

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (43) Дата публикации заявки 2024.04.23
- (22) Дата подачи заявки 2024.01.09

(51) Int. Cl. C04B 28/04 (2006.01) C04B 28/08 (2006.01) C04B 14/10 (2006.01) C04B 14/24 (2006.01) C04B 16/04 (2006.01) C04B 18/14 (2006.01) C04B 22/06 (2006.01) C04B 24/24 (2006.01) C04B 111/20 (2006.01)

(54) ТЕПЛОИЗОЛЯЦИОННЫЙ БЕТОН

- (96) 2024000002 (RU) 2024.01.09
- (71) Заявитель:
 ФЕДЕРАЛЬНОЕ
 ГОСУДАРСТВЕННОЕ
 БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ
 УЧРЕЖДЕНИЕ ВЫСШЕГО
 ОБРАЗОВАНИЯ "ПЕТЕРБУРГСКИЙ
 ГОСУДАРСТВЕННЫЙ
 УНИВЕРСИТЕТ ПУТЕЙ
 СООБЩЕНИЯ ИМПЕРАТОРА
 АЛЕКСАНДРА I" (ФГБОУ ВО
 ПГУПС) (RU)
- **(72)** Изобретатель:

Бенин Андрей Владимирович, Соловьева Валентина Яковлевна, Степанова Ирина Витальевна, Соловьев Дмитрий Вадимович, Филонов Юрий Александрович, Коньков Александр Николаевич, Козин Евгений Германович (RU)

202400002

(57) Изобретение относится к области строительных материалов. Технический результат - повышение прочности на растяжение при изгибе и понижение коэффициента теплопроводности. Сырьевая смесь для теплоизоляционного бетона получена из смеси, включающей, мас.%: быстротвердеющий портландцемент - 41,40-42,60; пеностекло с максимальной крупностью зерна 1,25 мм - 31,20-31,82; доменный металлургический шлак с удельной поверхностью S_{уд}=470 м²/кг - 7,21-7,31; бентонитовую глину, содержащую 85% основного минерала монтмориллонита Al₂O₃·4SiO₂ nH₂O - 0,95-0,97; базальтовую фибру диаметром 0,8 мкм - 0,14-0,16; комплексную химическую добавку, представленную водным раствором с плотностью ρ=1,040 г/см³ и рН=7,8, состоящую из следующих компонентов, мас.%: поликарбоксилатного полимера на основе эфира аллила и ангидрида малеиновой кислоты - 51,61-52,40; высокомолекулярного соединения на основе калиевой соли высшей жирной кислоты С₁₇H₃₅COOK - 9,60-9,68; золя кремниевой кислоты - 38,00-38,71, содержит 0,46-0,48; воду - 17,44-17,86.

41

MTIK C 04B 14/10 C 04B 24/14 C 04B 28/00 C 04B 28/02 C 04B 28/00 C 04B 38/10

теплоизоляционный бетон

Изобретение относится к области строительных материалов и может быть использовано для ремонта и изготовления строительных конструкций в промышленном и гражданском строительстве.

Известна сырьевая смесь, содержащая, мас. %: портландцемент 43,0-46,1; шлак металлургического производства 12,0-14,4; песок 15,0-18,0; пенообразующую добавку на основе стеарата натрия плотностью 1,15-1,7 г/см³ – 9,5-10,3; химическую добавку «ДЭЯ» 0,4-0,5; алюминиевую пудру 0,5-0,6; фиброволокно 1,4-1,8; воду 12,0-14,4 (RU №2145315; CO4B 38/10, 10.02.2000).

Недостатком данного технического решения является пониженное значение прочности на растяжение при изгибе и повышенное значение коэффициента теплопроводности.

Известна сырьевая смесь, содержащая, мас. %: цемент -37,8,0-42,64; песок -31,3-37,81; модифицированную пенообразующую добавку -9,1-9,3 и воду -15,1-17,0 (RU №2255074; CO4B 38/10, 27.06.2005).

Недостатком данного технического решения является пониженное значение прочности на растяжение при изгибе и повышенное значение коэффициента теплопроводности.

Наиболее близкой по технической сущности к заявляемой сырьевой смеси для теплоизоляционного бетона является смесь для пенобетона, содержащая мас.%: портландцемент — 44,0-47,0; монтмориллонитовую глину, включающую не менее 60% минерала — 11,0-13,8; пенообразующую добавку «Ника» — 0,5-0,7; воду 40,0-42,8 (RU №2145586; CO4B 38/10, 20.02.2000).

