTTGTC C	48	211
1337569	н/п	н/п	3385	3387 7	GGATGCATTCCATCCAGAT A	55	211
1337623	Н/П	Н/П	2303	2305	CCTCCTCGAACCTTCACGG	35	211

			5	4	C		2
1227620	11 / 11	17 / 17	2785	2787	TTTTCCGGCATTTCTGCTT	11	211
1337628	Н/П	Н/П	5	4	T	41	3
1337637	Н/П	Н/П	8632	8634	GCCTTTTCTAAGAAAACTC	13	211
1337637	п/11	П/П	2	1	С	13	4
1337645	Н/П	Н/П	6215	6217	ACCTTGACCCTTCCCTGCA	49	211
1337043	11/11	11/11	5	4	С	43	5
1337656	Н/П	Н/П	2732	2734	GAGATCCTCAACTAATCAC	42	211
1337030	11/11	11/11	3	2	A	47	6
1337660	н/п	Н/П	1825	1826	CCCCAGGCACCATTAGGCG	17	211
1337000	117 11	117 11	0	9	G	1 /	7
1337672	н/п	н/п	7583	7585	TCTTACCCACATACTTGTC	59	211
1337072	117 11	117 11	8	7	С		8
1337675	н/п	Н/П	2169	2171	CGAAGCTTCCTCTTGCCTG	48	211
1337073	117 11	11/ 11	5	4	С		9
1337736	н/п	Н/П	9172	9174	GACCCTCCGACCTTTACTC	38	212
1337730	117 11	11/ 11	4	3	С		0
1337782	н/п	Н/П	2231	2233	GCAGGGCTGTTCCTAGAGA	49	212
1337732	117 11	11/ 11	9	8	С		1
1337799	н/п	Н/П	7029	7031	CTTGTGTGCCCTCCACCAG	61	212
	11, 11	11/11	4	3	С		2
1337810	Н/П	Н/П	3508	3509	GGCAGGTCAGCATCACAGA	47	212
	11, 11	11, 11	0	9	С		3
1337822	н/п	Н/П	3240	3241	AAGGCCCTCCACTTAATCA	43	212
	11, 11	11, 11	0	9	Т		4
1337828	Н/П	Н/П	8441	8443	GAGGAGAGATCACACAGGC	19	212
	,		4	3	Т		5
1337847	Н/П	Н/П	2488	2490	CTGAATTGCACCCCCAGAT	34	212
	,		5	4	Т		6
1337870	н/п	Н/П	6325	6327	GAGGCGAGCTTTACACTTT	7	212
	·	·	6	5	Т		7
1337883	н/п	Н/П	6112	6113	CATGGATGCCCCAATCTGC	21	212
			0	9	С		8
1337901	Н/П	Н/П	4088	4090	CTGACCCCACCACTGAAGC	50	212
			3	2	С		9

1227026			8985	8987	GCGGGATCATCCTCTGCCA		213
1337926	Н/П	Н/П	2	1	G	33	0
1337939	Н/П	Н/П	4251	4253	GGGCCATCCCCACTTGACT	49	213
133/939	П/11	П/П	4	3	Т	49	1
1337941	Н/П	Н/П	8211	8213	GTCAGCCAGATATCAAGGC	35	213
1337941	П/ П	П/П	6	5	A		2
1337944	Н/П	н/п	5199	5201	GACTTCTTCCAACTTTCCA	38	213
1337344	11/11	11/11	7	6	A		3
1337987	Н/П	Н/П	2063	2065	GCTGAGCCCCCACATTGCA	47	213
1337307	11/11	11/11	7	6	С	4 /	4
1338032	Н/П	Н/П	4816	4818	CCAGAGACATTAATGAAGC	52	213
1330032	11/11	11/11	6	5	С	32	5
1338126	Н/П	Н/П	7127	7129	CCAGACGCACCATCACCCA	36	213
1330120	11/ 11	11/11	3	2	A		6
1338166	4341	4360	9472	9473	CCCGGGCCCTTTGCTGCTT	30	213
1330100	4041	4300	0	9	C	30	7
1338174	Н/П	Н/П	2660	2662	TCTGACAGTCATATTTAAC	42	213
1330174	П/П	П/П	5	4	С	42	8
1338227	Н/П	Н/П	4037	4039	CCCTACTCATCTCAGCGCG	40	213
1330227	П/П	П/П	6	5	A	40	9
1338247	Н/П	Н/П	2990	2992	ACATCTTTCCCTCACTCGC	35	214
1330247	11/11	11/ 11	1	0	C		0
1338262	Н/П	н/п	5364	5366	AGCAGCCGCCACTTCTCGA	35	214
1330202	11/11	11/11	2	1	A		1
1338404	Н/П	н/п	3320	3322	GAGTGTGGAAAATCTAGTT	34	214
1330404	11/11	11/ 11	3	2	T]]]	2
1338405	Н/П	Н/П	7677	7679	CTCGGCATAACACATGGCC	39	214
1330403	11/11	11/11	3	2	C		3
1338441	Н/П	Н/П	7454	7456	AGTTTCCCCCTCCATACAA	38	214
1330441	11/ 11	11/ 11	6	5	С		4
1338457	Н/П	Н/П	4955	4957	CCGCCGTCTTTCTCTCTGA	56	214
100040/	11/11	11/11	6	5	A		5
1338509	Н/П	Н/П	5059	5061	TAAGCACCAGCCTAACCCC	43	214
1330303	11/11	11/11	9	8	Т	1 3	6
1338531	Н/П	Н/П	1993	1994	ATTGTTGCCCACCCATTCC	60	214
	•	•	•	•	•	•	

			0	9	A		7
1220504	TT / TT	н/п	9110	9112	GGTCCGAGCACCACAGTGC	43	214
1338594	Н/П	П/11	2	1	С	43	8
1338598	TT / TT	TT / TT	3677	3679	CTCGCTCACATTCCCTGGG	33	214
1338398	Н/П	Н/П	2	1	A	33	9
1338600	Н/П	Н/П	9291	9293	CAGGGTAGCCCTGCCAAGC	35	215
1330000	П/ 11	П/ П	6	5	A		0
1338605	Н/П	Н/П	1688	1690	AGATGCTTCCCCCTGCCCG	31	215
1330003	117 11	11/11	2	1	С		1
1338617	н/п	Н/П	5649	5651	ACCAGGCACCCCAGTTGCC	35	215
1330017	11/11	11/11	8	7	С		2
1338630	н/п	Н/П	6541	6542	GGATACTTCCAGGAGACCC	9	215
1330030	117 11	11/11	0	9	A		3
1338633	н/п	н/п	5937	5939	CCCCGGCTTACAATCATGT	70	215
1330033	117 11	11/11	3	2	Т	'	4
1338785	н/п	н/п	5579	5581	CTAACCCCCACATCAGAGC	19	215
1330703		11/11	8	7	T		5
1338919	н/п	Н/П	4383	4385	CAGAGGGACCTCTCTTT	53	215
1330313	117 11	11/11	4	3	Т		6
1339000	н/п	н/п	6899	6901	TCCAGGTAATAATATACTC	13	215
1333000	117 11	11/11	5	4	T		7
1339041	н/п	н/п	8798	8800	CTGGTTTCCTCCTGAGCAC	11	215
	117 11	11/ 11	3	2	A		8
1339062	Н/П	н/п	6844	6846	CCCTGATGATCTACCCCAG	61	215
1333002	117 11	11/11	4	3	A		9
1339064	Н/П	Н/П	3117	3119	AGACGCAGCCCACTCGGAT	48	216
	11, 11	11, 11	1	0	A		0
1339092	1126	1145	6704	6706	CTGCCGCTCCATCCAGAGG	15	216
			7	6	Т		1
1339123	Н/П	н/п	3077	3079	CCAGACCCGGCAAAACACT	32	216
			4	3	С		2
			1923	1925			
1339152	Н/П	Н/П	9	8	GAGCCAGGTCCCCTTCCCT	8	216
		II/ 	1928	1930	С		3
			5	4		<u>L</u> _	

1220105	11./11		3757	3759	CCAAACTCACACCAGAAGC	53	216
1339185	Н/П	Н/П	9	8	С	53	4
1220247	TT / TT	TT / TT	6799	6801	ATGGTCCACCTAAATGGTC	1 5	216
1339247	Н/П	Н/П	2	1	С	15	5
1339261	н/п	Н/П	7276	7278	TCCTGCAAATCACCAGAGT	36	216
1339201	П/ 11	П/П	9	8	С	30	6
1339286	н/п	Н/П	3946	3948	CCTCATTTCCCCCGCAGCA	18	216
1339200	П/ 11	П/П	8	7	T	10	7
1339304	н/п	Н/П	8551	8553	GCTCCCGTAACAAATGACC	39	216
1339304	11/11	11/11	1	0	G		8
1339344	н/п	Н/П	4581	4583	GCCCCCCATAGCTTGGCC	53	216
1333344	11/11	11/11	3	2	A		9
1339401	н/п	Н/П	5748	5750	GGGTCCCTGTTTACTGATC	8	217
1333401	11/11	11/11	5	4	С		0
1339402	н/п	н/п	7777	7779	TCAGACACCCATGCCGGGC	38	217
1333102	11/11	11/11	1	0	С		1
1339409	н/п	н/п	8715	8717	GGCTGCCCGTATTCTTCCT	9	217
1333103	11/11	117 11	4	3	G		2
1339512	н/п	н/п	4519	4521	CCGAGAGCGCATCCCAGCT	37	217
1333312	11/11	117 11	7	6	С		3
1339514	н/п	н/п	9336	9338	GCAGATTCACCTCTGTATT	20	217
1000011	117 11	117 11	5	4	С		4
1339520	н/п	н/п	1869	1871	TCCAGCGGTCCACCTCCTA	28	217
	11/11	11,11	6	5	A		5
1339532	н/п	н/п	4716	4718	GTGTCCATTCTCATCCACT	14	217
	11/ 11	11/11	5	4	С		6

Таблица 29. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCGT G	21	283
1081135	н/П	н/П	8715 3	8717 2	GCTGCCCGTATTCTTCCTG A	11	174
1337221	н/п	н/п	7454 0	7455 9	CCCCTCCATACAACAGGGA C	20	217 7
1337286	н/п	н/п	4383	4385 1	GAGGGACCTCTCTTTTA A	31	217 8
1337375	н/п	н/п	2660 4	2662 3	CTGACAGTCATATTTAACC A	18	217 9
1337380	н/п	н/п	4935 0	4936 9	GCTTAGGAACCCACCCTCC C	42	218
1337432	Н/П	Н/П	8211 5	8213 4	TCAGCCAGATATCAAGGCA A	22	218
1337433	Н/П	Н/П	5059 7	5061 6	AGCACCAGCCTAACCCCTG T	33	218
1337481	н/П	н/П	8797 5	8799 4	CTCCTGAGCACAGATCGCC G	18	218
1337541	Н/П	н/п	8430 9	8432	GGAGAGACTCCTCTCACAC A	29	218
1337599	н/п	н/П	4570 3	4572 2	ACGGCGGCACACTATAG C	57	218 5
1337664	н/п	н/п	4088	4090	TGACCCCACCACTGAAGCC A	40	218
1337706	н/п	Н/П	2783 5	2785 4	CCAGCATATATTCAATCAA C	15	218
1337715	Н/П	Н/П	2732	2734	AGATCCTCAACTAATCACA	14	218

			2	1	T		8
1227701	11 / 11	17 / 77	4884	4886	ATGTTTCTTCCCTCTGACC	39	218
1337721	Н/П	Н/П	8	7	T	39	9
1337783	Н/П	17 / 77	4716	4718	TGTCCATTCTCATCCACTC	10	219
1337703	H/11	Н/П	4	3	A	10	0
1337802	Н/П	Н/П	7677	7679	TCGGCATAACACATGGCCC	43	219
1337002	11/ 11	11/ 11	2	1	С	40	1
1337892	Н/П	Н/П	3754	3756	TGTTCCCCCACCCTGAATC	52	219
100,032	117 11	11/ 11	1	0	С		2
1337918	Н/П	Н/П	9172	9174	ACCCTCCGACCTTTACTCC	28	219
			3	2	A		3
1337940	3851	3870	9423	9424	ACGCTAGTGCCACCGTGTC	8	219
			0	9	С		4
1337954	Н/П	Н/П	1776	1778	CCCCCTTTTTACAAATCTT	20	219
	,	·	4	3	С		5
1337968	Н/П	 н/П	7583	7585	CTTACCCACATACTTGTCC	59	219
	·		7	6	A		6
1337972	Н/П	 Н/П	6898	6900	ATACTCTTGTTACCTTGTC	9	219
	·		2	1	A		7
1338045	Н/П	 Н/П	3677	3679	TCGCTCACATTCCCTGGGA	8	219
			1	0	A		8
1338058	Н/П	Н/П	4249	4251	GACTTGTGCCCATAAGGAG	38	219
			9	8	С		9
1338111	Н/П	Н/П	3307	3309	GACAATGATTCAAACATGG	20	220
			3	2	С		0
			5743	5745			
1338157	Н/П	Н/П	5	4	GGTCAGTAAATGCTGGGTT	46	220
			5797	5799	T		1
			7	6			
1338190	Н/П	Н/П	6325	6327	AGGCGAGCTTTACACTTTT	5	220
			5	4	A		2
1338234	Н/П	Н/П	1823	1825	CGGATGGACACCACTTCCT	34	220
			3	2	G		3
1338286	Н/П	Н/П	7029	7030	TGTGCCCTCCACCAGCAGG	19	220
			0	9	С		4

1220206			7276	7278	CCTGCAAATCACCAGAGTC	1.0	220
1338306	Н/П	Н/П	8	7	С	16	5
1338309	Н/П	Н/П	2230	2232	CCTAGAGACATCCCCACCG	41	220
1336309	п/п	П/11	8	7	С	41	6
1338345	Н/П	Н/П	7127	7129	CAGACGCACCATCACCCAA	25	220
1330343		11/11	2	1	С	25	7
1338346	Н/П	Н/П	2164	2166	CTTCCTGGCACCTCTCATG	58	220
	117 11	11/ 11	9	8	T		8
1338385	Н/П	Н/П	7874	7876	AGCATCAGAATCAATAACG	29	220
	11, 11		1	0	A		9
1338386	Н/П	Н/П	4519	4521	CGAGAGCGCATCCCAGCTC	28	221
	,	,	6	5	С		0
1338510	Н/П	Н/П	5358	5360	AGCAAGTTCCCACCCACCC	11	221
	,	·	3	2	Т		1
1338526	Н/П	Н/П	8631	8633	CTAAGAAAACTCCCTTGCC	41	221
		ľ	5	4	A		2
			1922	1924			
1338570	Н/П	 н/П	6	5	TTCCCTCTCATCCTATAGA	27	221
			1927	1929	С		3
			2	1			
1338597	Н/П	Н/П	6687	6689	GGGCCTTTCCCACATGGAA	20	221
	·	, i	2	1	A		4
1338620	Н/П	Н/П	1992	1994	TTGTTGCCCACCCATTCCA	26	221
			9	8	G		5
1338652	Н/П	Н/П	5579	5581	TAACCCCCACATCAGAGCT	12	221
			7	6	С		6
1338669	4574	4593	9495	9497	GAATTGTGCTTCACAAGTC	17	221
			3	2	A		7
1338693	4334	4353	9471	9473	CCTTTGCTGCTTCTAACTT	12	221
			3	2	С		8
1338715	Н/П	Н/П	9336	9338	CAGATTCACCTCTGTATTC	16	221
			4	3	С		9
1338770	Н/П	Н/П	3936	3937	TGCTGTGTCCCACCCTGAG	23	222
			0	9	С		0
1338821	Н/П	Н/П	5195	5197	AGCAGGACCACTCCCTCCA	49	222

			1	0	C		1
1338850	Н/П	Н/П	8985	8987	CGGGATCATCCTCTGCCAG	12	222
1336630	П/11	П/11	1	0	С	12	2
1338875	Н/П	Н/П	9288	9290	GAGGCCACCATCCCAGCAG	46	222
1330073	11/11	11/11	6	5	T	40	3
1338925	Н/П	Н/П	5847	5849	AGCACAGGCATCTACTGAC	11	222
1330923	11/11		7	6	С	1 1	4
1338947	Н/П	Н/П	3385	3387	GATGCATTCCATCCAGATA	23	222
1330347	11/11	117 11	7	6	Т	23	5
1338994	Н/П	Н/П	5449	5451	GGGATGTGAAACCAGAAGC	5	222
	117 11	117 11	2	1	С		6
1339068	Н/П	н/п	6210	6211	ACTGGAGACCCACCATCTC	14	222
	117 11	,	0	9	С		7
1339071	Н/П	н/п	3507	3509	CAGGTCAGCATCACAGACC	47	222
			8	7	Т	- '	8
1339122	Н/П	Н/П	2063	2065	CTGAGCCCCCACATTGCAC	42	222
			6	5	С		9
1339132	Н/П	Н/П	6540	6542	CCAGGAGACCCAGCCGGCG	29	223
		12, 22	2	1	С		0
1339176	Н/П	Н/П	3077	3079	AGACCCGGCAAAACACTCC	27	223
	·	,	2	1	Т		1
1339183	Н/П	Н/П	9110	9112	GTCCGAGCACCACAGTGCC	24	223
	·	·	1	0	С		2
1339188	246	265	1663	1665	AAGGGCAGCACCTCGGAGT	9	223
			8	7	С		3
1339255	Н/П	Н/П	6111	6113	TGGATGCCCCAATCTGCCC	10	223
			8	7	A		4
1339279	Н/П	Н/П	6844	6845	GATGATCTACCCCAGAGGA	35	223
			0	9	С		5
1339293	Н/П	Н/П	5648	5649	CCCGCAGTCACCTCCCACT	21	223
			0	9	G		6
			6798	6800			
1339333	Н/П	Н/П	3	2	CTAAATGGTCCATCCCAGA	49	223
			6812	6814	A		7
			2	1			

1339359	 н/П	 н/П	7774	7776	GTCCCTGTCCTAATGAGCT	15	223
1339339	П/ 11	П/П	8	7	G	13	8
1339428	Н/П	Н/П	1869	1871	CCAGCGGTCCACCTCCTAA	20	223
1333420	11/11	11/11	5	4	Т	20	9
1339433	Н/П	Н/П	2303	2305	CTCCTCGAACCTTCACGGC	18	224
1339433	П/ 11	П/П	4	3	С	10	0
1339462	н/п	Н/П	8550	8552	CCCGTAACAAATGACCGCA	18	224
1333402	11/11	117 11	8	7	A		1
1339534	Н/П	Н/П	2990	2991	CATCTTTCCCTCACTCGCC	21	224
1339334	11/11	11/11	0	9	T	21	2
1339542	Н/П	Н/П	3176	3178	TTCAAGCCTCGATCAAGTA	39	224
1333342	11/11	117 11	4	3	A		3
1339547	Н/П	Н/П	4812	4814	CTGTGGCCGCCCACTTCTC	20	224
1339347	11/11	11/11	1	0	С	20	4
1339561	Н/П	Н/П	2488	2490	ATTGCACCCCAGATTCCC	26	224
1333301	11/11	117 11	1	0	T	20	5
1339584	Н/П	н/п	3117	3118	GACGCAGCCCACTCGGATA	43	224
1333301	117 11	117 11	0	9	A		6
1339590	Н/П	Н/П	5937	5939	CCCGGCTTACAATCATGTT	49	224
133333	117 11	117 11	2	1	T		7
1339612	2552	2571	7946	7948	GGTTCAGCTCCTTGCGGGA	5	224
1000012	2002	2011	6	5	T		8
1339637	Н/П	Н/П	8297	8298	GCTTGCTGACCCAAACTTC	26	224
1333037	117 11	117 11	0	9	A	20	9
1339640	н/п	Н/П	3239	3241	AGGCCCTCCACTTAATCAT	43	225
1000010	/	/	9	8	A		0
1339651	Н/П	Н/П	4030	4032	GGCAGCAGCTCCATTACCT	36	225
	/	/	8	7	С		1
1339657	Н/П	Н/П	2390	2392	GCCACAGTCTCCACAGCAG	50	225
	/	/	7	6	A		2

Таблица 30. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCGT G	22	28 3
1337225	н/п	н/П	2302 5	2304	CCTTCACGGCCCCTAAACC A	71	22 53
1337252	н/п	н/п	9107	9109	CGAGGGTCTTCCATGAGCG C	21	22 54
1337257	Н/П	Н/П	2989	2991	CTCACTCGCCTTTTTAGAG C	56	22 55
1337260	н/п	н/п	2230 7	2232	CTAGAGACATCCCCACCGC A	80	22 56
1337265	2551	2570	7946 5	7948 4	GTTCAGCTCCTTGCGGGAT C	18	22 57
1337296	н/п	н/п	3752 8	3754 7	TGAATCCCCCCACCCTTGG C	70	22 58
1337389	н/п	н/п	4504 7	4506 6	GCTGCGGACCACCTC T	81	22 59
1337415	н/п	н/п	2729 5	2731 4	GACCGTGTTTCTACATAAG C	40	22 60
1337497	н/п	н/п	7447	7449	CCAGTGCCCCATCGGTGCC A	43	22 61
1337572	н/п	н/п	5728 6	5730 5	TTCTTAGCATTTACTGAGA C	52	22 62
1337613	н/п	н/п	4811	4813	CCGCCCACTTCTCCGAGCA C	54	22 63
1337627	3849	3868	9422	9424	GCTAGTGCCACCGTGTCCT C	17	22 64
1337650	н/П	Н/П	5449	5451	GGATGTGAAACCAGAAGCC C	31	22 65

1227020			2063	2065	TGAGCCCCCACATTGCACC		22
1337830	Н/П	Н/П	5	4	T	27	66
1227050	TT /TT	TT /TT	7583	7585	CCCACATACTTGTCCAGCC	37	22
1337858	Н/П	Н/П	3	2	A	3 /	67
1337861	Н/П	Н/П	6111	6113	GGATGCCCCAATCTGCCCA	28	22
1337801	П/П	П/ 11	7	6	С	20	68
1337867	762	781	5931	5932	ATGAACAGGTTCCGCAGCG	18	22
1337007	702	701	0	9	G		69
1337889	н/п	Н/П	3239	3241	GCCCTCCACTTAATCATAT	59	22
1337003	11/11	117 11	7	6	С		70
			1470	1472			
1337891	Н/П	Н/П	9	8	CTGTTGTGTTTGGCTGAGGG	91	22
1337031	11/11	117 11	1474	1476	С		71
			7	6			
1337904	Н/П	Н/П	2783	2785	CAGCATATATTCAATCAAC	39	22
1337301	11/11	11/11	4	3	T		72
1337963	Н/П	Н/П	6209	6211	CTGGAGACCCACCATCTCC	37	22
1337303	117 11	117 11	9	8	С		73
1337970	н/п	Н/П	6325	6327	CGAGCTTTACACTTTTAGA	12	22
1337370	117 11	117 11	2	1	A	12	74
1338001	Н/П	Н/П	2486	2487	GTTGAAGCCCCCACCGCTG	79	22
	117 11	117 11	0	9	A		75
1338006	Н/П	Н/П	8631	8633	GAAAACTCCCTTGCCAGGC	38	22
1330000	11/11	117 11	1	0	A		76
1338016	Н/П	Н/П	4086	4088	GCCACGCTGTCTAATCAGC	25	22
1330010	11/11	117 11	6	5	T		77
1338034	Н/П	Н/П	7766	7768	GTGGCTCCAACCTGTTCTC	41	22
	117 11	117 11	5	4	A		78
1338102	Н/П	н/п	5579	5581	AACCCCCACATCAGAGCTC	40	22
1330102	11/11	117 11	6	5	T		79
			6798	6800			
1338156	Н/П	Н/П	2	1	TAAATGGTCCATCCCAGAA	79	22
1 1000100	11/11	11/11	6812	6814	G		80
			1	0			
1338186	Н/П	Н/П	7676	7678	ACACATGGCCCCATACAGG	51	22

			4	3	C		81
1220250	11 / 11	11 / 11	5195	5196	GCAGGACCACTCCCTCCAC	60	22
1338258	Н/П	Н/П	0	9	С	62	82
1220272	TT /TT	TT /TT	7276	7278	CTGCAAATCACCAGAGTCC	51	22
1338273	Н/П	Н/П	7	6	С	31	83
1338319	4333	4352	9471	9473	CTTTGCTGCTTCTAACTTC	16	22
1330319	4333	4332	2	1	С		84
1338394	Н/П	Н/П	1776	1778	CCCCTTTTTACAAATCTTC	23	22
1330334	11/11	11/ 11	3	2	A	25	85
1338436	н/п	н/п	1869	1871	CAGCGGTCCACCTCCTAAT	65	22
1330430	11/11	11/11	4	3	A		86
			1922	1924			
1338494	 н/П	Н/П	5	4	TCCCTCTCATCCTATAGAC	42	22
	117 11	117 11	1927	1929	A	12	87
			1	0			
1338501	Н/П	н/п	8296	8298	GCTGACCCAAACTTCAAGC	35	22
100001	11, 11	11, 11	6	5	С		88
1338524	Н/П	Н/П	3385	3387	GCATTCCATCCAGATATGG	17	22
	11, 11	11, 11	4	3	С		89
1338532	Н/П	Н/П	9279	9281	CTGGATTCCTGTTCCAGGA	74	22
	,		4	3	С		90
1338547	Н/П	Н/П	3076	3078	CGGCAAAACACTCCTGGAT	70	22
	·	·	7	6	Т		91
1338569	Н/П	Н/П	1823	1824	ATGGACACCACTTCCTGCC	50	22
			0	9	С		92
1338585	Н/П	Н/П	3935	3937	GCTGTGTCCCACCCTGAGC	41	22
			9	8	Т		93
1338602	Н/П	Н/П	4383	4384	GGGACCTCTCTCTTTTAAT	58	22
			0	9	С		94
1338628	Н/П	Н/П	2164	2166	TTCCTGGCACCTCTCATGT	89	22
			8	7	С		95
1338661	Н/П	Н/П	8430	8432	GAGAGACTCCTCTCACACA	41	22
			8	7	С		96
1338712	Н/П	Н/П	4248	4250	AGGAGCAGTCTCAGCTGCC	76	22
			5	4	A		97

1220720			2376	2378	GGCAACACAGGCAAACCGA		22
1338738	Н/П	Н/П	8	7	С	37	98
1 2 2 0 7 0 0	TT /TT	TT / TT	2654	2656	CAGCAGACACTCAACTTGA		22
1338782	Н/П	Н/П	7	6	С	66	99
1220020	Н/П	11 / 11	3677	3678	CGCTCACATTCCCTGGGAA	11	23
1338820	П/ 11	Н/П	0	9	С	41	00
1338888	4553	4572	9493	9495	GGGTTTAGAAAATGAGGCT	24	23
1330000	4333	4372	2	1	Т	24	01
1338894	Н/П	Н/П	8715	8717	CTGCCCGTATTCTTCCTGA	19	23
1330094	П/ 11	П/ 11	2	1	A		02
1338921	Н/П	Н/П	4030	4032	GCAGCAGCTCCATTACCTC	51	23
1336921	П/ 11	П/ 11	7	6	Т	31	03
1338928	Н/П	Н/П	8210	8212	AAGGCAACAGCAACAGTGC	41	23
1330920	11/11	11/11	2	1	С	41	04
1338958	Н/П	Н/П	3174	3176	TAAGCTCTGTCCAGCAGGC	27	23
1330930	11/11	11/11	7	6	С	2 /	05
1338962	Н/П	Н/П	1992	1994	GTTGCCCACCCATTCCAGC	27	23
1330902	11/11	11/11	7	6	A	2 /	06
1338974	Н/П	Н/П	6533	6535	ATCACTCTGCTTCAAGGGC	23	23
1330974	11/11	11/11	8	7	Т	23	07
1338985	Н/П	Н/П	5847	5849	GCACAGGCATCTACTGACC	26	23
1330903	11/11	11/11	6	5	С	20	08
1339002	Н/П	Н/П	9335	9337	TCTGTATTCCACACACATT	29	23
1333002	11/11	11/11	4	3	Т	23	09
1339020	Н/П	Н/П	9172	9174	CCCTCCGACCTTTACTCCA	30	23
1333020	11/11	11/11	2	1	G		10
1339113	н/п	н/п	4880	4882	CTGGCCACTCCTCCTAGGC	46	23
1939113		11/11	5	4	G	1 40	11
1339140	Н/П	Н/П	7022	7024	CCCGCAGGCATCCTGGGCC	55	23
1939140	11/11	11/11	4	3	T		12
1339148	Н/П	Н/П	5059	5061	CACCAGCCTAACCCCTGTT	65	23
1000140	11/11	11/11	5	4	С		13
1339154	Н/П	Н/П	4931	4933	CTGTCCCGCCCTCCATGGC	41	23
1 1000104	11/ 11	11/11	7	6	A		14
1339175	Н/П	Н/П	7127	7129	AGACGCACCATCACCCAAC	48	23

			1	0	A		15
1220105	TT / TT	TT / TT	6896	6898	GTCACTCTGTCAATTTGTC	5	23
1339195	Н/П	Н/П	6	5	Т	5	16
1339241	н/п	Н/П	8976	8978	CGTGAAGTCCCTCCCGGGA	25	23
1339241	П/11	П/11	3	2	С	25	17
1339256	н/п	Н/П	3303	3305	TGCTGTGGTTACAAATGAC	61	23
1339230	П/ П	11/11	8	7	С	01	18
1339282	н/п	н/п	5358	5360	GCAAGTTCCCACCCACCCT	32	23
1339202	П/11	П/11	2	1	С	32	19
1220200	TT / TT	TT / TT	5647	5649	CCGCAGTCACCTCCCACTG	32	23
1339299	Н/П	Н/П	9	8	С	32	20
1220202	TT /TT	TT / TT	6843	6845	ATGATCTACCCCAGAGGAC	51	23
1339302	Н/П	Н/П	9	8	С	31	21
1339303	н/п	Н/П	8549	8551	GACCGCAAACTTAGCAGCT	55	23
1339303	П/11	П/П	6	5	A		22
1339335	н/п	Н/П	8790	8792	GAGGGCAGCTCCCTTCGCC	16	23
1339333	П/11	П/11	8	7	Т	10	23
1339350	н/п	Н/П	3507	3509	AGGTCAGCATCACAGACCT	70	23
1339330	11/11	11/11	7	6	С	'0	24
1339550	TT / TT	TT / TT	4570	4572	CGGCGGCACACACTATAGC	60	23
1339330	Н/П	Н/П	2	1	С	00	25
1339570	TT / TT	TT / TT	7873	7875	TCAGAATCAATAACGATCT	43	23
1339370	Н/П	Н/П	7	6	G	43	26
1220642	н/п	Н/П	6666	6668	CTTCCAGGCACTCGCAGGC	6	23
1339643	П/11	П/11	3	2	С	0	27
1220654	TT / TT	TT / TT	4716	4718	GTCCATTCTCATCCACTCA	4.0	23
1339654	Н/П	Н/П	3	2	Т	48	28
1339667	н/п	Н/П	3115	3117	GGATAATCGCCCTTTGATT	40	23
133900/	11/11	11/ 11	6	5	A	40	29

Таблица 31. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
760	779	5930 8	5932 7	GAACAGGTTCCGCAGCGGC G	16	10
2550	2569	7946 4	7948 3	TTCAGCTCCTTGCGGGATC T	15	19 9
3854	3873	9423	9425	GTCACGCTAGTGCCACCGT G	24	28
Н/П	Н/П	2729 3	2731 2	CCGTGTTTCTACATAAGCC A	30	23 30
Н/П	Н/П	8548	8550 7	ACTTAGCAGCTAAAACGAC A	39	23 31
Н/П	Н/П	1822	1824	GGACACCACTTCCTGCCCA A	24	23 32
Н/П	н/п	2230	2232	TAGAGACATCCCCACCGCA A	72	23 33
Н/П	н/п	5579 5	5581 4	ACCCCCACATCAGAGCTCT A	30	23 34
Н/П	н/п	7763	7764 9	CAGGTGCCTCTAACATAGA C	66	23 35
Н/П	н/п	8786	8788	GGCCTGGGACCCATCTGGA C	17	23 36
Н/П	н/п	2783	2785	AGCATATATTCAATCAACT T	71	23 37
Н/П	н/п	3507 5	3509 4	GTCAGCATCACAGACCTCC T	59	23
н/п	н/п	6798 1 6812	6800 0 6813	AAATGGTCCATCCCAGAAG G	41	23
	1 : ON OI OES 7 6 0 2 5 5 0 3 8 5 4 Η/Π	1:0N 01 04s 7:0N 01 04s 2:569 3:854 3873 1:0N 01 1:0N 01 1:0N 02 1:0N 02 1:0N 02 1:0N 02 <td>г. м. м.</td> <td>гом воли воли воли воли воли воли воли воли</td> <td>Него Него <t< td=""><td>Помовон Помовон <</td></t<></td>	г. м.	гом воли воли воли воли воли воли воли воли	Него Него <t< td=""><td>Помовон Помовон <</td></t<>	Помовон <

1005510		/-	5720	5722	CCTCAGTGCTTACTGAGCA		23
1337518	Н/П	Н/П	7	6	С	17	40
1007571	TT /TT	Н/П	9278	9280	TTCCTGTTCCAGGACTCCA	30	23
1337571	Н/П	П/11	9	8	A	30	41
1337657	4540	4559	9491	9493	GAGGCTTTGCTTTAAAAGG	16	23
1337037	4540	4333	9	8	Т		42
1337769	Н/П	Н/П	4086	4088	CCACGCTGTCTAATCAGCT	36	23
1337703	11/11	11/ 11	5	4	С		43
1337773	Н/П	Н/П	4382	4384	GGACCTCTCTCTTTTAATC	55	23
	11/11	11/ 11	9	8	С		44
1337792	н/п	Н/П	2988	2990	ACTCGCCTTTTTAGAGCCC	19	23
1337732		11/ 11	8	7	Т		45
1337835	Н/П	Н/П	4240	4242	GTGGAGTGTCCCTCTGCAC	36	23
1337033			3	2	С		46
1337879	Н/П	Н/П	6652	6654	CAGATCCAAAACAGAGGCC	48	23
1337073		11/11	4	3	A	10	47
1337887	Н/П	Н/П	9096	9098	GGCATTGTGGCAAACAGGT	21	23
1337007	11/ 11	117 11	8	7	С		48
1337894	Н/П	Н/П	3172	3174	CCTGCAGACCCAACTTCCA	43	23
	11/ 11	11/ 11	9	8	С		49
1337938	н/п	Н/П	5357	5359	CCCACCCACCCTCATCGCG	46	23
	11/ 11	11/ 11	5	4	G		50
1337982	Н/П	Н/П	6533	6535	TCACTCTGCTTCAAGGGCT	15	23
100,002	117 11	11/ 11	7	6	Т		51
1338074	Н/П	Н/П	8430	8432	AGAGACTCCTCTCACACAC	38	23
	11, 11	117 11	7	6	С		52
1338080	Н/П	Н/П	8296	8298	TGACCCAAACTTCAAGCCA	61	23
	11/ 11	117 11	4	3	С		53
1338112	Н/П	Н/П	2302	2304	CTTCACGGCCCCTAAACCA	73	23
1000112	11, 11	117 11	4	3	С		54
1338114	Н/П	Н/П	6894	6896	TTAAAAGGAACTCTACCTT	64	23
	/	/	6	5	С		55
1338127	Н/П	Н/П	2654	2656	AGCAGACACTCAACTTGAC	47	23
1000127	11/11	11/11	6	5	С	' '	56
1338140	Н/П	Н/П	7676	7678	CACATGGCCCCATACAGGC	42	23

			3	2	A		57
1220155	TT / TT	17./77	7276	7278	GCAAATCACCAGAGTCCCC	27	23
1338155	Н/П	Н/П	5	4	A	37	58
1338217	Н/П	Н/П	5846	5848	ATCTACTGACCCCTCTGGA	73	23
1330217	П/11	П/11	8	7	A	/ 3	59
1338241	Н/П	Н/П	1869	1871	AGCGGTCCACCTCCTAATA	28	23
1330241	11/11	11/11	3	2	С	20	60
1338297	Н/П	Н/П	5647	5649	CGCAGTCACCTCCCACTGC	69	23
1330237	117 11	117 11	8	7	С		61
1338302	Н/П	н/п	9332	9334	TGCACAGATCTTCATAGCA	23	23
1330302	117 11	117 11	7	6	A		62
1338338	н/п	Н/П	4928	4929	GGTCTGCTCACCTCACTTG	32	23
	117 11	117 11	0	9	С		63
1338360	Н/П	Н/П	6842	6844	GGACCAACCCCAGATGGTC	82	23
	117 11	117 11	4	3	С		64
1338366	Н/П	Н/П	4030	4032	AGCAGCTCCATTACCTCTG	20	23
	117,11	11/ 11	5	4	С		65
1338368	Н/П	Н/П	1775	1777	TTTTACAAATCTTCATGGT	36	23
	117,11	11/ 11	8	7	С		66
1338410	Н/П	Н/П	3071	3072	GGGAGATGTCTCTCCAAGC	53	23
	,		0	9	Т		67
1338419	Н/П	Н/П	7443	7445	GGCCTCAGCACCAGATGCC	66	23
	,		6	5	Т		68
1338444	Н/П	Н/П	4880	4882	TGGCCACTCCTCCTAGGCG	59	23
	,		4	3	G		69
1338496	Н/П	Н/П	5191	5192	GGGTCCGTCACACCCAGCA	29	23
	,		0	9	G		70
			1922	1924			
1338527	Н/П	Н/П	3	2	CCTCTCATCCTATAGACAC	44	23
	·		1926	1928	С		71
			9	8			
1338610	Н/П	Н/П	2164	2166	TCCTGGCACCTCTCATGTC	38	23
			7	6	С		72
1338692	Н/П	Н/П	6324	6326	GCTTTACACTTTTAGAAGA	18	23
			9	8	A		73