Недостатком данного технического решения являются пониженное значение прочности на растяжение при изгибе; повышенное значение коэффициента теплопроводности.

Задачей, на решение которой направлено изобретение, является создание теплоизоляционного бетона, обладающего повышенной прочностью на растяжение при изгибе и пониженным значением коэффициента теплопроводности.

Поставленная задача достигается тем, что теплоизоляционный бетон, полученный из смеси, включающей портландцемент, глину, добавку и воду отличается тем, что в качестве цемента содержит быстротвердеющий качестве глины содержит бентонитовую портландцемент, в содержащую 85% основного минерала монтмориллонита Al₂O₃·4SiO₂·nH₂O, в качестве добавки - комплексную химическую добавку, представленную водным раствором с плотностью ρ =1,040 г/см³ и водородным показателем рН=7,8, состоящую из водного раствора поликарбоксилатного полимера, представленного эфиром аллила и ангидридом малеиновой кислоты с Γ/cm^3 , значением pH=6,2,плотностью $\rho = 1,030$ водного высокомолекулярного соединения на основе калиевой соли высшей жирной кислоты $C_{17}H_{35}COOK$ с плотностью $\rho=1,035$ г/см³, значением pH=8,8 и золя кремниевой кислоты SiO_2 : nH_2O с плотностью $\rho=1,022$ г/см³, значением рH=3,8, в состав которого входят нанодисперсии диоксида кремния SiO₂, при следующем соотношении компонентов, мас.%:

- указанный поликарбоксилатный полимер 51,61-52,40;
- указанное высокомолекулярное соединение 9,60-9,68;
- указанный золь кремниевой кислоты 38,0-38,71,

дополнительно содержит пеностекло с максимальной крупностью зерна 1,25 мм, с насыпной плотностью $D=280~{\rm kr/m}^3$; тонкомолотый доменный шлак металлургического производства, с величиной удельной поверхности ${\rm Syg}=470{\rm m}^2/{\rm kr}$, основной фазой которого являются кальций-магниевые

силикаты $2\text{CaO·Al}_2\text{O}_3\cdot\text{SiO}_2$; 2CaO·MgO·2SiO_2 ; базальтовую фибру диаметром 0,8 мкм и длиной 6 мм при следующем соотношении компонентов, мас.%:

- указанный портландцемент	-41,40-42,60;
- указанное пеностекло	- 31,20-31,82;
- указанный доменный шлак	- 7,21-7,31 ;
- указанная бентонитовая глина	- 0,95-0,97;
- указанная базальтовая фибра	-0,14-0,16;
- указанная добавка	- 0,46-0,48;
- вода	<i>−</i> 17,44-17,86.

По основному эффекту действия комплексная химическая добавка пластифицирующим эффектом действия. повышенным обладает Присутствие в составе добавки нанодисперсий SiO₂ усиливает реакционный эффект действия добавки, нанодисперсии SiO₂ активно вступают в реакции синтеза с продуктами гидратации портландцемента и других компонентов пеностеклобетонной смеси. Присутствие в составе добавки полимеров малеиновой именно ангидрида кислоты разной природы, a, высокомолекулярного соединения на основе калиевой соли высшей жирной кислоты C₁₇H₃₅COOK, при каталитическом воздействии цемента, образует новое соединение, которое характеризуется образованием разветвленной поликарбоксилатной цепи, оказывающей микроармирующее действие на твердеющую систему в самом раннем возрасте, таким образом, оказывая положительное влияние на рост прочности на растяжение при изгибе пеностеклобетона с момента начала его твердения.

Использование быстротвердеющего цемента является благоприятным сочетанием с доменным шлаком металлургического производства. Эффективное твердение быстротвердеющего портландцемента, сопровождается выделением повышенного количества тепла в начальный период твердения, которое оказывает положительное влияние на процесс гидратации кальций-магниевых силикатов, усиливающих прочность на сжатие и в большей степени прочность на растяжение при изгибе, начиная с

раннего возраста формирования искусственного камня. Образующиеся кальций-магниевые гидросиликаты оказывают положительное влияние на улучшение теплозащитных свойств материала, т.е. на уменьшение коэффициента теплопроводности.

Использование базальтового волокна оказывает максимально эффективное действие на рост прочности на растяжение при изгибе и улучшение теплозащитных свойств материала.