1338740	3843	3862	9422	9424	GCCACCGTGTCCTCACACG	18	23
1330740	3043	3002	2	1	С	10	74
1338805	Н/П	Н/П	3675	3677	TGGGAACGAACCCACAGCC	66	23
1330003	11/ 11	117 11	7	6	С		75
1338851	н/п	Н/П	8207	8209	CCTGGGTTCCACACCTGAC	33	23
	11/ 11	11/ 11	6	5	С		76
1338858	Н/П	Н/П	3931	3933	GCGCTGCTCCACCTGCCCA	30	23
1333333	117 11	11/ 11	5	4	A		77
1338873	Н/П	Н/П	4811	4813	GCCCACTTCTCCGAGCACC	38	23
10000,0	11/ 11	117 11	3	2	A		78
1338883	Н/П	Н/П	2372	2373	ATGACATGCATTTCACTCA	33	23
	11/ 11	117 11	0	9	С		79
1338890	Н/П	н/п	7870	7872	GCTACTGCAATGACCGGCC	30	23
	11/ 11	117 11	6	5	A		80
1338978	Н/П	Н/П	3113	3115	TAATTCAAATTCAACTGCT	59	23
	11/ 11	117 11	8	7	С		81
1339012	Н/П	Н/П	8966	8968	GGAAAGGTCTTCACAGGCC	22	23
1000012	11/ 11	11/ 11	2	1	A		82
1339098	Н/П	Н/П	4716	4718	CCATTCTCATCCACTCATC	41	23
100000	11/ 11	11/ 11	1	0	A		83
1339114	Н/П	Н/П	5059	5061	ACCAGCCTAACCCCTGTTC	68	23
1000111	11, 11	11/ 11	4	3	С		84
1339141	Н/П	Н/П	8715	8716	GCCCGTATTCTTCCTGAAG	27	23
1000111	11, 11	11/ 11	0	9	A		85
1339147	Н/П	Н/П	3239	3241	CCCTCCACTTAATCATATC	43	23
	11, 11	117 11	6	5	Т		86
1339199	Н/П	Н/П	1989	1990	GCCATGCCAGACTCACCCA	36	23
	11/ 11	117 11	0	9	A		87
1339236	Н/П	Н/П	5440	5442	GCCCAGTTCTCCTTCTCAA	22	23
1000100	,	11, 11	9	8	A		88
			8844	8863	TCATGCTCAGAAAATGACC		23
1339284	Н/П	Н/П	3728	3730	A	34	89
			8	7			
1339345	Н/П	Н/П	3385	3387	CATTCCATCCAGATATGGC	44	23
			3	2	Т		90

1220252			7126	7128	CGCACCATCACCCAACAGC	37	23
1339352	Н/П	Н/П	8	7	A	37	91
1220254	Н/П	11 / 11	7021	7023	ATCCTGGGCCTCTCCAGAC	74	23
1339354	H/II	Н/П	5	4	T	/4	92
1339364	Н/П	Н/П	2060	2062	TGGTTGGGTCTCCCTGCCC	30	23
1339304	П/ 11	П/ 11	3	2	C		93
1339374	Н/П	Н/П	7581	7583	GCTGTTGTCCCCAGCAGGC	41	23
1339374	11/11	11/11	2	1	С	1 4 1	94
1339440	4330	4349	9470	9472	TGCTGCTTCTAACTTCCAG	24	23
1333440	4330	4347	9	8	A	24	95
1339460	н/п	Н/П	4502	4504	GGGAGCCCATTTCCCAAGT	43	23
1333400	11/ 11		6	5	T	13	96
1339494	н/п	н/п	8630	8632	TTGCCAGGCACCCATAGGT	26	23
1333434	11/ 11	11/ 11	1	0	С		97
1339497	н/п	Н/П	6094	6096	AGAGCAGCAACATGGAGCC	40	23
1333437	117 11	11/11	6	5	С	10	98
1339499	н/п	Н/П	6209	6211	TGGAGACCCACCATCTCCC	46	23
1333133	117 11	11/ 11	8	7	С		99
1339522	Н/П	Н/П	3302	3304	GACCACAAATTCAATTGCT	43	24
1000022	117 11	11/ 11	2	1	A		00
1339551	Н/П	Н/П	3752	3754	GAATCCCCCCACCCTTGGC	75	24
1003001	11/ 11	11/ 11	7	6	Т		01
1339572	Н/П	Н/П	9172	9174	CCTCCGACCTTTACTCCAG	17	24
	,	11/ 11	1	0	G		02
1339604	н/п	Н/П	4570	4572	GGCGGCACACACTATAGCC	43	24
			1	0	Т		03
1339610	н/п	Н/П	2467	2469	GAGATGCTCTCACCAGGAG	33	24
			8	7	С		04

Таблица 32. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCGT G	31	283
1337251	н/п	н/п	2054 7	2056 6	GCACTTCCACCTTACCCAG A	72	240 5
1337284	н/п	н/П	3172	3173	CCAACTTCCACTTTGCAAA A	63	240
1337289	н/П	н/П	8834 3727 8	8853 3729 7	AAAATGACCAACTCACTGG C	66	240
1337328	Н/П	Н/П	3657 3	3659 2	ACAAGAGAACATCTGTGCC G	94	240
1337330	Н/П	Н/П	8958 9	8960 8	AGCCCAGTCACCCGTGAGC A	28	240 9
1337335	Н/П	н/п	6518 3	6520 2	CATCACTGTCCCAATCACC C	96	241
1337341	Н/П	н/п	2781 0	2782 9	ACACGCCCAGGCAAACCGC C	60	241
1337476	Н/П	н/п	3749 1	3751 0	CACTAGGCCTCCATGCACC C	66	241
1337531	н/п	н/П	9171 7	9173 6	CGACCTTTACTCCAGGCCT C	35	241
1337550	н/п	н/п	4567 5	4569 4	CAGACGCATCCATTTCCTC C	48	241
1337562	н/п	Н/П	5839 9	5841 8	TGGGACCCAGTCATGAACT A	59	241
1337635	н/п	Н/П	5437 9	5439 8	GGGTTCTGCCCTCTTCTGA C	18	241
1337643	Н/П	Н/П	4226	4228	CCCACACGCAACAAAGGCA	70	241

			3	2	C		7
1337718	Н/П	11 /11	8629	8630	CCATAGGTCAAAAAGGGCC	38	241
133//18	H/II	Н/П	0	9	С	30	8
1227725	11 /11	17./77	4023	4025	AGCGAGGCCACCCATGTGA	0.0	241
1337735	Н/П	Н/П	3	2	A	89	9
			9332	9333	ATCTTCATAGCAACCCATG		242
1337821	Н/П	Н/П	0	9	C	49	0
1337875	Н/П	 Н/П	3268	3270	CACAAGTGTTTTAAGCACA	42	242
			2	1	С		1
1337929	 Н/П	 Н/П	7395	7397	TGCACTGAACCACCTGGTG	80	242
			6	5	С		2
			6794	6796			
1337932	 н/П	 н/п	9	8	GGTCCACCCCAGACGATCC	21	242
			6854	6856	A		3
			5	4			
1337961	Н/П	Н/П	9092	9094	CAGGAGGCCCTTCAAGCTC	36	242
	,	,	1	0	С		4
1337962	Н/П	Н/П	3235	3237	TGTGGTCCCCCTCGCCACG	33	242
	,	127, 22	7	6	С		5
1337980	Н/П	Н/П	6890	6891	GCAGCTGACTCTCCCGCCC	79	242
100,000	11/ 11	11/ 11	0	9	С		6
1338245	Н/П	Н/П	2721	2723	CTGGAGTACTCTCCACAGA	69	242
1000210	11/ 11	11/ 11	1	0	С		7
1338251	Н/П	Н/П	8200	8202	CCACTTGCTCCACTGTGCG	58	242
1000201			3	2	A		8
1338252	Н/П	Н/П	2454	2456	GAGGCATAAACACACTTAC	36	242
1000202	/	/	1	0	A		9
1338279	Н/П	Н/П	9243	9245	TCCTGTGTCCACACCTGCG	41	243
1000279	/	11/11	5	4	G		0
1338347	Н/П	Н/П	6206	6208	CTCACGGGACTCCATCATT	41	243
1000041	**/ **	111/11	2	1	A	* *	1
1338379	Н/П	Н/П	1988	1990	AGACTCACCCAACCCTACC	77	243
100019	11/11	11/11	2	1	A	' '	2
1338384	Н/П	Н/П	2580	2582	GCCGGACACCAGGCCTGCA	49	243

			8	7	A		3
1338395	Н/П	Н/П	2366	2368	TTTGGACACCATCCCGGGC	54	243
1336393	П/ 11	П/ П	3	2	С	J4	4
1338407	Н/П	Н/П	2229	2231	CCACCGCAACCCCTTCTGC	84	243
1336407	П/11	П/ П	5	4	T	04	5
1338428	569	588	5712	5714	TCTCCACCCACAGAATAGG	24	243
1330420			4	3	A	24	6
			7112	7114			
1338452	Н/П	 н/П	1	0	GCCCTGCCCCAGACGCACC	30	243
1330432	11/11	11/ 11	7116	7118	G		7
			1	0			
1338466	Н/П	Н/П	4707	4709	ACATCGCCATTCCCAGAGT	55	243
1330400	11/11	11/11	9	8	С		8
1338490	Н/П	Н/П	7868	7870	CCACAGATTATAACCCACA	49	243
1330430	11/11	11/11	9	8	G	4.7	9
1338505	н/п	Н/П	8784	8786	CCCCAGCACATCCTGGCCT	43	244
1330303	11/11	11/ 11	3	2	Т	13	0
1338541	Н/П	Н/П	4920	4922	GACCAGACCCCAGAATCTC	75	244
1330341	11/11	11/11	2	1	С	75	1
1338551	Н/П	Н/П	4807	4809	TGAAAACGATCCATTTTCC	79	244
1330331	11/11	11/11	9	8	С	73	2
1338554	н/п	Н/П	6986	6988	CCATGGTGCTTCCTAGGGC	29	244
1330331	117 11	117 11	2	1	A		3
1338567	н/п	Н/П	8514	8516	AGGCGGTACATCCACGGGC	48	244
1330307	117 11	117 11	6	5	T	10	4
1338599	н/п	Н/П	1773	1775	ATGGATACAGTCCCTAGGA	19	244
1330333	117 11	117 11	5	4	С		5
1338654	н/п	Н/П	5186	5188	TCTGAAGATTCCTCCCCGC	80	244
1330034	117 11	117 11	7	6	A		6
1338655	Н/П	Н/П	4876	4878	CCATCGCCCCACACTCCAC	76	244
	11/11	**/ **	3	2	Т	'	7
1338670	Н/П	Н/П	7754	7756	GTGGCTCTCCCTTGCAGAA	37	244
1330070	11/11	**/ **	5	4	Т		8
1338678	3838	3857	9421	9423	CGTGTCCTCACACGCTCCT	40	244
1330070			7	6	С	"0	9

1220605			6294	6295	CGGGAAAGCCACACACAC	7.0	245
1338685	Н/П	Н/П	0	9	T	70	0
1338689	Н/П	Н/П	5051	5053	GCTGTGAGCCTCACCTCCC	65	245
1330009	П/П		2	1	С	00	1
1338704	Н/П	н/п	5565	5567	GGTACATCCCACATCTGCG	26	245
1330704	11/11	11/11	7	6	G	20	2
1338718	Н/П	Н/П	7255	7257	CCTGATGCCCTCCCCGAG	74	245
1330710	117 11	11/ 11	8	7	С	, 1	3
1338734	Н/П	Н/П	2142	2144	TCCCCGACATACACAGCA	44	245
		,	4	3	T		4
1338743	Н/П	Н/П	1866	1868	GCACACAACCCATGTGCCC	55	245
	,	,	8	7	A		5
1338780	Н/П	Н/П	4324	4325	CATCTCCCGATATAGCCCT	74	245
	·	·	0	9	A		6
1338788	Н/П	 н/П	2973	2975	CTGTCCGGAGAATCCAGGC	41	245
	·	·	3	2	С		7
1338836	Н/П	 н/П	2301	2303	CCTAAACCACCACTGCCCC	103	245
	·		4	3	T		8
1338838	Н/П	 н/П	8282	8284	CGGAGAGTCCTCCCAGCCC	47	245
	·		5	4	T		9
1338893	 н/П	 н/П	6601	6603	CTGCCTTGCCACACAAAAC	53	246
	·		4	3	A		0
1338898	Н/П	 н/П	7660	7662	TCGACACACACATACACA	135	246
	·	·	8	7	A		1
1338927	Н/П	Н/П	7925	7927	CCCAGACCCCTCACCAAAC	92	246
	·		2	1	A		2
1338968	 н/П	Н/П	3925	3927	ACCAGACACCAGCCCAAGC	77	246
	·	·	2	1	A		3
1339022	Н/П	Н/П	1818	1820	GCTGCCGTTTTCAAGAATT	45	246
			8	7	A		4
1339091	4266	4285	9464	9466	CCAGAGTGCAGAACAGCAG	65	246
			5	4	С		5
1339145	Н/П	Н/П	3496	3498	GAATCCTCACCCTTAGCCC	67	246
	·		6	5	Т		6
1339159	Н/П	Н/П	6080	6082	CCAAGAGACCCCACCTGGC	76	246

			2	1	C		7
1339178	Н/П	Н/П	3377	3379	AACCAGTGAGTCACTACGA	37	246
13391/8	H/II	H/II	8	7	A	37	8
1220207	11./11	TT /TT	4486	4488	AACAAGGGCTCTCACACCT	102	246
1339207	Н/П	Н/П	5	4	С	103	9
1339232	Н/П	Н/П	3049	3051	GCCTCCTGAAATCTGGGCT	80	247
1339232	H/II	П/П	3	2	Т	00	0
1339281	Н/П	Н/П	8424	8426	TGTCACCCCACCAGCAGCA	82	247
1339201	П/П	П/11	2	1	Т	02	1
1220201	11 / 11	11 / 11	5644	5646	CAGGTGCCTTCCTTTGCCG	23	247
1339291	Н/П	Н/П	9	8	T	23	2
1220205	11 / 11	11 / 11	5329	5331	TCCGTGGACCTTCTGGGTC	21	247
1339295	Н/П	Н/П	2	1	С	31	3
1220211	11/11	11 / 11	3112	3113	TCAGCGAACTTAATTATAT	E 4	247
1339311	Н/П	Н/П	0	9	С	54	4
1220261	11/11	11 / 11	7570	7572	GTTGACCCCACCCCAGAGG	E.C.	247
1339361	Н/П	Н/П	9	8	С	56	5
			1922	1924			
1339376	Н/П	 н/П	2	1	CTCTCATCCTATAGACACC	23	247
1339370	П/ 11	П/11	1926	1928	A	23	6
			8	7			
1000501	1501	15.10	9490	9492	AGGTAAGTGTAAAATGGTC		247
1339504	4524	4543	3	2	С	24	7
1000506			5919	5921	GTGTTGATCATCTCCAGGA		247
1339506	711	730	2	1	С	33	8
1000510	1 /	/-	4085	4087	CTAATCAGCTCCCAATCCC		247
1339543	Н/П	Н/П	6	5	T	72	9
1000010	TT /	TT /	8704	8706	GGAGCTGCCAGCAATAGCA	2.1	248
1339613	Н/П	Н/П	6	5	A	31	0
100005	1,,,,,	TT /	6828	6830	CAGATGGTCCACCCTGGAC	10	248
1339656	Н/П	Н/П	9	8	A	48	1

Таблица 33. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
855082	н/п	н/п	9014	9016	CCTTGCAAATATCCCAGG TT	19	248
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCG TG	30	283
1337283	н/П	Н/П	5028 6	5030 5	GTAGAGTCCCAGCACCTG CC	62	248
1337340	н/П	н/П	5865 7	5867 6	AGTCTTGAAACCATGGTC CT	31	248
1337345	н/П	Н/П	9346 4	9348	CACCAGCGCACACCTGCC AC	56	248
1337390	н/П	н/п	3208 7	3210 6	TGCACAGCTCCCATGGAT GA	35	248
1337423	н/П	Н/П	6236 7	6238 6	GGCCCAAGCACTTCACAC CC	28	248
1337426	н/П	Н/П	5769 1	5771 0	GGGCCTGGTTTCCCTATT TA	24	248
1337431	н/П	Н/П	8334	8336 7	GTCCACGGCACCCTCTCC TC	54	248
1337464	н/П	Н/П	2509 3	2511 2	GGCCTCAGCCTTCACTCA CA	38	249
1337529	н/П	н/П	1785 1	1787 0	CCACTCCTGACTCTTGGT TC	30	249
1337544	н/П	н/п	3966 1	3968 0	CCCTGATGAAACTTCAGC CC	57	249
1337596	н/п	Н/П	9152 5	9154	GTGCCTCCCCCCACGGCA GC	17	249
1337612	Н/П	Н/П	7494 5	7496 4	CAAGGCAGCACTCACTCT AC	56	249

1227620			2997	2999	CCATTTTAACCCTCTTTG	1	249
1337630	Н/П	Н/П	8	7	CC	46	5
1227650	11 / 11	TT /TT	3570	3572	ATCTGAAGCCCCAAACTA	99	249
1337659	Н/П	Н/П	7	6	GC	99	6
1337764	Н/П	Н/П	7699	7701	AGGTGCCGAACCTTAAGG	39	249
1337704	П/ 11	П/ 11	7	6	AC	39	7
1337766	Н/П	Н/П	6909	6911	ACACTATGCCACTAAGGA	47	249
1337700	117 11		9	8	CA	1 7	8
1337800	Н/П	Н/П	4269	4271	GGCTCGCTGTCAACACAC	46	249
1007000	117 11	117 11	3	2	GA		9
1337807	Н/П	Н/П	2848	2850	CCAAGGGACCCACTGAGG	52	250
1007007	11/11	117 11	6	5	CT		0
1337809	Н/П	Н/П	3244	3246	TCTTGGCTCACCCAGATC	48	250
1007000	11/11	117 11	1	0	AT		1
1337820	Н/П	Н/П	4544	4546	CCCTGGATGCTCAACAGC	42	250
1337320	117 11	117 11	9	8	CG		2
1337829	Н/П	Н/П	8246	8248	CGGAACACACTTTCACTC	25	250
1007029	117 11	117 11	3	2	TC		3
1337848*	Н/П	Н/П	5224	5226	TCACAGCCCCAGCCTTCG	28	250
1007010	117 11	117 11	9	8	CC		4
1337922	Н/П	Н/П	8492	8494	CCCTTACTCATCAGTGGC	64	250
100/022	117 11	117 11	3	2	CG		5
1337933	Н/П	Н/П	8580	8581	TCCCAGACACACTCAGGG	44	250
100/000	117 11	117 11	0	9	CC		6
1337936	Н/П	Н/П	2275	2276	CACGCAGAAACTCTGGGC	30	250
100/000	117 11	117 11	0	9	TC		7
1338065	Н/П	Н/П	1831	1833	CAGGAATACAGCATTACA	41	250
1330003	11/11	117 11	2	1	AT		8
1338067	Н/П	Н/П	3337	3339	CAGGTAAGCATTTAAACC	43	250
1000007	117 11	117 11	9	8	TT		9
1338133	Н/П	Н/П	5394	5396	ACTGGAGACACCATCTTC	25	251
1000100	11/11	1/	9	8	GG		0
1338149	Н/П	Н/П	7337	7339	GAGAGACTCCACCTGTCC	40	251
, 1000140	11/11	11/11	7	6	AA		1
1338249	Н/П	Н/П	1954	1955	AAGTTGCCCACTCCTGTA	49	251

			0	9	СТ		2
1338261	Н/П	Н/П	1727	1729	GAATTATTCCCATGGGCT	28	251
1336201	П/ 11	П/11	8	7	CA	20	3
1338285	Н/П	Н/П	3139	3140	CTGCGGAATCCCCTCCTG	27	251
1330203	n/11	П/11	0	9	CA	21	4
1338293	Н/П	Н/П	4848	4850	CACTGGCTTCCGGACAGC	66	251
1330293	n/11	П/11	9	8	CA	00	5
1338381	Н/П	Н/П	4041	4043	TCCAGAAGAACAAACCTA	62	251
1330301	П/П	П/ 11	8	7	CC	02	6
1338390	Н/П	Н/П	3796	3797	TGGGCCCGCACATCTCAC	65	251
1330390	117 11	11/11	0	9	AT		7
1338421	Н/П	Н/П	6859	6861	GGATGATCCACCCCAGAC	45	251
1330421	117 11	11/11	1	0	GG	45	8
1338486	Н/П	Н/П	9313	9315	GTGCTCAGCCCTTTGCTT	28	251
1330400	117 11	11/11	1	0	CA	20	9
1338493	Н/П	Н/П	4751	4753	CTGCTCAAACCATCAGGA	36	252
1330433			3	2	CC		0
1338552	Н/П	Н/П	7895	7897	TCTTGGTTTCCAATCATC	26	252
1330332			3	2	AT		1
1338568	Н/П	Н/П	6402	6403	CTGCACATCCCGATTTGG	30	252
1330300			0	9	CC		2
1338580	Н/П	Н/П	2094	2096	CTGTCCACTTCCTCCACC	47	252
	117 11	117,11	2	1	GG	'	3
1338586	Н/П	Н/П	4127	4129	ACCACGCTAGACCTCAGG	16	252
		117,11	7	6	CT		4
1338591	Н/П	Н/П	7037	7039	ACAGTGCCCCTCAGTGG	62	252
			1	0	GC		5
1338613	Н/П	Н/П	3092	3094	GGACACAGTTCAATCCCG	33	252
	117 11	117,11	3	2	AA		6
1338646	Н/П	Н/П	7173	7175	GTGGACCTTCCATCGCTC	13	252
			7	6	CT		7
1338647	Н/П	Н/П	4896	4898	CAGAATTCTCCATTCCTG	61	252
			5	4	AT		8
1338653	Н/П	Н/П	1884	1886	TCTCCCTCCAATAGAACC	49	252
	/	1/	6	5	TC		9

1220666	/	11./17	3450	3452	TTATGACTCAATGAGCCC		253
1338666	Н/П	Н/П	6	5	AA	44	0
			5604	5606			
1000001	TT / TT	TT / TT	8	7	GGAGACTCATCCCACCCC	1.5	253
1338691	Н/П	Н/П	5611	5613	AC	15	1
			2	1			
1220605	TT / TT	TT /TT	2190	2191	AGGAGCTAATGAAACAGC	100	253
1338695	Н/П	Н/П	0	9	CT	29	2
1220606	TT / TT	TT /TT	7799	7801	CACCACCAAGAAACATCG		253
1338696	Н/П	Н/П	7	6	CA	51	3
100000	TT / FT		6815	6816	CTAGACAATCCACCCTGG	-	253
1338697	Н/П	Н/П	0	9	AT	57	4
1220717	17 / 17	TT /TT	2688	2690	TCAGGGTCATCCTCGAAG	38	253
1338717	Н/П	Н/П	7	6	CC	38	5
1220720	TT / TT	TT /TT	5110	5112	GAGGAAAACTCCAATGCT	1.0	253
1338728	Н/П	Н/П	1	0	GC	46	6
1220052	TT /TT	TT /TT	5530	5531	AAGGAGACCTCACTGCTC	0.5	253
1338853	Н/П	Н/П	0	9	AC	25	7
1338856	4696	171E	9507	9509	GTACAAACCAGTAAGGAA	30	253
1338836	4090	4715	5	4	CC	30	8
1338874	Н/П	Н/П	7590	7592	CCGCCATGCCTCCCTGAC	70	253
13300/4	П/П	П/11	2	1	AT	/ 0	9
1220022	11 / 11	11 /11	2424	2425	GGATTCGCCCTCTCAGGG	20	254
1338922	Н/П	Н/П	0	9	TC	20	0
1220021	11 / 11	11 /11	2752	2753	TGGCAGGTCCACCCTCCC	22	254
1338931	Н/П	Н/П	0	9	CC	23	1
1220040	11 / 11	11 / 11	2310	2312	GCCACCCTTCCCAAACTC	72	254
1338940	Н/П	Н/П	3	2	AG	73	2
1220045	ц/п	ц/п	6155	6156	GTGCATCACCAGGCGAGC	17	254
1338945	Н/П	Н/П	0	9	CC	17	3
1320052	Н/П	ц/п	2013	2014	TGGGATGGCTTCTAATGG	11	254
1338953	n/11	Н/П	0	9	CA	11	4
1220054	1261	1202	9474	9476	ACCCCTCTCACATGCCCG	11	254
1338954	4364	4383	3	2	GC	41	5
1339097	Н/П	Н/П	6753	6754	TGTTTGTGCCCACCACCT	51	254

			0	9	CT		6
1220104	3939	3958	9431	9433	TGAGCTGGCCCTCCCCC	E 1	254
1339104	3939	3938	8	7	GC	51	7
1339142	Н/П	Н/П	4615	4617	CGGGAAGCTCCACACCAG	71	254
1339142	П/11	П/ 11	1	0	CT	'	8
1339210	Н/П	Н/П	5981	5983	ACTGCTGCCATTCACATG	31	254
1339210	11/11	11/11	8	7	AC	31	9
1339224	Н/П	н/п	8895	8897	GGCTGGCCCAACTCTAGC	42	255
1333224		11/11	1	0	TG	47	0
1339252	Н/П	н/п	4427	4429	GTGAGCTCCACCTCATGC	33	255
1333232	117 11	11/11	3	2	CG		1
1339319	Н/П	Н/П	3704	3706	GATGGAAGCCCCCTTCAA	68	255
1333313		11/11	9	8	CC		2
1339369	Н/П	Н/П	9212	9214	CAGCTCATTTCACTCCGG	13	255
1333303		11/11	4	3	CA		3
1339370	Н/П	Н/П	6555	6557	GGCATGGGACAATCTCCC	8	255
1333370		11/11	4	3	CC		4
1339411	Н/П	н/п	8643	8645	ACACAGGTCCATACCCCA	82	255
1000411		11/11	2	1	CC	02	5
1339449	Н/П	Н/П	5667	5669	AGGTCGGGCTATCTAACC	38	255
1009449	11/11	11/11	1	0	CA		6
1339519	Н/П	Н/П	8754	8756	CAGGCTACTCCCCCCAGG	41	255
1 1000010	11/11	11/11	5	4	CC		7
1339652	Н/П	Н/П	8159	8161	CCACGCCATCTCCTGAGT	88	255
1000002	11/11	11/11	3	2	TC		8
	•		•		•	•	•

Таблица 34. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
------------------	----------------------------	---------------------------	----------------------------	---------------------------	------------------------------------	---------------	------------

1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCG	74	283
			3	2	TG		
1081145	Н/П	Н/П	9171	9173	TCCGACCTTTACTCCAGG	29	487
1001143	11/11	11/11	9	8	CC	2.5	407
1227020	TT / TT	TT / TT	1988	1990	GCCAGACTCACCCAACCC	66	255
1337232	Н/П	Н/П	5	4	TA	00	9
1337354	Н/П	Н/П	7425	7427	GGGTTGTGGACCTCTAGG	48	256
1337334	117 11	117 11	2	1	TA	10	0
1337377	Н/П	Н/П	2975	2977	CCTTTGCTCCCCTGTGGG	54	256
1337377	П/ 11	П/ 11	9	8	CC	J4	1
1337391	Н/П	TT / TT	3062	3064	GCGGCCCTCACTCTCCGG	72	256
1337391	П/11	Н/П	7	6	CC	12	2
1337406	Н/П	Н/П	5575	5576	CCCCTCCCCACCTACTGC	39	256
1337400	П/ 11	П/11	0	9	GG	39	3
1227420	TT / TT	TT / TT	5843	5845	GTGAAAGACCCTCTCTGG	F 4	256
1337429	Н/П	Н/П	2	1	TC	54	4
1227444	TT / TT	TT / TT	6892	6894	CCCGTTCTCCCACCTTGA	115	256
1337444	Н/П	Н/П	4	3	СТ	115	5
1337467	Н/П	Н/П	4324	4326	CTGCATCTCCCGATATAG	39	256
1337407	П/ 11	П/ 11	3	2	CC	39	6
1337499	Н/П	н/п	1867	1869	ACCATCGGCACACAACCC	69	256
1337499	П/ 11	П/ 11	5	4	AT	09	7
1337504	Н/П	н/п	8714	8716	CCGTATTCTTCCTGAAGA	1.0	256
1337304	П/11	П/11	8	7	СТ	18	8
1337561	4306	4325	9468	9470	GCTTGGGACAGCAAACAG	39	256
1337301	4300	4323	5	4	CC	39	9
1337629	Н/П	Н/П	8286	8288	ATCCCTGTCCACACAGGG	110	257
1337029	П/11	П/11	4	3	TC	110	0
1337663	Н/П	TT / TT	5190	5192	TCACACCCAGCAGACAGC	100	257
1337003	П/11	Н/П	3	2	CG	100	1
1337710	Н/П	TT / TT	5647	5649	AGTCACCTCCCACTGCCT	17	257
133//10	11/11	Н/П	5	4	GC	47	2
1337731	Н/П	ц/п	6989	6991	CTGACAGCTTCTCCTGGC	51	257
133//31	^{П/ 11}	Н/П	9	8	CA		3
1337739	Н/П	Н/П	2782	2784	TATATTCAATCAACTTAG	57	257

			9	8	GA		4
1337780	Н/П	11 / 11	9094	9096	CCCGAGCTAACACCCGTC	35	257
1337700	П/11	Н/П	5	4	CT	33	5
1337897	Н/П	Н/П	8784	8786	GACCCCAGCACATCCTGG	27	257
1337097	П/ 11	П/11	5	4	CC	21	6
1337923	Н/П	Н/П	5330	5332	TGCTCCAGCCTTTCCGTG	39	257
1337323		11/ 11	4	3	GA		7
1337928	Н/П	Н/П	9332	9334	CACAGATCTTCATAGCAA	52	257
1337320	117 11	11/ 11	5	4	CC		8
1337996	Н/П	Н/П	8546	8548	ACCTGTCTCCCCTCTCCCC	44	257
1337330	117 11	11/ 11	9	8	GT		9
1338014	Н/П	Н/П	4810	4812	GAGCACCACAAAAAG	61	258
133331	117 11	117 11	1	0	GA		0
1338024	Н/П	Н/П	2055	2056	GCGGCACTTCCACCTTAC	57	258
1330021	117 11	11/ 11	0	9	CC		1
1338120	Н/П	Н/П	1822	1823	CTTCCTGCCCAATATCGG	80	258
1330120	117 11	11/ 11	0	9	AA		2
1338164	Н/П	Н/П	8424	8426	TGCATGTCACCCCACCAG	69	258
	117 11	11/ 11	6	5	CA		3
1338177	Н/П	Н/П	6085	6087	CCCCCACCTTTACCCTGG	53	258
1330177	117 11	11/ 11	4	3	CT		4
1338246	Н/П	Н/П	2729	2731	GTGTTTCTACATAAGCCA	25	258
1000210	117 11	11/ 11	1	0	CA		5
1338248	Н/П	Н/П	4712	4714	GTTTATCTGGCAAACAGC	56	258
1330210		11/ 11	9	8	AA		6
1338257	Н/П	Н/П	3750	3752	TTTCTGACCTCACTAGGC	76	258
1000207	117 11	117 11	1	0	CT		7
1338280	Н/П	Н/П	6524	6526	AGGCTCAGTCTTTCCAGT	63	258
1000200	117 11	117 11	5	4	CA		8
1338342	Н/П	Н/П	7926	7928	ACTGGAGCCCTCCCAGAC	92	258
			3	2	CC		9
1338364	Н/П	Н/П	2301	2303	CCCCTAAACCACCACTGC	91	259
			6	5	CC		0
1338409	Н/П	Н/П	3172	3174	GACCCAACTTCCACTTTG	88	259
	/	1/	3	2	CA		1

			1922	1924			
1220414	11./11	TT /TT	7	6	CTTCCCTCTCATCCTATA	91	259
1338414	Н/П	Н/П	1927	1929	GA	91	2
			3	2			
1 2 2 2 4 5 5			7762	7764	GTGCCTCTAACATAGACA	 	259
1338455	Н/П	Н/П	7	6	CT	50	3
1338465	Н/П	Н/П	2371	2373	GCATTTCACTCACTCAGG	34	259
1330403	П/11	П/11	3	2	AC	34	4
1338503	758	777	5930	5932	ACAGGTTCCGCAGCGGCG	35	259
1336303	750		6	5	GC		5
1338522	Н/П	Н/П	4502	4504	GAGCCCATTTCCCAAGTT	50	259
1330322	11/11	11/11	4	3	CA		6
1338542	Н/П	н/п	5439	5441	CTCAAACTCTCCTAGTGG	35	259
1330342		11/11	5	4	GT		7
1338616	Н/П	Н/П	7580	7582	CAGCAGGCCACCACCCCG	80	259
1330010		11/11	1	0	TC		8
1338664	Н/П	н/п	2143	2145	AAAGCATGCATCCCCCGA	51	259
1330001	117 11	11/11	4	3	CA		9
1338667	Н/П	н/п	4876	4878	GACCATCGCCCCACACTC	59	260
1330007	117 11	11/11	5	4	CA		0
1338703	Н/П	н/п	2230	2232	GAGACATCCCCACCGCAA	105	260
		117,11	4	3	CC		1
1338713	Н/П	н/п	9258	9259	TTGGAGTTCCCACAGTGT	43	260
1330713	117 11	117 11	0	9	GA		2
1338749	Н/П	н/п	4086	4088	ACGCTGTCTAATCAGCTC	44	260
1330713	117,11	11/11	3	2	CC		3
1338765	3841	3860	9422	9423	CACCGTGTCCTCACACGC	44	260
1330703			0	9	TC		4
1338772	Н/П	Н/П	4030	4032	CAGCTCCATTACCTCTGC	67	260
1330772		117 11	3	2	TC		5
1338777	Н/П	Н/П	6839	6841	ATGGTCCACCTTGAATGG	36	260
			7	6	TC		6
1338804	Н/П	Н/П	3237	3239	CTGCTAATCCCCCTCACC	61	260
	11/11		8	7	AC		7
1338885	Н/П	Н/П	3930	3931	CCCAACCATCCCCAGAGG	99	260

			0	9	AC		8
1220001	11 / 17	TT / TT	3112	3114	GCTCAGCGAACTTAATTA	C1	260
1338901	Н/П	Н/П	2	1	TA	61	9
1220016	11./11	TT / TT	8965	8967	TCACAGGCCACCTGTTCC	0.1	261
1338916	Н/П	Н/П	2	1	CC	81	0
1220051	11./11	11 / 11	4922	4924	GGGAGCCTCACCATGCCC	82	261
1338951	Н/П	Н/П	8	7	TT	02	1
1338963	Н/П	Н/П	7126	7128	CACCATCACCCAACAGCA	70	261
1330903	Π/11	П/ П	6	5	TG	'0	2
1338965	Н/П	н/п	1774	1776	CTTCATGGTCCTCATGGA	22	261
1330903	Π/11	П/ 11	8	7	TA	22	3
1339061	н/п	н/п	3668	3670	CGGCTGCTCCATGATGCA	78	261
1333001	11/11	11/ 11	1	0	GT	'	4
			8837	8856	CAGAAAATGACCAACTCA		261
1339084	Н/П	Н/П	3728	3730	CT	52	5
			1	0			
1339094	Н/П	н/п	6315	6317	GATTGGTGAATCAAAGCC	47	261
1333034	11/11	11/ 11	1	0	AA	4 /	6
1339103	Н/П	н/п	7269	7271	TGGCTGAGCCCTCCCGTC	120	261
1333103	117 11	11/ 11	7	6	CC	120	7
1339105	Н/П	Н/П	4567	4569	TGCAGACGCATCCATTTC	63	261
1000100	117 11	117 11	7	6	CT		8
1339171	Н/П	Н/П	3384	3386	GATATGGCTCCTACTCCA	70	261
1000171	117 11	117 11	2	1	CC	"	9
1339186	Н/П	Н/П	2646	2648	GCCACGCCCTCGCCGAC	31	262
1333100	117 11	11/ 11	6	5	CA		0
1339214	Н/П	Н/П	7673	7675	GAAATGGACACACCCGGA	120	262
1000211	117 11		9	8	CA		1
1339234	Н/П	Н/П	6602	6604	GAGGCTCCACTGCCTTGC	49	262
1003201		11, 11	3	2	CA		2
1339264	4538	4557	9491	9493	GGCTTTGCTTTAAAAGGT	87	262
1000204			7	6	AA		3
1339269	н/п	н/п	5055	5057	TGTCACTGTCCACCAGGG	45	262
1 1000200	11/11	11/11	7	6	CA		4
1339274	Н/П	Н/П	6795	6797	AATGGTCCACCCCAGACG	54	262