Пеностеклобетонную смесь, рекомендуемую для ремонта И строительных конструкций, эффективно использовать изготовления повышенной подвижности и, как следствие, с целью предотвращения возможного расслоения, целесообразно дополнительно использовать бентонитовую глину, которая повышает связность свежеприготовленной смеси; исключая ее расслаивание, а также, благодаря сложной структуре, бентонитовая обладает повышенной водоудерживающей глина способностью, что исключает возможное появление трещин, особенно, в начальный период твердения.

оказывает Bce вышеперечисленное положительное влияние на теплоизоляционного отличающегося повышенной создание бетона, при изгибе И значением прочностью на растяжение пониженным коэффициента теплопроводности.

По мнению заявителя и авторов заявляемое изобретение соответствует критерию охраноспособности – изобретательский уровень.

Заявляемое изобретение промышленно применимо и может быть использовано для ремонта и изготовления строительных конструкций в промышленном и гражданском строительстве.

Пример конкретного выполнения.

Готовят сырьевую смесь следующим образом:

1. Приготовление комплексной химической добавки с плотностью ρ =1,040 г/см³ и водородным показателем pH=7,8.

- 1.1. Дозируют водный раствор поликарбоксилатного полимера, представленного эфиром аллила и ангидрида малеиновой кислоты с плотностью ρ =1,030 г/см³ и значением pH=6,2.
- 1.2. Дозируют водный раствор высокомолекулярного соединения на основе калиевой соли высшей жирной кислоты с плотностью ρ =1,035 г/см³ и значением pH=8,8.
- 1.3. Дозируют золь кремниевой кислоты $SiO_2 \cdot nH_2O$ с плотностью ρ =1,022 г/см³ и значением pH=3,8, в состав которого входят нанодисперсии диоксида кремния SiO_2 .
- 1.4. Компоненты, отдозированные по п. 1.1.-1.3. транспортируют в лопастную мешалку, в которой все компоненты тщательно перемешивают до получения однородного раствора с плотностью ρ =1,040 г/см³ и значением pH=7,8; готовый раствор комплексной химической добавки транспортируют в накопительную емкость.
 - 2. Приготовление сырьевой смеси для теплоизоляционного бетона.
 - 2.1. Дозируют быстротвердеющий портландцемент.
- 2.2. Дозируют пеностекло с максимальной крупностью зерна 1,25 мм, с насыпной плотностью $D=280 \text{кг/m}^3$.
- 2.3. Дозируют тонкомолотый доменный шлак металлургического производства с величиной удельной поверхности $S_{yд}=470 \text{m}^2/\text{kr}$, основной фазой которого являются кальций-магниевые силикаты $2\text{CaO·Al}_2\text{O}_3\cdot\text{SiO}_2$; 2CaO·MgO·2SiO_2 .
- 2.4. Дозируют бентонитовую глину, основной фазой которой является монтмориллонит Al_2O_3 · $4SiO_2$ · nH_2O , содержание которого составляет более 85%.
 - 2.5. Дозируют базальтовую фибру диаметром 0,8 мкм и длиной 6 мм.
 - 2.6. Дозируют воду.
- 2.7. Дозируют комплексную химическую добавку, приготовленную по п. 1.4.

- 2.8. Отдозированную по п. 2.7. комплексную химическую добавку транспортируют в отдозированную по п.2.6. воду.
- 2.9. Все компоненты, отдозированные по п.2.1-2.8. транспортируют в бетонный смеситель любой модификации, используемый на строительном тщательное перемешивание всех котором осуществляют объекте, пеностеклобетонной смеси получения однородной, до компонентов подвижной смеси, которую используют по назначению для изготовления изделий в промышленном и гражданском строительстве и параллельно отбирают пробу пеностеклобетонной смеси, из которой изготавливают коэффициента $100 \times 100 \times 28$ MM определения для размером теплопроводности, а также изготавливают образцы-призмы размером 100×100×400 мм для определения прочности на растяжение при изгибе. После изготовления образцы хранили в камере нормального твердения (при температуре 20 ± 2 °С и влажности, W≥95%).

Определение прочности на растяжение при изгибе осуществлялось по ГОСТ 10180-2012 «Бетоны. Методы определения прочности по контрольным образцам».

Определение коэффициента теплопроводности осуществляли по ГОСТ 7076-99 «Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме».