			2	1	AT		5
1339429	Н/П	н/п	4238	4240	GCACCCCACAACCCCAAG	73	262
1339429	H/II	H/II	8	7	TC	/ 3	6
1339446	Н/П	Н/П	6209	6211	AGACCCACCATCTCCCCA	100	262
1333440	11/11	11/11	5	4	GA		7
1339464	Н/П	Н/П	3301	3303	CAATTGCTAAACCACACT	63	262
1333404	11/11	11/ 11	1	0	TT		8
1339474	Н/П	н/п	7869	7871	GGCCACAGATTATAACCC	73	262
1333474	11/11	11/ 11	1	0	AC	/ 3	9
1339490	Н/П	н/п	5716	5718	GTAGGGCACTCACCTGGA	93	263
1339490	11/11	11/ 11	3	2	TC	93	0
1339515	Н/П	н/п	3497	3499	AGTGCCGGAATCCTCACC	37	263
1333313	11/11	11/11	3	2	CT		1
1339546	н/п	н/п	2457	2459	GGTGCTTTTCCATAGCAG	31	263
1339340	11/11	11/11	5	4	CT		2
1339620	Н/П	н/п	8629	8631	GCCAGGCACCCATAGGTC	30	263
1339020	11/11	11/11	9	8	AA		3
1339666	Н/П	н/п	8202	8204	CAGAAAGCCAATTCCAGC	67	263
1333000	11/11	11/11	5	4	TC		4

Таблица 35. Снижение РНК КСПТ1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСПТ1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCG TG	20	283
1080889	4699	4718	9507 8	9509 7	ACCGTACAAACCAGTAAG GA	21	133
1337293	н/п	Н/П	4899 5	4901	CTGGCATCCACCGGCTCC CC	32	2635

1337302	Н/П	н/п	8342	8344	CTGGTGCCTTCTACAGGC	50	2636
1337333	Н/П	Н/П	9015	9017	CAGGGCAGAATTACCTTG CA	28	2637
1337360	н/п	Н/П	2027	2029	CGTCCTCCCACCTCACAC GG	39	2638
1337411	н/п	н/п	1729 9	1731 8	CTGCCAGCCCCTCAGCG GA	33	2639
1337501	н/п	н/п	5407 6	5409 5	CTGAGCACTCTTACGCAT AA	22	2640
1337549	н/п	н/п	9360	9361 9	GTCCCATCTCCACACAGG GC	34	2641
1337567	Н/П	н/п	7176 9	7178	GGACCTCAACCCCCTACT TG	44	2642
1337576	Н/П	н/п	7597 4	7599 3	GGTCTTTCTCCTCCCACC AC	46	2643
1337606	Н/П	н/п	3810	3811	CACCCCCAATTCCTACC TC	81	2644
1337608	Н/П	н/п	5871	5872 9	GTCTTAGCCACCAAGGCC TT	47	2645
1337614	Н/П	н/п	7913 8	7915 7	CAGCTGTACCCACAGGCG GC	64	2646
1337616	н/п	н/п	6259 1	6261	CAGAGGCTCCCTAGGAGC AC	81	2647
1337711	н/п	н/п	6786 1	6788 0	CTATAATGCTCTCATGGC TC	49	2648
1337763	н/п	н/п	4042	4044	GATCCACACTCCAGAAGA AC	39	2649
1337805	н/п	н/п	8755 5	8757 4	TCCAAACTCACAGGCTAC TC	18	2650
1337817	н/п	Н/П	9315	9317	ACAGGCCATTCCCACTCG CT	26	2651
1337840	н/п	Н/П	3100	3102 7	CTTAATTACCTCTAAAGA AC	64	2652
1337862	Н/П	Н/П	5676	5678	ACGACAGGCAACAGCAGC	23	2653

			9	8	CT		
1337884	Н/П	11 /11	5126	5128	ACCGTGGCCACCTGCATG	61	2654
1337004	П/11	Н/П	3	2	AC	OI	2004
1337915	Н/П	Н/П	4617	4619	GCAGGTAGTCATACACAG	48	2655
1337913	П/ 11	П/ 11	9	8	AT	40	2000
1337947	Н/П	Н/П	1796	1798	TGGGCTCATTATTAGAGC	40	2656
1337347	11/11	11/11	3	2	AC	40	2000
1337964	Н/П	н/п	7339	7341	GACAGATTCAAAAACAGG	18	2657
100/001	11/ 11	117 11	9	8	CC		
1337966	1414	1433	7061	7063	GCAGGCCTCCCCATTGTC	28	2658
			2	1	CA		
1337969	Н/П	Н/П	8581	8582	AGCTCTATCTTCCCAGAC	50	2659
		,	0	9	AC		
1337993	Н/П	Н/П	3583	3585	CTGGACATTCTCAAAGTG	53	2660
	·	·	4	3	CC		
1338000	Н/П	 н/П	6185	6187	CCAGAGGACCCACCTGCA	83	2661
	·	·	3	2	GT		
1338012	Н/П	Н/П	8249	8251	TCCAGGATCCCTATGGGC	38	2662
			9	8	TC		
1338038	Н/П	Н/П	8167	8169	CAGTGCCTCACACGCGGT	46	2663
			7	6	CA		
1338040	Н/П	Н/П	2758	2760	GCCCAAAACTACAGCGGT	26	2664
			1	0	CT		
1338043	Н/П	Н/П	6414	6416	TGGCCTTGTCTTACTTCT	36	2665
			8	7	TA		
1338061	Н/П	Н/П	8666	8668	GCCCATCCACCCACTTGG	77	2666
			1	0	AC		
1338144	Н/П	Н/П	3987	3988	CAGGTGCTTGACCTTAGC	42	2667
			0	9	CT		
1338159	Н/П	н/п	2194	2196	TGCTCAACTCCAGAGAAC	47	2668
			6	5	CA		
1338180	Н/П	н/п	4285	4287	CAGCATCCAAACCCACGG	33	2669
			2	1	TG		
1338198	Н/П	Н/П	1886	1888	GAAGCTCTAATCCCTGGC	29	2670
			7	6	CA		

1338201	 н/п	 н/П	7515	7517	TCAGTGACACTCAAAAGT	57	2671
1338201	H/II	П/11	3	2	GC	37	20/1
1220010	TT / TT	TT / FT	3248	3250	GCGACTCTGAACCTCTGC	0.4	0.670
1338218	Н/П	Н/П	5	4	CT	24	2672
1 2 2 0 0 0 0	TT / TT	TT / FT	2530	2532	CAGCTGGAACTCCTGACA	1 4 5	0.670
1338282	Н/П	Н/П	3	2	CC	45	2673
1338300	Н/П	Н/П	4851	4853	TGCAACCCTGCCCATTGC	37	2674
1330300	11/11	117 11	5	4	CA		2074
1338365	Н/П	Н/П	6937	6939	AGGGAACCCCACCACATC	37	2675
100000	11/ 11	117 11	2	1	AC		
1338391	4367	4386	9474	9476	CGCACCCCTCTCACATGC	38	2676
100001			6	5	CC		
1338429	Н/П	н/п	3144	3146	GCTGGGCCCGCATCTGGA	72	2677
1000125	11/ 11	117 11	6	5	GC	' -	
1338445	Н/П	Н/П	2698	2700	CCAAGATTACCCTCAGGA	29	2678
1330113	11/ 11	117 11	3	2	TC		2070
1338447	Н/П	н/п	7713	7715	CCCTTAACCACCTGTGCA	73	2679
1000117	117 11	117 11	5	4	TC	, 3	
1338478	Н/П	н/п	4167	4169	TGACGGGACCATACTCAG	50	2680
1000170	117 11	117 11	5	4	GA		
1338498	Н/П	н/п	2283	2285	GCGCAGCCCAGCCCTAGC	27	2681
1000100	117 11	117 11	5	4	TT		
			6808	6810			
1338571	Н/П	Н/П	8	7	GGTCCACCCCAGACAGTC	14	2682
1000071	117 11	117 11	6861	6863	CA		
			5	4			
1338611	Н/П	Н/П	5999	6001	ACGGGTCCCCATCTTGCC	42	2683
1000011	117 11	117 11	2	1	TA		
1338671	Н/П	Н/П	9160	9162	CGCCTGAATCCCCCACGC	33	2684
			3	2	CA		
1338707	Н/П	Н/П	5038	5040	CCAAAGCTCACAACACTC	50	2685
			1	0	AG		
1338879	н/п	Н/П	2438	2439	TCTGTTTTACACTAATGC	24	2686
			0	9	GG		
1338884	Н/П	Н/П	6819	6821	TGGATGGTCCCCCTGGA	72	2687

			1	0	CA		
1220000	17 / 77	17 / 17	8908	8909	CCAAAGTCTCCCCCCTAC	F 0	2600
1338889	Н/П	Н/П	0	9	CC	59	2688
1338906	Н/П	Н/П	7802	7804	GCTGGCCCCACATGCAGG	39	2689
1336900	П/П	П/ 11	3	2	CA	39	2009
1338937	3974	3993	9435	9437	AAAACTCTCCTCACTAGC	32	2690
1330337	3374		3	2	CT	52	2000
1338957	Н/П	Н/П	3452	3454	CCCACACGCCATACAGTT	51	2691
1330337	117 11	117 11	2	1	AT		
1339011*	Н/П	Н/П	5259	5261	CAAGTCCTCACCTGCAAT	45	2692
1333011	117 11	117 11	6	5	CC	10	2002
1339086	н/п	н/п	2850	2852	CCAACAGGTTCTACCTAC	53	2693
	11/ 11	11/ 11	3	2	CA		
1339090	Н/П	Н/П	1957	1959	AAGCCCCCAACTCACTTG	48	2694
	,	,	4	3	CC		
1339126	Н/П	Н/П	4557	4559	CACCCGTCACCCTCTGCA	41	2695
			6	5	CC		
1339136	Н/П	Н/П	4433	4435	CCCTGCTCAGCACGAAGC	56	2696
	,	,	7	6	CA		
1339196	Н/П	 н/П	2095	2097	TGAGCTCCCAACTCTGTC	27	2697
			5	4	CA		
1339230	Н/П	Н/П	2999	3001	GCATAACACAAATATTGC	16	2698
			5	4	CA		
1339258	Н/П	Н/П	5790	5792	GTCCTTGGCATTCACTGA	20	2699
			6	5	GC		
1339301	Н/П	Н/П	5621	5623	AGGCTGGGCATTATCCCT	18	2700
			5	4	CA		
1339321	Н/П	Н/П	2338	2339	GACTGGGATCCCACCTGG	75	2701
			0	9	CC		
1339363	Н/П	Н/П	4759	4761	TCCCAGGCTTCTCTTGGG	80	2702
			8	7	AC		
1339398	Н/П	Н/П	8493	8495	CCGGGTTCGCCCTTACTC	56	2703
			2	1	AT		
1339415	Н/П	Н/П	3217	3219	CTGCAATTCAACACTGCC	30	2704
			3	2	TT		

1339421	н/п	 _{Н/П}	5533	5535	CCCAGACCATCATCGATG	18	2705
1339421		11/11	3	2	CC	10	2703
1220422	TT /TT	TT /TT	1833	1835	CTGCTGTCCACTCCTGAA	70	2706
1339422	Н/П	Н/П	4	3	CA	/ 0	2/06
1339466	н/п	Н/П	3351	3352	AAGCTGCTAAAAGAAATG	38	2707
1339400		П/ 11	0	9	CC	30	2707
1339484	н/п	Н/П	3716	3718	GCATGTCGCCCTGGCTGC	15	2708
1339404		11/11	3	2	СТ		2700
1339629	Н/П	Н/П	6574	6576	GATCTGATTGGAAATAGG	10	2709
1339029		11/11	2	1	TC		2709
1339645	Н/П	Н/П	9212	9214	CACCAGCTCATTTCACTC	24	2710
1339043	11/11	11/ 11	7	6	CG		2/10

Таблица 36. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080855	3854	3873	9423	9425	GTCACGCTAGTGCC ACCGTG	31	283
1337223	н/п	н/п	5605 0 5611 4	5606 9 5613 3	GTGGAGACTCATCC CACCCC	13	2711
1337322	н/п	Н/П	1728 0	1729 9	ATGAATTATTCCCA TGGGCT	26	2712
1337364	н/п	Н/П	3984 5	3986 4	GCCTCTTCTGCAAA TGGGAC	35	2713
1337371	н/п	Н/П	4128	4130	GAACTGGACCACGC TAGACC	51	2714

1337376	Н/П	Н/П	2330	2332	ATATAACCACCCCC TACCCC	97	2715
1337422	Н/П	Н/П	9314	9316	GCCATTCCCACTCG CTGTGC	41	2716
1337441	н/п	Н/П	5037 7	5039	AGCTCACAACACTC AGGGTA	50	2717
1337446	н/п	н/П	7707 8	7709 7	TCATAGGGCCTGCC TAGCCT	37	2718
1337449	н/п	н/п	2997 9	2999 8	GCCATTTTAACCCT CTTTGC	13	2719
1337451	Н/П	н/п	7504 1	7506 0	GAAGCTGCAATTCA GAGCAT	52	2720
1337461	Н/П	н/п	4850	4852	TTGCCAGGACCTCA CTGGCT	69	2721
1337509	Н/П	н/п	9212	9214	CCAGCTCATTTCAC TCCGGC	19	2722
1337519	н/п	н/п	1789 5	1791	CGCTCACTCCCTGA TTCTGA	26	2723
1337535	н/п	н/п	6859	6861	CTGGATGATCCACC CCAGAC	59	2724
1337631	4365	4384	9474	9476	CACCCCTCTCACAT GCCCGG	30	2725
1337679	Н/П	н/п	9152	9154	TAGTGCCTCCCCC ACGGCA	56	2726
1337786	3941	3960	9432	9433	GGTGAGCTGGCCCT CCCCCC	22	2727
1337873	Н/П	н/п	6402	6404	GCCTGCTGCACATC CCGATT	46	2728
1337893	Н/П	Н/П	4548	4550 8	TTTGGGATAATAAT AGGTCC	59	2729
1337898	Н/П	н/п	6158	6160	CCCACGGGACCCTC ACTGCC	58	2730
1337927	Н/П	Н/П	4276	4278	CTGCCAGCCCTAAC TTAGCT	37	2731
1337945	Н/П	Н/П	7039	7041	CCCCTACTCTCTGC	42	2732

		1	7	6	TGGTCA		
1337953	TT /TT	11./11	5227	5229	TGGCTCCCACCCCA	F 0	0722
*	Н/П	Н/П	9	8	TGGACT	59	2733
1227074	11 / 11	TT /TT	8895	8897	CTGGCTGGCCCAAC	45	2724
1337974	Н/П	Н/П	3	2	TCTAGC	40	2734
1338017	Н/П	Н/П	2278	2280	CCCTAGGTCCTGCC	37	2735
1336017	II/ II	П/ 11	1	0	CAGGCC	3 /	2733
1338057	Н/П	Н/П	5865	5867	GAGTCTTGAAACCA	36	2736
1330037	11/11	117 11	8	7	TGGTCC		2730
1338090	Н/П	Н/П	8580	8582	CTATCTTCCCAGAC	63	2737
1330030	11/ 11		6	5	ACACTC		2131
1338095	Н/П	Н/П	8246	8248	GGCCGGAACACACT	44	2738
1330033	11/ 11		6	5	TTCACT		2730
1338207	Н/П	Н/П	8163	8165	CTGGTTCCACCATC	34	2739
1330207	11/ 11	117 11	4	3	AAGAGC		2,00
1338240	Н/П	Н/П	7800	7802	GAGTCCCACCACCA	75	2740
1330240	11/ 11		3	2	AGAAAC	, 5	2740
1338278	Н/П	Н/П	5669	5671	CATGAATGTCCCTA	56	2741
1330270	117 11	117 11	4	3	AGAGCA		2,11
1338349	Н/П	Н/П	3450	3452	AGTTATGACTCAAT	84	2742
1330313	117 11	117 11	8	7	GAGCCC		2 / 12
1338377	Н/П	Н/П	1885	1886	CCACTCTCCCTCCA	36	2743
1330377	117 11	117 11	0	9	ATAGAA		2713
1338431	Н/П	Н/П	7592	7593	CCACAGGGCTCTGC	27	2744
1330131	117 11	117 11	0	9	CCGCCC	2 /	2/11
1338473	Н/П	Н/П	5995	5997	GAGGCTTAAGTCTC	14	2745
	117 11	117 11	9	8	AGGTCA		2,10
1338550	Н/П	Н/П	2752	2754	TTGGCAGGTCCACC	55	2746
			1	0	CTCCCC		
1338601	Н/П	Н/П	2434	2436	TTGTGTCACACACA	32	2747
			7	6	TGAGTC	<u></u>	
1338606	Н/П	Н/П	7895	7897	GTCTTGGTTTCCAA	29	2748
			4	3	TCATCA		
1338618	Н/П	Н/П	2688	2690	TTCAGGGTCATCCT	45	2749
			8	7	CGAAGC		

1338642	 _{Н/П}	 н/п	7174	7175	TCGGTGGACCTTCC	33	2750
			0	9	ATCGCT		
1338659	Н/П	Н/П	3801	3803	CACAGATCCCACCT	58	2751
1330039	П/П	П/11	1	0	GTGTGT	30	2/31
1220662	Н/П	11 / 11	8338	8340	GGCGGATCCCAGCC	4.4	2752
1338662	П/П	Н/П	7	6	TCTGCA	44	2752
1338673	Н/П	Н/П	4751	4753	ACCCGTCTGCTCAA	50	2753
1330073	17 11	П/ 11	9	8	ACCATC		2733
1338682	Н/П	н/п	5774	5776	TGCTCACTGACCCT	22	2754
1330002	11/11	П/ 11	9	8	GAGTCA	22	2734
1338688	Н/П	Н/П	6243	6245	CATCTCCCCAATAG	23	2755
1330000	11/11	11/ 11	6	5	CAGGGT	23	2755
1338729	Н/П	Н/П	5112	5114	CCAGGGTTTAATGA	77	2756
1330729	11/11	11/11	3	2	TCCCCT		2750
1338733	Н/П	Н/П	2190	2192	GAGGAGCTAATGAA	72	2757
1330733	11/11	11/11	1	0	ACAGCC	12	2131
1338741	Н/П	Н/П	1832	1834	CACTCCTGAACACT	58	2758
1330741	11/11	11/ 11	6	5	CAGGAA		2750
1338763	Н/П	Н/П	3244	3246	GATCTTGGCTCACC	64	2759
1330703	11/11	11/ 11	3	2	CAGATC	04	2139
1338935	Н/П	Н/П	9014	9016	ACCTTGCAAATATC	24	2760
1330933	11/11	11/ 11	5	4	CCAGGT	24	2700
1338946	Н/П	Н/П	5530	5532	CAAGGAGACCTCAC	18	2761
1330340			1	0	TGCTCA		2701
1338986	Н/П	Н/П	2849	2851	AGGTTCTACCTACC	39	2762
1330300			8	7	AAGGGA		2 / 02
1339001	4697	4716	9507	9509	CGTACAAACCAGTA	19	2763
1333001	1 4 0 3 7	4710	6	5	AGGAAC		2,700
1339017	Н/П	Н/П	2094	2096	TCTGTCCACTTCCT	43	2764
	/	/	3	2	CCACCG		
1339035	Н/П	Н/П	3140	3142	TCATTCCCGCCATC	54	2765
	/	/	3	2	TGCGGA		
1339047	Н/П	Н/П	8643	8645	GACACAGGTCCATA	66	2766
1000017	/	/	3	2	CCCCAC		
1339054	Н/П	Н/П	7337	7339	AGAGAGACTCCACC	59	2767

			8	7	TGTCCA		
1220056	17 / 77	11 / 11	4615	4617	CCGGGAAGCTCCAC	88	27.60
1339056	Н/П	Н/П	2	1	ACCAGC	88	2768
1339106	Н/П	Н/П	6758	6760	AGGGTCAGACCCTC	136	2769
1339100	П/11	П/ 11	9	8	TGAGCC	130	2709
1339119	Н/П	Н/П	6561	6563	GAGGTTTCTACAGC	38	2770
1339119	11/11		8	7	CACCGT	30	2770
1339253	Н/П	Н/П	5403	5405	CTACGGGTATGAAA	43	2771
1339233	11/11	11/11	2	1	AAGTCA	40	2//1
1339294	Н/П	Н/П	3094	3096	GCTTTGATATAA	31	2772
1555251	117 11		5	4	ATCTTG		2772
1339306	Н/П	Н/П	2524	2525	GTCACGGGACAGCT	40	2773
1003000	117 11	117 11	0	9	CACCCA		2,7,0
1339324	Н/П	Н/П	3216	3218	CAACACTGCCTTAC	46	2774
1003021	117 11	117 11	5	4	TGTGAA		
1339383	Н/П	Н/П	4896	4898	GCAGAATTCTCCAT	30	2775
	11, 11	11, 11	6	5	TCCTGA		
1339390	Н/П	Н/П	2020	2022	AGGCAGACGACCCC	44	2776
			7	6	TGGTCT		
1339394	Н/П	Н/П	1954	1956	AAAGTTGCCCACTC	126	2777
	·	·	1	0	CTGTAC		
1339407	Н/П	Н/П	3574	3576	TCTGAGACCCATCT	102	2778
			3	2	GGGTCT		
1339458	 н/П	Н/П	6815	6817	CCTAGACAATCCAC	78	2779
			1	0	CCTGGA		
1339505	Н/П	Н/П	3341	3343	CGTTAGAGAATTAC	35	2780
			2	1	ACAAAA		
1339524	Н/П	Н/П	9346	9348	ACACCAGCGCACAC	38	2781
			5	4	CTGCCA		
1339545	Н/П	Н/П	8754	8756	ACAGGCTACTCCCC	49	2782
			6	5	CCAGGC		
1339563	Н/П	Н/П	8492	8494	GCCCTTACTCATCA	57	2783
			4	3	GTGGCC		
1339568	Н/П	Н/П	4427	4429	GGTGAGCTCCACCT	47	2784
			4	3	CATGCC		

1339587	Н/П	Н/П	3709	3711	CACGAGTACCCTCT GCCAGC	38	2785
1339592	н/п	н/п	4042	4044	CACTCCAGAAGAAC AAACCT	83	2786
1339599	н/п	н/П	6936 8	6938 7	AACCCCACCACATC ACTGGC	64	2787

Таблица 37. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора праймеров-зондов RTS39496 для человеческого КСNT1

Номер соединения	SEQ ID NO: 1 Старт сайт	SEQ ID NO: 1 Стоп сайт	SEQ ID NO: 2 Старт сайт	SEQ ID NO: 2 Стоп сайт	Последовательность (от 5' к 3')	KCNT1 (% UTC)	SEQ ID NO:
1080852	3842	3861	9422	9424	CCACCGTGTCCTCACACGC T	18	49
1080855	3854	3873	9423	9425	GTCACGCTAGTGCCACCGT G	19	283
1337273	н/п	н/п	7275 8	7277 7	ACCAGAGTCCCCACCGGAG C	45	278 8
1337300	н/п	н/п	4240 1	4242 0	GGAGTGTCCCTCTGCACCC C	43	278 9
1337306	759	778	5930 7	5932 6	AACAGGTTCCGCAGCGGCG G	18	279
1337311	Н/П	н/п	5647 7	5649 6	GCAGTCACCTCCCACTGCC T	58	279 1
1337394	Н/П	н/П	4030	4032	GCAGCTCCATTACCTCTGC T	35	279 2
1337412	н/П	н/П	2729 2	2731 1	CGTGTTTCTACATAAGCCA C	28	279 3
1337414	Н/П	Н/П	2055	2057	CAAGCGGCACTTCCACCTT A	62	279 4

1337453	 _{Н/П}	 _{Н/П}	5357	5359	CCACCCACCCTCATCGCGG	50	279
1337433			4	3	C		5
1227400	TT / TT	TT /TT	2163	2165	CATGTCCTGCTTAATGCCT	33	279
1337480	Н/П	Н/П	4	3	G	33	6
1227406	11./11	17./77	2371	2373	TGCATTTCACTCACTCAGG	07	279
1337486	Н/П	Н/П	4	3	A	27	7
1337502	н/п	Н/П	6209	6211	GGAGACCCACCATCTCCCC	54	279
1337302			7	6	A		8
1337556	н/п	Н/П	3499	3501	CTTCTGAGTCCAAACTGGG	66	279
1337330	11/11	117 11	2	1	A		9
1337559	Н/П	Н/П	2654	2656	CAGACACTCAACTTGACCT	48	280
1337339	П/11	П/11	4	3	С	40	0
1337605	Н/П	Н/П	4877	4878	GCCCTGACCATCGCCCCAC	259	280
1337003	П/ 11	П/ П	0	9	A	239	1
1337689	Н/П	Н/П	4346	4348	GGCTCAGCTTCCCTCTCGC	61	280
1337009	П/11	П/11	2	1	Т	0.1	2
1337699	Н/П	Н/П	7762	7764	AGGTGCCTCTAACATAGAC	46	280
1337099	П/11	Π/11	9	8	A	40	3
1337733	Н/П	Н/П	8548	8550	TTAGCAGCTAAAACGACAC	85	280
1337733	Π/11		6	5	С	00	4
1337744	Н/П	Н/П	9332	9334	GCACAGATCTTCATAGCAA	25	280
1337744	11/11	117 11	6	5	С	23	5
1337749	Н/П	Н/П	3385	3387	ATTCCATCCAGATATGGCT	49	280
1337743	117 11	11/11	2	1	C	47	6
1337767	Н/П	Н/П	1869	1871	GCGGTCCACCTCCTAATAC	37	280
1337707	117 11	11/11	2	1	C		7
1337785	Н/П	Н/П	5719	5721	TTACTGAGCACCACTGCAG	71	280
1337703		11/11	8	7	Т	'	8
1337839	Н/П	Н/П	3675	3677	AACGAACCCACAGCCCACC	48	280
1337033			3	2	G	40	9
1337914	н/п	Н/П	4086	4088	CACGCTGTCTAATCAGCTC	44	281
1001914	11/11	111/11	4	3	С	""	0
1337979	н/п	Н/П	3301	3303	ATTCAATTGCTAAACCACA	71	281
1001010	11/11	111/11	4	3	С	'	1
1338023	Н/П	Н/П	4713	4715	CTCATTTGTTTATCTGGCA	29	281

			6	5	A		2
1338097	Н/П	Н/П	5846	5848	TCTACTGACCCCTCTGGAA	71	281
1336097	П/П	П/ П	7	6	С	'	3
1338125	11 / 11	Н/П	4502	4504	GGAGCCCATTTCCCAAGTT	50	281
1338125	Н/П	H/II	5	4	С	50	4
1338224	Н/П	Н/П	6322	6323	CCAGGTTTATGATCGAGGG	18	281
1330224	П/П	П/ П	0	9	A	10	5
1338263	Н/П	Н/П	8965	8967	AAGGTCTTCACAGGCCACC	29	281
1330203	11/11	11/11	9	8	Т		6
			1922	1924			
1338305	Н/П	 н/П	8	7	CCTTCCCTCTCATCCTATA	77	281
1330303	117 11	117 11	1927	1929	G		7
			4	3			
1338320	Н/П	Н/П	3237	3239	TCTGCTAATCCCCCTCACC	54	281
1330320	117 11	117 11	9	8	A		8
1338362	Н/П	н/п	1775	1777	TTTACAAATCTTCATGGTC	37	281
	117 11	11, 11	7	6	С		9
1338588	4539	4558	9491	9493	AGGCTTTGCTTTAAAAGGT	18	282
			8	7	A		0
1338612	2540	2559	7945	7947	TGCGGGATCTGTAGTAGGC	51	282
			4	3	С		1
1338623	Н/П	Н/П	7429	7431	AGACTCTGCCACTCCTGCA	52	282
			2	1	С		2
1338640	Н/П	Н/П	3172	3174	TGCAGACCCAACTTCCACT	36	282
	,	,	7	6	Т		3
1338736	Н/П	 Н/П	6602	6604	TGACGAGGCTCCACTGCCT	51	282
			7	6	Т		4
1338745	Н/П	Н/П	7126	7128	GCACCATCACCCAACAGCA	47	282
			7	6	Т		5
1338787	Н/П	Н/П	7869	7871	CGGCCACAGATTATAACCC	46	282
			2	1	A		6
1338808	Н/П	Н/П	6795	6797	GAATGGTCCACCCCAGACG	26	282
			3	2	A		7
1338832	Н/П	Н/П	8424	8426	ATGCATGTCACCCCACCAG	47	282
			7	6	С		8

1338870	 н/П	 _{Н/П}	3112	3114	TTCAACTGCTCAGCGAACT	45	282
1000070	117 11	11/ 11	9	8	Т		9
1338878	Н/П	Н/П	2230	2232	AGAGACATCCCCACCGCAA	64	283
1330070	П/ 11	П/П	5	4	С	04	0
1220010	11 / 11	11 /11	7676	7678	ACATGGCCCCATACAGGCA	ГС	283
1338910	H/II	Н/П Н/П		1	С	56	1
1338976	Н/П	Н/П	2301	2303	GCCCCTAAACCACCACTGC	41	283
1330970	117 11	11/11	7	6	С	4.7	2
1339009	Н/П	Н/П	9095	9097	AAACAGGTCCCTCCCGAGC	39	283
1339009	п/п	П/ П	7	6	Т	39	3
1339026	Н/П	Н/П	1822	1824	CACTTCCTGCCCAATATCG	42	283
1339020	П/11	П/11	2	1	G	42	4
1220024	11 / 11	11 /11	4570	4571	GCGGCACACACTATAGCCT	46	283
1339034	Н/П	Н/П	0	9	С	40	5
1220075	11 / 11	17 / 17	6990	6991	GCTGACAGCTTCTCCTGGC	39	283
1339075	Н/П	Н/П	0	9	С	39	6
1339078	Н/П	Н/П	2982	2984	AGGATGGTCATCCTTCGGC	24	283
1339076	0/8 H/II H/II		3	2	Т	24	7
1339079	Н/П	Н/П	8205	8207	GGTGGTGCCCTTCATGGAG	40	283
1339079	П/ 11	П/П	3	2	С	40	8
1339089	Н/П	Н/П	4927	4929	GTCTGCTCACCTCACTTGC	47	283
1339009	п/п	П/11	9	8	Т	4 /	9
1339139	Н/П	Н/П	4810	4812	TCTCCGAGCACCACCACAA	69	284
1339139	П/11	П/11	6	5	A	09	0
1339164	Н/П	Н/П	5578	5580	CAGAGCTCTAACACCTGGG	11	284
1339104	п/п	П/ П	5	4	A		1
1339193	4329	4348	9470	9472	GCTGCTTCTAACTTCCAGA	26	284
1339193	4329	4340	8	7	A	20	2
1220107	Н/П	ц/п	5055	5057	TTGTCACTGTCCACCAGGG	31	284
1339197	111/11	Н/П	8	7	С		3
1339203	Н/П	Н/П	5190	5192	TCCGTCACACCCAGCAGAC	48	284
1333203	11/11	11/11	7	6	A	40	4
1330204	п/п	ц/п	1988	1990	ATGCCAGACTCACCCAACC	50	284
1339204	39204 Н/П Н/П		7	6	С		5
1339233	Н/П	Н/П	3930	3932	GCCCAACCATCCCCAGAGG	63	284

			1	0	A		6
1339237	Н/П	Н/П	6088	6089	GCTGGAGGCCCTCGCAGCT	39	284
1339237	11/11	11/11	0	9	С	39	7
			8840	8859			204
1339240	Н/П	Н/П	3728	3730	GCTCAGAAAATGACCAACT	40	284
			4	3	С		8
1339245	Н/П	Н/П	8714	8716	CCCGTATTCTTCCTGAAGA	28	284
1333243	11/11	11/11	9	8	С	20	9
1339257	Н/П	Н/П	7581	7583	CTGTTGTCCCCAGCAGGCC	179	285
1333237		117 11	1	0	A		0
1339273	н/п	Н/П	6893	6895	GAACTCTACCTTCAGCCCG	48	285
		117 11	9	8	T		1
1339317	Н/П	Н/П	9269	9271	TCTGCCCGTCCTCTCCCCT	40	285
133331	11, 11	11, 11	5	4	T		2
1339366	Н/П	Н/П	2467	2469	GATGCTCTCACCAGGAGCC	45	285
	,		6	5	Т		3
1339387	Н/П	Н/П	3063	3064	GCTGCGGCCCTCACTCTCC	51	285
			0	9	G		4
1339400	Н/П	Н/П	9172	9173	CTCCGACCTTTACTCCAGG	24	285
	·		0	9	С		5
1339452	Н/П	Н/П	8296	8298	GACCCAAACTTCAAGCCAC	61	285
	·		3	2	С		6
1339485	Н/П	Н/П	5440	5442	CAGTTCTCCTTCTCAAACT	21	285
			6	5	С		7
1339495	Н/П	Н/П	8785	8787	CTGGGACCCATCTGGACCC	32	285
			9	8	С		8
1339510	Н/П	Н/П	8630	8631	TGCCAGGCACCCATAGGTC	21	285
			0	9	A		9
1339540	Н/П	Н/П	6840	6842	CTAGATGGTCCACCTTGAA	75	286
			1	0	T		0
1339555	Н/П	Н/П	6532	6534	TCAAGGGCTTTTACTGGTG	22	286
			7	6	С		1
1339562	Н/П	Н/П	2783	2785	GCATATATTCAATCAACTT	38	286
1000555	,	<u> </u>	2	1	A		2
1339627	Н/П	Н/П	3750	3752	GTTTCTGACCTCACTAGGC	30	286

| 2 | 1 | C | 3

Таблица 38. Снижение РНК КСNT1 с помощью 4000 нМ 5-10-5 МОЕ гэпмеров со смешанной основой, измеренное с помощью набора

праймеров-зондов RTS39496 для человеческого KCNT1 Старт Последовательность Старт Стоп Стоп Номер соединения m N α NO: CaŭT .. NO: % NO: .. NO: 5 **ČES** П П П П FO) SEQ 387 9423 9425 GTCACGCTAGTGCCACCG 1080855 3854 20 283 3 3 2 TG 6795 6796 9 TGGTCCACCCCAGACGAT 1081057 H/Π H/Π 13 161 6856 6854 CC5 6 1774 1776 TTCATGGTCCTCATGGAT 1337381 H/Π H/Π 2.4 2864 7 6 AC AGGATCTCCCAGGGCTGC 1820 1822 20 1337408 H/Π H/Π 2865 CG 1 0 454 9490 9492 AAGGTAAGTGTAAAATGG 51 2866 1337413 4525 4 4 3 TCAGCACCAGACACCAGCCC 3925 3927 1337438 H/Π 51 2867 H/Π 5 AA 8835 8854 GAAAATGACCAACTCACT 1337440 Н/П H/Π 3727 3729 81 2868 GG 8 2723 2725 GGCCCTGTTCAAACACTA 54 1337455 H/Π H/Π 2869 7 6 ΤA 9092 9094 TCAGGAGGCCCTTCAAGC 42 1337524 H/Π H/Π 2870 TC2 1 4708 4709 AACATCGCCATTCCCAGA

101

15

2871

2872

1337553

1337564

 H/Π

3839

 H/Π

385

0

9421

9

9423

GT

CCGTGTCCTCACACGCTC

		8	8	7	CT		
1337634	Н/П	н/п	8514 7	8516 6	GAGGCGGTACATCCACGG GC	50	2873
1337642	Н/П	Н/П	4567	4569	GCAGACGCATCCATTTCC TC	47	2874
1337651	4299	431	9467	9469	ACAGCAAACAGCCCAGGG TC	46	2875
1337652	Н/П	Н/П	5716	5718	AGGGCACTCACCTGGATC GC	92	2876
1337994	Н/П	Н/П	3172	3174	CCCAACTTCCACTTTGCA AA	69	2877
1337999	Н/П	Н/П	3235	3237	CGTGTGGTCCCCTCGCC AC	52	2878
1338069	н/п	Н/П	8286	8288	TCCCTGTCCACACAGGGT CA	80	2879
1338086	Н/П	Н/П	3384	3386	ATATGGCTCCTACTCCAC CT	47	2880
1338092	Н/П	Н/П	8629	8631	CCCATAGGTCAAAAAGGG CC	39	2881
1338100	Н/П	Н/П	2454	2456	CGAGGCATAAACACACTT AC	31	2882
1338179	Н/П	Н/П	6082	6084 5	ACCCTGCTTTCAGCTGGG CC	57	2883
1338182	н/п	Н/П	3749	3751 1	TCACTAGGCCTCCATGCA CC	60	2884
1338208	Н/П	Н/П	2301 5	2303	CCCTAAACCACCACTGCC CC	85	2885
1338264	н/п	Н/П	2641 1	2643	TCTCTGGCCACCACAAGG CT	66	2886
1338288	н/п	Н/П	7869 0	7870 9	GCCACAGATTATAACCCA CA	66	2887
1338321	н/п	Н/П	3657 4	3659 3	GACAAGAGAACATCTGTG CC	38	2888
1338335	н/п	Н/П	3112	3114	CTCAGCGAACTTAATTAT AT	39	2889

1338336	Н/П	Н/П	5574	5576 8	CCCTCCCCACCTACTGCG GA	44	2890
1338400	Н/П	Н/П	5439	5441 3	TCAAACTCTCCTAGTGGG TT	21	2891
1338403	Н/П	Н/П	9332	9334	CAGATCTTCATAGCAACC CA	35	2892
1338425	н/п	Н/П	2054	2056	GGCACTTCCACCTTACCC AG	24	2893
1338434	н/п	н/п	1866	1868	GGCACACAACCCATGTGC CC	83	2894
1338438	н/п	Н/П	4237 6	4239 5	CCCAAGTCCCATAAGATG CT	41	2895
1338471	Н/П	Н/П	3497 1	3499	TGCCGGAATCCTCACCCT TA	40	2896
1338476	н/п	Н/П	5189 4	5191 3	GCAGACAGCCGACCCAGC CT	50	2897
1338515	н/п	Н/П	7572 8	7574 7	TGGGCTGTCATTACAGTG TG	36	2898
1338517	н/п	Н/П	5053 4	5055 3	GGCTGTGACACCCAGTGG GT	45	2899
1338518	Н/П	Н/П	4494 8	4496	CCCAGAGGCACCAGCGGG TA	75	2900
1338576	н/п	Н/П	7670 9	7672 8	ACATGCGCACAGAAATGA AC	80	2901
1338636	Н/П	Н/П	7416 3	7418	GGCAGAGTGCCTACTGCG CA	41	2902
1338657	н/п	Н/П	6601 9	6603 8	CTCCACTGCCTTGCCACA CA	24	2903
1338694	н/п	н/п	6314 7	6316 6	GGTGAATCAAAGCCAAGC CG	14	2904
1338818	Н/П	Н/П	8202 4	8204 3	AGAAAGCCAATTCCAGCT CA	66	2905
1338824	Н/П	н/п	7112 3 7116	7114 2 7118	GCGCCCTGCCCCAGACGC AC	16	2906