Составы сырьевой смеси для теплоизоляционного бетона, представлены в таблице 1; результаты испытаний теплоизоляционного бетона по исследуемым параметрам, представлены в таблице 2, которые показали, что прочность на растяжение при изгибе теплоизоляционного бетона по изобретению в среднем составляет 3,4 МПа, что в 8,5 раз превышает прочность на растяжение при изгибе теплоизоляционного бетона по прототипу; коэффициент теплопроводности теплоизоляционного бетона по изобретению на 14,3 % ниже, чем коэффициент теплопроводности теплопроводности теплоизоляционного бетона по прототипу.

Таблица 1

	Портландцемент, мас.% Компоненты пенобетонной смеси, мас. %					Комплексная добавка по изобретению							
	0	011	зая	MM	၁	īā	B	H	%	Состав	добавки,	мас. %	, 0
№ п.п.	Портландцемент по прототипу	Портландцемент быстротвердеющий по изобретению	Монтмориллонитовая глина	Пеностекло с максимальным размером фр. 1,25 м	Доменный шлак о S _{ул.} =470м²/кг	Бентонитовая глина	Базальтовая фибра	Пенообразующая добавка «Ника»	Количество, мас.	Поликарбоксилатн ый полимер	Высокомолекулярн ое соединение	Золь кремниевой кислоты	Вода, мас. %
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1 прототип	45,6		12,4	_	-	_	_	0,6	-	_	_	-	41,4
2	<u></u>	41,40		31,82	7,31	0,97	0,16	_	0,48	51,61	9,68	38,71	17,86
3	_	41,40	-	31,82	7,31	0,97	0,16	-	0,48	52,005	9,64	38,355	17,86
4	_	41,40	_	31,82	7,31	0,97	0,16	_	0,48	52,40	9,60	38,00	17,86
5	_	42,0	_	31,51	7,26	0,96	0,15	_	0,47	51,61	9,68	38,71	17.65
6	_	42,0	_	61,51	7,26	0,96	0,15	_	0,47	52,005	9,64	38,355	17,65
7		42,0	-	31,51	7,26	0,96	0,15	_	0,47	52,40	9,60	38,00	17,65
8	_	42,60	_	31,20	7,21	0,95	0,14	_	0,46	51,61	9,68	38,71	17,44
9		42,60	_	31,20	7,21	0,95	0,14	_	0,46	52,005	9,64	38,355	17,44
10	_	42,60	_	31,20	7,21	0,95	0,14	_	0,46	52,40	9,60	38,00	17,44

Таблица 2

№ состава из таблицы 1	Средняя плотность сухого образца, кг/м ³	Прочность на растяжение при изгибе, МПа	Коэффициент теплопроводности, λ, Вт/м·°С
1	2	3	4
1 прототип	600	0,4	0,14
2	900	3,4	0,12
3	900	3,4	0,12
4	900	3,4	0,12
5	900	3,4	0,12
6	900	3,4	0,12
7	900	3,4	0,12
8	900	3,4	0,12
9	900	3,4	0,12
10	900	3,4	0,12

Формула изобретения

Теплоизоляционный бетон, полученный из смеси, включающей портландцемент, глину, добавку и воду, отличающийся тем, что в качестве цемента содержит быстротвердеющий портландцемент; в качестве глины содержит бентонитовую глину, содержащую 85% основного минерала монтмориллонита Al_2O_3 · $4SiO_2$ · nH_2O ; в качестве добавки – комплексную химическую добавку, представленную водным раствором с плотностью ρ =1,040 г/см³ и водородным показателем рH=7,8, состоящую из водного раствора поликарбоксилатного полимера, представленного эфиром аллила и ангидридом малеиновой кислоты с плотностью ρ =1,030 г/см³, значением pH=6,2, водного раствора высокомолекулярного соединения на основе калиевой соли высшей жирной кислоты $C_{17}H_{35}COOK$ с плотностью ρ =1,035 г/см³, значением показателя pH=8,8, и золя кремниевой кислоты SiO_2 · nH_2O с плотностью ρ =1,022 г/см³, значением pH=3,8, в состав которого входят нанодисперсии диоксида кремния SiO_2 , при следующем соотношении компонентов, мас. %:

- указанный поликарбоксилатный полимер -51,61-52,40; - указанное высокомолекулярное соединение -9,60-9,68;