			3	2			
			7128	7130			
			3	2			
1338826	Н/П	Н/П	8962	8964	CCTCTGAGTCTCCTTCGG	38	2907
1330020	П/11	П/11	3	2	GC	30	2907
1338886	Н/П	Н/П	5922	5924	GGCTCACCCACCGTGATG	65	2908
1550000	117 11		2	1	AT		2300
1338967	Н/П	Н/П	1988	1990	CCAGACTCACCCAACCCT	52	2909
1330307	117 11		4	3	AC		2303
1338999	Н/П	Н/П	7754	7756	TGTGGCTCTCCCTTGCAG	49	2910
	117, 11	117, 11	6	5	AA		
1339081	Н/П	Н/П	6209	6211	GACCCACCATCTCCCCAG	61	2911
	,		4	3	AA		
1339102	Н/П	Н/П	4324	4326	TGCATCTCCCGATATAGC	32	2912
	·		2	1	CC		
1339117	Н/П	Н/П	6519	6521	GTCAGCGGCATCACTGTC	61	2913
	·		1	0	CC		
1339184	Н/П	Н/П	5645	5646	GCAGGTGCCTTCCTTTGC	9	2914
	·		0	9	CG		
1339192	Н/П	Н/П	9171	9173	CCGACCTTTACTCCAGGC	12	2915
			8	7	CT		
1339201	Н/П	Н/П	6829	6831	CAGCCCACCCCAGATGGT	42	2916
			9	8	CC		
1339229	Н/П	Н/П	2974	2976	GTGGGCCCCACCTCTGTC	41	2917
			6	5	CG		
1339242	Н/П	Н/П	2143	2144	CATGCATCCCCCGACATA	52	2918
			0	9	CA		
1339270	Н/П	Н/П	8784	8786	ACCCCAGCACATCCTGGC	41	2919
			4	3	CT		
1339296	Н/П	Н/П	7925	7927	TCCCAGACCCCTCACCAA	103	2920
			3	2	AC		
1339314	Н/П	Н/П	4809	4811	GCACCACCACAAAAAGGA	64	2921
			9	8	GA		
1339328	н/п	н/п	3055	3057	GGGAGATGCCTCCCACTT	69	2922
			7	6	CC		

1339386	Н/П	Н/П	6986	6988	CCCATGGTGCTTCCTAGG GC	16	2923
1339412	Н/П	Н/П	9247 9	9249	GCTTCAGGCCTTTCGCAC AC	17	2924
1339425	Н/П	Н/П	6890 1	6892 0	AGCAGCTGACTCTCCCGC CC	37	2925
1339459	Н/П	н/п	3301	3302 9	AATTGCTAAACCACACTT TT	43	2926
1339473	Н/П	н/п	4876 4	4878	ACCATCGCCCCACACTCC AC	69	2927
1339503	н/п	н/п	1922 4 1927 0	1924 3 1928 9	CCCTCTCATCCTATAGAC AC	54	2928
1339548	н/п	н/п	4030	4032 1	AGCTCCATTACCTCTGCT CT	29	2929
1339556	Н/П	Н/П	4920	4922	TGACCAGACCCCAGAATC TC	66	2930
1339559	н/п	Н/П	2230	2232	AGACATCCCCACCGCAAC CC	69	2931
1339608	н/п	Н/П	5330 3	5332 2	GCTCCAGCCTTTCCGTGG AC	9	2932
1339611	Н/П	Н/П	4086	4088	CGCTGTCTAATCAGCTCC CA	40	2933
1339623	Н/П	Н/П	2782 8	2784 7	ATATTCAATCAACTTAGG AC	61	2934
1339633	Н/П	Н/П	5843 1	5845 0	TGAAAGACCCTCTCTGGT CT	80	2935
1339634	Н/П	Н/П	8424	8426	GCATGTCACCCCACCAGC AG	61	2936
1339636	Н/П	Н/П	2367 5	2369	CCTGCCAGAACTTTTGGA CA	41	2937
1339638	Н/П	Н/П	7265 2	7267 1	GGGTCAGCCCACAAGCCT CA	48	2938
1339661	Н/П	Н/П	8713	8715	GAAGACTCCCCTGAGCCT	12	2939

| 5 | 4 | CT | |

Пример 2: Влияние модифицированных олигонуклеотидов на РНК KCNT1 человека in vitro, многократные дозы

Модифицированные олигонуклеотиды, выбранные из приведенных выше примеров, тестировали в различных дозах в клетках SH-SY5Y. Культивируемые клетки SH-SY5Y при плотности 20 000 клеток на лунку обрабатывали модифицированным олигонуклеотидом в различных дозах методом электропорации, как указано в таблицах ниже. После периода обработки продолжительностью приблизительно 24 часа из клеток выделяли общую РНК и измеряли уровни РНК KCNT1 с помощью количественной ОТ-ПЦР в реальном времени. Набор праймеров-зондов RTS39508 KCNT1 человека ДЛЯ (прямая последовательность GTCAACGTGCAGACCATGT, обозначенная в данном документе как SEQ ID последовательность TCGCTCCCTCTTTTCTAGTTTG, обратная обозначенная В данном документе как SEQ ID NO: 12; последовательность зонда AGCTCACCCACCCTTCCAACATG, обозначенная в данном документе как SEQ ID NO: 13) использовали для измерения уровней РНК, представленных в таблицах 39-42, а набор праймеровзондов RTS39496 для KCNT1 человека (прямая последовательность CAGGTGGAGTTCTACGTCAA, обозначенная в данном документе как SEQ ID 14; обратная последовательность GAGAAGTTGAACAGCCGGAT, данном SEO ID NO: обозначенная В документе как последовательность зонда TGATGAAGAACAGCTTGAGCCGCT, обозначенная в данном документе как SEQ ID NO 16) использовали для измерения уровней РНК, представленных в таблицах 43-60. В каждой таблице представлены результаты, полученные на отдельном аналитическом Уровни РНК КСNT1 были скорректированы относительно RIBOGREEN®. общего содержания PHK, измеренного С помошью Результаты представлены в таблицах ниже в виде процента РНК сравнению с необработанным контролем. ПО представлена половина максимальной ингибирующей концентрации IC50 (IC50) каждого модифицированного олигонуклеотида. рассчитывали С использованием линейной регрессии логарифмическом/линейном графике данных в Excel. В некоторых когда невозможно надежно рассчитать IC50, она обозначается как Н.Р. (Не рассчитано).

Таблица 39. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39508 для КСNT1 человека

Соединение № %UTC IC50 (мкМ)
--

	94 нМ	375 нМ	1500 нМ	6000 нМ	
1080715	88	79	46	25	1,4
1080740	76	54	46	14	0,6
1080846	98	106	32	17	1,3
1080847	84	63	36	23	0,8
1080852	76	62	33	17	0,6
1080858	101	83	57	25	1,8
1080859	79	51	30	19	0,5
1080865	117	85	50	24	1,7
1080888	65	53	26	15	0,3
1080889	72	46	23	16	0,3
1080894	80	74	36	16	0,8
1080895	85	74	39	15	0,9
1080978	85	67	49	26	1,2
1080996	91	85	72	17	2,0
1081080	96	92	43	21	1,4
1081092	66	56	54	15	0,6
1081093	104	55	20	12	0,7
1081135	83	57	28	13	0,6
1081148	97	73	42	32	1,5

Таблица 40. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39508 для КСNT1 человека

Соединение №		%U	IC50 (мкМ)		
Соединение	94 нМ	375 нМ	1500 нМ	6000 нМ	1000 (MAI)
1080722	106	109	48	36	2,6
1080723	90	54	28	13	0,6
1080741	98	111	61	35	3,5
1080753	135	108	62	26	2,6
1080818	76	53	41	19	0,6
1080854	100	74	44	16	1,1
1080878	71	53	31	15	0,4
1080890	86	77	44	25	1,3
1080896	83	88	49	22	1,4
1080902	112	92	46	18	1,5

1080992	75	84	72	42	.H.P.
1081040	88	88	40	14	1,1
1081052	76	68	32	20	0,7
1081057	72	61	24	16	0,5
1081076	76	77	55	26	1,5
1081100	81	75	31	12	0,7
1081136	94	72	46	16	1,1
1081147	79	74	34	13	0,8
1081148	105	89	56	25	2,0

Таблица 41. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39508 для КСNT1 человека

Соединение №		%UTC					
ооединение п	94 нМ	375 нМ	1500 нМ	6000 нМ	IC50 (мкМ)		
1080706	97	59	58	29	1,5		
1080806	131	138	126	71	.н.Р.		
1080819	69	67	59	29	1,5		
1080831	115	71	37	37	1,6		
1080855	53	39	33	16	0,1		
1080862	77	41	15	9	0,3		
1080891	76	52	29	16	0,5		
1080892	140	66	33	9	1,1		
1080903	97	55	31	19	0,8		
1080944	120	123	103	85	.H.P.		
1080952	132	76	53	23	1,7		
1080962	80	122	76	43	.H.P.		
1081016	98	95	77	59	.н.Р.		
1081023	80	91	38	31	1,5		
1081028	104	112	72	29	3,4		
1081064	107	97	55	33	2,5		
1081089	88	66	28	15	0,7		
1081107	84	82	52	36	2,2		
1081148	88	79	66	23	1,9		

Таблица 42. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с

помощью набора праймеров-зондов RTS39508 для KCNT1 человека

Соединение №		%UTC					
соединение и	94 нМ	375 нМ	1500 нМ	6000 нМ	IC50 (MKM)		
1080707	101	96	74	29	3,2		
1080720	99	57	26	15	0,7		
1080779	74	87	46	21	1,2		
1080821	92	91	63	18	1,8		
1080844	107	111	47	40	2,9		
1080851	95	50	23	9	0,6		
1080856	103	52	40	24	1,0		
1080857	97	61	32	16	0,8		
1080863	99	56	33	16	0,8		
1080958	96	95	62	41	3,8		
1080976	91	100	66	33	3,3		
1080977	163	92	60	18	2,0		
1081043	81	67	41	16	0,8		
1081048	124	120	67	33	3,4		
1081072	105	89	69	47	5,4		
1081084	111	75	28	21	1,1		
1081085	67	56	29	8	0,4		
1081145	77	44	24	11	0,4		
1081148	114	89	50	34	2,2		

Таблица 43. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения		IC50 мкМ			
полог осодинения	78 нМ	313 нМ	1250 нМ	5000 нМ	
1080855	110	52	35	36	1,0
1337226	65	49	35	23	0,3
1337327	58	38	19	23	0,1
1337329	62	47	25	15	0,2
1337332	75	36	24	7	0,3
1337575	84	65	30	13	0,6
1338042	99	56	28	6	0,6
1338312	90	62	22	11	0,5

1338475	78	37	31	9	0,3
1338533	44	48	37	16	< 0,1
1338584	109	58	29	24	0,8
1339151	97	88	47	26	1,4
1339156	93	70	19	24	0,7
1339160	89	87	39	26	1,1
1339168	91	83	47	33	1,5
1339194	89	59	28	16	0,6
1339451	95	77	41	21	1,0
1339481	77	47	16	8	0,3
1339491	85	60	48	14	0,7

Таблица 44. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения			ІС50 мкМ		
попор осодинении	78 нМ	312 нМ	1250 нМ	5000 нМ	
1080855	82	49	22	19	0,4
1337259	76	67	41	12	0,6
1337266	88	63	34	14	0,6
1337483	67	56	36	26	0,4
1337702	78	65	36	22	0,6
1337728	69	63	29	16	0,4
1337794	84	32	12	3	0,2
1337803	81	46	23	7	0,3
1338185	66	60	34	22	0,4
1338229	64	44	20	13	0,2
1338679	103	90	52	36	2,0
1338911	87	68	35	17	0,7
1338969	78	50	32	10	0,4
1339055	92	58	29	16	0,6
1339128	95	88	56	26	1,6
1339372	86	50	23	9	0,4
1339479	83	56	27	22	0,5
1339525	65	46	14	14	0,2
1339573	91	72	35	29	1,0

Таблица 45. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения		KCNT1 (% UTC)				
	78 нМ	312 нМ	1250 нМ	5000 нМ	_ ІС50 мкМ	
1080855	110	49	22	23	0,7	
1080862	73	42	23	17	0,3	
1080878	84	68	36	22	0,7	
1337279	98	81	52	20	1,2	
1337488	83	82	35	15	0,8	
1337603	98	73	24	15	0,7	
1337640	102	77	48	25	1,2	
1337648	59	32	25	14	0,1	
1337681	73	69	43	10	0,6	
1337837	77	81	35	14	0,7	
1337916	91	72	46	17	0,9	
1338005	94	70	30	21	0,8	
1338107	97	71	35	21	0,9	
1338237	84	65	33	18	0,6	
1338313	79	52	32	12	0,4	
1338333	81	62	33	16	0,6	
1338427	100	85	31	19	0,9	
1338577	111	52	31	25	0,8	
1339030	105	75	32	23	1,0	

Таблица 46. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения		IC50 мкМ			
	78 нМ	313 нМ	1250 нМ	5000 нМ	1000 11111
1080855	85	48	22	14	0,4
1081085	73	31	13	7	0,2
1337229	112	91	64	28	2,1
1337304	72	38	15	6	0,2
1337393	125	72	20	11	0,8
1337500	96	49	28	16	0,5

1337618	57	35	10	9	0,1
1337714	106	63	39	14	0,8
1338087	83	71	32	11	0,6
1338188	84	75	50	30	1,3
1338537	77	46	36	20	0,4
1338574	75	56	43	15	0,5
1338660	88	70	24	6	0,5
1338686	87	57	26	8	0,5
1338800	60	35	10	4	0,1
1338887	107	86	54	27	1,6
1338990	97	72	39	27	1,0
1339227	76	42	22	7	0,3
1339431	101	40	18	12	0,4

Таблица 47. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения		ІС50 мкМ			
	78 нМ	313 нМ	1250 нМ	5000 нМ	1000 mar
1080855	73	46	19	21	0,3
1337542	51	40	17	7	0,1
1337683	75	42	14	5	0,2
1337722	78	49	27	11	0,4
1337814	52	37	26	12	0,1
1337976	105	57	25	18	0,7
1338215	76	48	29	13	0,4
1338315	71	46	26	7	0,3
1338356	78	50	23	11	0,4
1338442	64	49	18	12	0,2
1338453	69	73	24	8	0,4
1338784	76	54	24	17	0,4
1338789	90	64	25	10	0,5
1338823	87	70	37	29	0,9
1338830	101	76	42	28	1,2
1339073	78	38	18	15	0,3
1339312	73	50	22	17	0,3

1339437	60	41	26	19	0,2
1339529	61	53	20	14	0,2

Таблица 48. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения	KCNT1		ІС50 мкМ		
помер соединения	78 нМ	313 нМ	1250 нМ	5000 нМ	1030 MAI
1080855	106	58	64	39	2,1
1337285	79	70	39	32	0,9
1337334	98	80	59	40	2,5
1337447	103	99	65	32	2,5
1337827	91	86	49	20	1,2
1337899	77	57	18	15	0,4
1337919	92	83	64	35	2,5
1338010	79	57	35	37	0,7
1338094	93	85	68	26	1,9
1338199	93	65	48	18	0,9
1338226	113	94	73	33	2,8
1338504	76	54	28	9	0,4
1339039	99	107	62	38	3,1
1339072	87	77	53	33	1,6
1339318	78	50	50	20	0,6
1339436	88	82	48	37	1,7
1339456	106	88	51	31	1,7
1339609	123	113	59	38	2,8
1339639	93	72	45	29	1,2

Таблица 49. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения	KCNT1	IC50 мкМ			
	78 нМ	313 нМ	1250 нМ	5000 нМ	1000 111111
1080855	102	51	33	15	0,6
1080889	65	48	28	8	0,3
1337223	93	49	23	6	0,4
1337278	91	92	59	33	2,2

1337320	78	40	21	3	0,3
1337449	140	63	29	26	1,1
1337501	83	47	19	8	0,3
1337724	89	69	41	15	0,8
1338119	90	86	64	25	1,8
1338307	105	97	45	18	1,3
1338473	94	50	31	11	0,5
1338485	80	60	24	15	0,5
1338564	113	96	45	14	1,2
1338719	71	42	21	7	0,2
1338862	95	62	25	11	0,6
1338924	80	49	19	17	0,4
1339021	84	52	19	13	0,4
1339258	94	59	11	6	0,4
1339432	79	35	15	11	0,2

Таблица 50. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения	KCNT1	IC50 мкМ			
	78 нМ	313 нМ	1250 нМ	5000 нМ	
855082	79	51	30	15	0,4
1080855	109	74	30	23	1,0
1337509	60	37	19	15	0,1
1337596	96	53	36	14	0,6
1337786	76	62	32	22	0,5
1338586	97	80	44	18	1,0
1338646	71	62	31	18	0,5
1338682	95	83	33	14	0,8
1338688	97	73	25	12	0,7
1338691	76	56	21	16	0,4
1338922	113	77	46	17	1,1
1338931	118	76	34	30	1,2
1338935	83	60	25	14	0,5
1338945	78	43	27	10	0,3
1338946	86	76	32	11	0,7

1338953	88	62	21	8	0,5
1339001	67	40	25	17	0,2
1339369	59	42	18	9	0,1
1339370	83	50	18	6	0,4

Таблица 51. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения	KCNT1		ІС50 мкМ		
попор ободинения	78 нМ	313 нМ	1250 нМ	5000 нМ	
1080855	103	51	38	14	0,7
1337426	84	64	38	14	0,6
1337591	109	57	28	16	0,7
1337697	47	29	19	11	< 0,1
1337777	63	44	27	18	0,2
1337784	83	63	41	25	0,8
1337997	102	81	53	37	1,9
1338036	77	40	22	10	0,3
1338147	95	69	30	17	0,7
1338351	85	51	39	26	0,6
1338690	78	49	28	18	0,4
1338751	65	47	27	17	0,2
1338795	65	35	16	26	0,1
1338843	75	64	35	12	0,5
1338895	85	75	47	22	1,0
1338936	60	39	17	15	0,1
1339278	81	51	30	9	0,4
1339351	77	59	33	12	0,5
1339496	79	50	30	4	0,4