- указанный золь кремниевой кислоты -38,00-38,71,

дополнительно содержит пеностекло с максимальной крупностью зерна 1,25 мм, с насыпной плотностью D=280 кг/м³; тонкомолотый доменный шлак металлургического производства, с величиной удельной поверхности $S_{ya}=470$ м²/кг, основной фазой которого являются кальций-магниевые силикаты $2CaO\cdot Al_2O_3\cdot SiO_2$; $2CaO\cdot MgO\cdot 2SiO_2$; базальтовую фибру диаметром 0,8 мкм и длиной 6 мм при следующем соотношении компонентов, мас.%:

- указанный портландцемент	- 41,40-42,60;
- указанное пеностекло	- 31,2-31,82;
- указанный доменный шлак	-7,21-7,31;
- указанная бентонитовая глина	- 0,95-0,97;
- указанная базальтовая фибра	-0,14-0,16;
- указанная добавка	- 0,46-0,48;
- вода	- 17,44-17,86.

ОТЧЕТ О ПАТЕНТНОМ ПОИСКЕ

(статья 15(3) ЕАПК и правило 42 Патентной инструкции к FAПK)

Номер евразийской заявки:

202400002

	12 1111()	
А. КЛАССІ См. дог	ИФИКАЦИЯ ПРЕДМЕТА ИЗОБРЕТЕНИЯ: полнительный лист	
Б. ОБЛАСТ	Ъ ПОИСКА:	
	00, 14/10, 14/24, 16/00, 16/04, 18/14, 22/06, 24/24, 28/00, 28/04	1, 28/08, 28/28, 111/20
	база данных, использовавшаяся при поиске (название базы , EAPATIS, Google Patents, «Поисковая платформа» Роспате	
В. ДОКУМ	ЕНТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ	
Категория*	Ссылки на документы с указанием, где это возмож	
A	RU 2145314 C1 (СВАТОВСКАЯ ЛАРИСА БОРИСОВНА и весь документ	др.) 2000-02-10
A	RU 2729547 C1 (ФГБОУ ВО ПГУПС) 2020-08-07 весь документ	1
A	ЕА 044313 В1 (ФГБОУ ВО ПГУПС) 2023-08-16 весь документ	1
A	ЕА 044581 В1 (ФГБОУ ВО ПГУПС) 2023-09-08 весь документ	1
A	US 20070186822 A (NICHIHA CO LTD) 2007-08-16 весь документ	1
A	WO 2009136169 A1 (CENIN LIMITED et al.) 2009-11-12 весь документ	1
Послелу	ощие документы указаны в продолжении графы	
* Особые кате	гории ссылочных документов: «Т» - более г	поздний документ, опубликованный после даты приоритета и при-
«D» - докумен	т, приведенный в евразийской заявке	й для понимания изобретения энт, имеющий наиболее близкое отношение к предмету поиска,
евразийской з	порочан	ций новизну или изобретательский уровень, взятый в отдельности энт, имеющий наиболее близкое отношение к предмету поиска,
и т.д.	порочан	ент, имеющии наиоолее олизкое отношение к предмету поиска, ций изобретательский уровень в сочетании с другими документам: сатегории
	; опуоликованный до даты подачи евразийской заявки, "«««» - докум	ынт, являющийся патентом-аналогом

Дата проведения патентного поиска: 14 февраля 2024 (14.02.2024)

Документ подписан электронной подписью

Уполномоченное лицо:

Начальник Управления экспертизы

Сертификат: 1683140433539 Владелец: СN=Аверкиев С. Действителен: 03.05.2023-02.05.2024

С.Е. Аверкиев

ОТЧЕТ О ПАТЕНТНОМ ПОИСКЕ

(дополнительный лист)

Номер евразийской заявки:

202400002

пенассижниеми	ниа постилс		(продолжение графы А)
к ластификат		- А-ИКОБРЕТЕНИЯ	тпролопжение грамы а т
			TIPOGOTINCIIIC I Paqubi 111

МПК:		СПК:		
C04B 28/04	(2006.01)	C04B 28/04		
C04B 28/08	(2006.01)	C04B 28/08		
C04B 28/28	(2006.01)	C04B 28/28		
C04B 14/10	(2006.01)	C04B 14/104		
C04B 14/24	(2006.01)	C04B 14/24		
C04B 16/04	(2006.01)	C04B 16/04		
C04B 18/14	(2006.01)	C04B 18/141		
C04B 22/06	(2006.01)	C04B 22/06		
C04B 24/24	(2006.01)	C04B 24/24		
C04B 111/20	(2006.01)	C04B 2111/20		