Таблица 52. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения	KCNT1	IC50 мкМ			
попер обединения	78 нМ	313 нМ	1250 нМ	5000 нМ	
1080855	99	44	27	14	0,5
1337314	107	75	26	7	0,7

1337421	108	75	54	22	1,3
1337445	87	48	19	10	0,4
1337482	111	52	31	17	0,7
1337757	121	76	29	12	0,9
1337812	107	97	37	16	1,1
1337825	75	50	29	6	0,3
1338068	119	95	64	30	2,2
1338116	88	78	35	8	0,7
1338378	87	72	32	9	0,6
1338491	78	28	12	2	0,2
1338650	84	51	26	8	0,4
1338742	112	66	25	10	0,7
1339058	95	61	36	18	0,7
1339191	113	90	62	28	1,9
1339308	87	45	19	7	0,4
1339329	84	51	27	13	0,4
1339531	96	69	32	13	0,7

Таблица 53. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения	KCNT1	ІС50 мкМ			
	78 нМ	313 нМ	1250 нМ	5000 нМ	1000 11141
1080855	101	57	32	21	0,7
1080859	91	62	39	25	0,8
1337299	113	75	29	16	0,9
1337356	101	104	73	34	3,3
1337442	86	53	31	17	0,5
1337505	78	54	23	7	0,4
1338008	99	79	60	27	1,6
1338151	67	54	22	16	0,3
1338382	120	70	52	26	1,4
1338437	89	72	59	33	1,7
1338454	97	53	41	18	0,7
1338624	97	87	60	28	1,8
1338681	92	63	37	9	0,6

1338912	112	72	38	37	1,4
1339049	85	52	27	15	0,5
1339110	91	65	43	13	0,7
1339112	113	71	29	14	0,8
1339360	86	72	33	14	0,7
1339416	94	93	53	27	1,6

Таблица 54. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения	KCNT1		ІС50 мкМ		
попер обединения	78 нМ	313 нМ	1250 нМ	5000 нМ	
1080855	113	59	29	20	0,8
1337294	77	55	24	22	0,4
1337416	75	50	22	8	0,3
1337459	55	32	17	13	0,1
1337761	90	73	35	16	0,8
1337832	91	63	18	21	0,6
1338096	91	53	30	12	0,5
1338233	76	57	23	21	0,4
1338344	88	78	44	16	0,9
1338416	82	67	38	15	0,6
1338458	86	47	31	17	0,5
1338778	82	47	27	17	0,4
1338809	78	63	41	17	0,6
1338841	35	23	12	7	< 0,1
1338904	105	80	42	18	1,1
1339418	75	88	53	25	1,4
1339513	74	46	17	16	0,3
1339517	50	30	17	7	< 0,1
1339581	86	49	24	21	0,5

Таблица 55. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения	KCNT1	(% UTC)			IC50 мкМ
	78 нМ	313 нМ	1250 нМ	5000 нМ	

1080855	84	49	35	14	0,5
1337235	70	44	30	22	0,3
1337374	103	81	44	23	1,2
1337379	83	63	46	25	0,9
1337566	54	46	19	11	0,1
1337841	77	66	44	19	0,7
1337870	73	47	23	6	0,3
1338013	62	33	14	6	0,1
1338170	77	66	32	18	0,6
1338184	104	98	52	26	1,7
1338337	89	88	73	37	3,6
1338484	84	77	50	24	1,1
1338891	67	45	25	14	0,2
1338991	82	73	47	24	1,0
1339152	83	44	27	20	0,4
1339254	68	55	27	15	0,3
1339315	71	52	23	11	0,3
1339401	88	42	36	16	0,5
1339493	72	62	33	10	0,4

Таблица 56. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения	KCNT1	IC50 мкМ			
	78 нМ	313 нМ	1250 нМ	5000 нМ	1000 mar
1080855	117	37	14	10	0,5
1337282	80	64	28	14	0,5
1337399	47	54	29	10	0,1
1337637	88	52	34	14	0,5
1337940	64	36	20	13	0,2
1337972	96	49	21	7	0,5
1338045	85	56	42	14	0,6
1338190	78	54	23	6	0,4
1338630	78	50	12	4	0,3
1338994	73	64	24	12	0,4
1339000	67	37	17	4	0,2

1339041	63	39	11	7	0,2
1339092	85	56	24	5	0,4
1339188	145	99	43	12	1,3
1339247	81	58	17	10	0,4
1339255	83	51	17	8	0,4
1339409	72	40	21	9	0,2
1339532	66	65	17	3	0,3
1339612	50	25	19	7	< 0,1

Таблица 57. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения	KCNT1		ІС50 мкМ		
попер осединении	78 нМ	313 нМ	1250 нМ	5000 нм	
1080855	77	42	29	19	0,3
1081135	93	38	35	11	0,5
1337627	69	39	25	11	0,2
1337706	77	102	39	20	1,1
1337715	72	74	48	27	1,0
1337783	98	71	41	18	0,9
1337867	80	70	43	22	0,8
1337970	86	41	6	9	0,3
1338319	69	47	33	17	0,3
1338510	103	82	56	24	1,5
1338524	90	73	43	27	1,0
1338652	72	64	36	10	0,5
1338693	74	65	36	21	0,6
1338850	96	76	30	24	0,9
1338925	100	98	60	14	1,5
1339068	94	86	49	25	1,4
1339195	88	52	22	12	0,4
1339335	69	42	18	11	0,2
1339643	72	47	25	16	0,3

Таблица 58. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения	KCNT1 (% UTC)				IC50 мкМ	
	78 нМ	313 нМ	1250 нМ	5000 нМ	1030 PART	
1080740	120	67	34	13	0,9	
1080818	104	76	31	14	0,8	
1080855	66	58	25	29	0,4	
1337252	90	75	52	20	1,1	
1337265	72	62	33	28	0,6	
1337460	99	90	64	49	4,7	
1337518	96	62	56	15	0,9	
1337657	76	56	21	23	0,4	
1337792	112	91	44	51	2,7	
1337887	73	53	33	12	0,4	
1337982	101	90	36	16	1,0	
1338366	94	112	51	23	1,7	
1338394	117	104	85	46	> 5,0	
1338692	83	59	27	19	0,5	
1338740	90	64	45	23	0,9	
1338894	81	67	51	23	0,9	
1339012	116	73	28	20	0,9	
1339236	105	43	21	8	0,5	
1339572	105	71	35	43	1,4	

Таблица 59. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения	KCNT1 (% UTC)				ІС50 мкМ	
попор сосдушения	78 нм	313 нМ	1250 нМ	5000 нм	1000 11111	
1080852	117	69	40	55	2,3	
1080855	109	69	45	31	1,3	
1081145	84	63	48	19	0,8	
1337306	99	80	44	26	1,2	
1337504	82	52	41	13	0,5	
1337897	115	84	53	29	1,6	
1338224	95	64	34	20	0,7	
1338246	95	95	63	38	2,9	
1338588	69	58	36	23	0,5	

1338965	95	97	43	19	1,2
1339078	81	56	50	28	0,9
1339164	78	40	21	12	0,3
1339184	79	53	22	22	0,4
1339400	89	69	33	23	0,8
1339485	113	70	31	14	0,8
1339510	121	79	51	28	1,5
1339555	139	87	37	23	1,3
1339608	92	38	17	12	0,4
1339620	115	72	52	22	1,3

Таблица 60. Дозозависимое процентное снижение РНК КСNT1 человека модифицированными олигонуклеотидами, измеренное с помощью набора праймеров-зондов RTS39496 для КСNT1 человека

Номер соединения	KCNT1 (% UTC)				ІС50 мкМ	
попор ободинения	78 нМ	313 нМ	1250 нМ	5000 нМ		
1080855	165	60	35	16	1,1	
1081057	69	49	20	14	0,3	
1337330	106	78	33	24	1,0	
1337408	86	55	20	18	0,5	
1337564	61	48	32	18	0,2	
1337635	51	28	7	13	< 0,1	
1337932	53	40	23	11	0,1	
1338428	110	83	51	39	2,0	
1338599	92	73	35	22	0,8	
1338694	85	51	26	20	0,5	
1338704	103	53	25	8	0,5	
1338824	94	47	24	9	0,4	
1339192	69	51	58	19	0,6	
1339291	69	43	24	25	0,3	
1339376	86	90	51	21	1,3	
1339386	96	43	25	7	0,4	
1339412	80	50	35	13	0,4	
1339504	79	66	57	25	1,1	
1339661	63	22	26	29	< 0,1	

ФОРМУЛА ИЗОБРЕТЕНИЯ

1.

а) модифицированный олигонуклеотид, состоящий из 20 связанных нуклеозидов,

где модифицированный олигонуклеотид имеет последовательность азотистых оснований 5'-GCATCCATTTAATAGAAGTT-3' (SEQ ID NO: 1188), где модифицированный олигонуклеотид имеет сахарный фрагмент 5'-eeeeedddddddddddeeeee-3', где

- е представляет собой 2'-O(CH $_2$) $_2$ OCH $_3$ рибозильный сахарный фрагмент; и
- d представляет собой 2'- β -D-дезоксирибозильный сахарный фрагмент; и

где модифицированный олигонуклеотид имеет фрагмент межнуклеозидной связи 5'-soooossssssssssssssssss-3', где

- s представляет собой фосфоротиоатную межнуклеозидную связь;
- о представляет собой фосфодиэфирную межнуклеозидную связь; и где каждый С представляет собой нуклеотидное основание 5-метилиитозина;
- b) модифицированный олигонуклеотид, состоящий из 20 связанных нуклеозидов,

где модифицированный олигонуклеотид имеет последовательность азотистых оснований 5'-GGTCCACCCCAGACGATCCA-3' (SEQ ID NO: 2423), где модифицированный олигонуклеотид имеет сахарный фрагмент 5'-eeeeedddddddddddeeeee-3', где

- е представляет собой $2'-O(CH_2)_2OCH_3$ рибозильный сахарный фрагмент; и
- d представляет собой фрагмент 2'- β -D-дезоксирибозильный сахарный фрагмент; и

где модифицированный олигонуклеотид имеет фрагмент межнуклеозидной связи 5'-sooossssssssssssssss-3', где

- s представляет собой фосфоротиоатную межнуклеозидную связь;
 - о представляет собой фосфодиэфирную межнуклеозидную связь; и

где каждый C представляет собой нуклеотидное основание 5метилцитозина;

с) модифицированный олигонуклеотид, состоящий из 20 связанных нуклеозидов,

где модифицированный олигонуклеотид имеет последовательность азотистых оснований 5'-CACAATTCTCAAACTGCTCC-3' (SEQ ID NO: 1330), где модифицированный олигонуклеотид имеет сахарный фрагмент 5'-eeeeeddddddddddddeeeee-3', где

- е представляет собой 2'-O(CH $_2$) $_2$ OCH $_3$ рибозильный сахарный фрагмент; и
- d представляет собой 2'- β -D-дезоксирибозильный сахарный фрагмент; и

где модифицированный олигонуклеотид имеет фрагмент межнуклеозидной связи 5'-soooossssssssssooss-3', где

- s представляет собой фосфоротиоатную межнуклеозидную связь; \mathbf{u}
- о представляет собой фосфодиэфирную межнуклеозидную связь; и где каждый С представляет собой нуклеотидное основание 5-метилцитозина;
- d) модифицированный олигонуклеотид, состоящий из 20 связанных нуклеозидов,

где модифицированный олигонуклеотид имеет последовательность азотистых оснований 5'-TCACCTGTTTTACTGAGCCT-3' (SEQ ID NO: 1387), где модифицированный олигонуклеотид имеет сахарный фрагмент 5'-eeeeedddddddddddeeeee-3', где

- е представляет собой $2'-O(CH_2)_2OCH_3$ рибозильный сахарный фрагмент; и
- d представляет собой 2'- β -D-дезоксирибозильный сахарный фрагмент; и

где модифицированный олигонуклеотид имеет фрагмент межнуклеозидной связи 5'-sooosssssssssssssssssss, где

- s представляет собой фосфоротиоатную межнуклеозидную связь; и
 - о представляет собой фосфодиэфирную межнуклеозидную связь; и

где каждый C представляет собой нуклеотидное основание 5метилцитозина; или

e) модифицированный олигонуклеотид, состоящий из 20 связанных нуклеозидов,

где модифицированный олигонуклеотид имеет последовательность азотистых оснований 5'- GCTCCGCTTGAATCTAAACA-3' (SEQ ID NO: 1522), где модифицированный олигонуклеотид имеет сахарный фрагмент 5'- eeeeeddddddddddddeeeee-3', где

- е представляет собой 2'-О($\mathrm{CH_2}$) $_2\mathrm{OCH_3}$ рибозильный сахарный фрагмент; и
- d представляет собой 2'- β -D-дезоксирибозильный сахарный фрагмент; и

где модифицированный олигонуклеотид имеет фрагмент межнуклеозидной связи 5'-soooossssssssssooss-3', где

- s представляет собой фосфоротиоатную межнуклеозидную связь; \mathbf{u}
- о представляет собой фосфодиэфирную межнуклеозидную связь; и где каждый С представляет собой нуклеотидное основание 5-метилиитозина.
- 2. Модифицированный олигонуклеотид по п.1, представляющий собой соль.
- 3. Модифицированный олигонуклеотид по п.2, который представляет собой натриевую соль, калиевую соль или их комбинацию.
- 4. Олигомерное соединение по любому из пп. 1-3, содержащее конъюгатную группу.
- 5. Популяция модифицированных олигонуклеотидов по любому из пп. 1-3, где все фосфоротиоатные межнуклеозидные связи модифицированного олигонуклеотида являются стереослучайными.
- 6. Популяция олигомерных соединений по п.4, где все фосфоротиоатные межнуклеозидные связи модифицированного олигонуклеотида являются стереослучайными.
- 7. Фармацевтическая композиция, содержащая модифицированный олигонуклеотид по любому из пп. 1-3, олигомерное соединение по п.4, популяцию модифицированных олигонуклеотидов по

- п.5 или популяцию олигомерных соединений по п.6 и фармацевтически приемлемый разбавитель.
- 8. Фармацевтическая композиция по п.7, где фармацевтически приемлемый разбавитель представляет собой искусственную спинномозговую жидкость или фосфатно-солевой буфер (PBS).
- 9. Фармацевтическая композиция по п.8, где фармацевтическая композиция состоит по существу из модифицированного олигонуклеотида и искусственной спинномозговой жидкости.
- 10. Фармацевтическая композиция по п.8, где фармацевтическая композиция состоит по существу из модифицированного олигонуклеотида и PBS.
- 11. Фармацевтическая композиция по п.8, где фармацевтическая композиция состоит по существу из олигомерного соединения и искусственной спинномозговой жидкости.
- 12. Фармацевтическая композиция по п.8, где фармацевтическая композиция состоит по существу из олигомерного соединения и PBS.
- 13. Фармацевтическая композиция по п.8, где фармацевтическая композиция состоит по существу из популяции модифицированных олигонуклеотидов и искусственной спинномозговой жидкости.
- 14. Фармацевтическая композиция по п.8, где фармацевтическая композиция состоит по существу из популяции модифицированных олигонуклеотидов и PBS.
- 15. Фармацевтическая композиция по п.8, где фармацевтическая композиция состоит по существу из популяции олигомерных соединений и искусственной спинномозговой жидкости.
- 16. Фармацевтическая композиция по п.8, где фармацевтическая композиция состоит по существу из популяции олигомерных соединений и PBS.

ОТЧЕТ О ПАТЕНТНОМ ПОИСКЕ

(статья 15(3) ЕАПК и правило 42 Патентной инструкции к ЕАПК)

Номер евразийской заявки:

202391252

А. КЛАССИФИКАЦИЯ ПРЕДМЕТА ИЗОБРЕТЕНИЯ:

См. дополнительный лист

Согласно Международной патентной классификации (МПК)

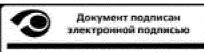
Б. ОБЛАСТЬ ПОИСКА:

Просмотренная документация (система классификации и индексы МПК) A61K 48/00, A61P 25/00, 25/08, C12N 15/00, 15/113

Электронная база данных, использовавшаяся при поиске (название базы и, если возможно, используемые поисковые термины) Espacenet, EAPATIS, Google, Reaxys

В. ДОКУМЕНТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ

Категория*	Ссылки на документы с указанием, где это возможно, релевантных частей	Относится к пункту №
A	WO 2018/227247 A1 (THE FLOREY INSTITUTE OF NEUROSCIENCE AND MENTAL HEALTH) 20.12.2018, реферат, формула	1-16
A	CA 2659437 A1 (THE SCRIPPS RESEARCH INSTITUTE) 14.02.2008, реферат, формула, раздел "Results"	1-16
A	US 2005/0288242 A1 (SIRNA THERAPEUTICS, INC.) 29.12.2005, реферат, формула	1-16
A	MCTAGUE Amy et al. Clinical and molecular characterization of KCNT1-related severe early-onset epilepsy. Neurology, 2018 Jan 2; 90(1): e55-e66. doi: 10.1212/WNL.00000000004762. Epub 2017 Dec 1. PMID: 29196579; PMCID: PMC5754647, разделы "Abstract", "Methods", "Results", "Discussion"	1-16


□ последующие документы указаны в продолжении

- * Особые категории ссылочных документов:
- «А» документ, определяющий общий уровень техники
- «D» документ, приведенный в евразийской заявке
 «E» более ранний покумент но опубликованный на пату п
- «E» более ранний документ, но опубликованный на дату подачи евразийской заявки или после нее
- «О» документ, относящийся к устному раскрытию, экспонированию и т.д.
- "Р" документ, опубликованный до даты подачи евразийской заявки, но после даты испрашиваемого приоритета"
- «Т» более поздний документ, опубликованный после даты приоритета и приведенный для понимания изобретения
- «Х» документ, имеющий наиболее близкое отношение к предмету поиска, порочащий новизну или изобретательский уровень, взятый в отдельности
- «Y» документ, имеющий наиболее близкое отношение к предмету поиска, порочащий изобретательский уровень в сочетании с другими документами той же категории
- «&» документ, являющийся патентом-аналогом
- «L» документ, приведенный в других целях

Дата проведения патентного поиска: 06 декабря 2023 (06.12.2023)

Уполномоченное лицо:

Начальник Управления экспертизы

Сертификат: 1683140433539 Владелец СN=Аверкиев С. Действителен: 03.05.2023-02.05.2024 С.Е. Аверкиев

ОТЧЕТ О ПАТЕНТНОМ ПОИСКЕ

(дополнительный лист)

Номер евразийской заявки:

202391252

МПК:		СПК:		
C12N 15/113 A61K 48/00 A61P 25/00 A61P 25/08	(2010.01) (2006.01) (2006.01) (2006.01)	C12N 15/113 C12N 15/1138 A61K 48/00 A61P 25/00 A61P 25/08 C12N 2310/315	8	