(54) ЗАМЕЩЕННЫЕ 1,2,4-ТИАДИАЗОЛИЛНИКОТИНАМИДЫ, ИХ СОЛИ ИЛИ N-ОКСИДЫ И ИХ ПРИМЕНЕНИЕ В КАЧЕСТВЕ ГЕРБИЦИДНО АКТИВНЫХ ВЕЩЕСТВ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОЙ ЗАЯВКЕ

- (31) 21191682.0
- (32) 2021.08.17
- (33) EP
- (86) PCT/EP2022/072676
- (87) WO 2023/020963 2023.02.23
- **(71)** Заявитель:

БАЙЕР АКЦИЕНГЕЗЕЛЬШАФТ (DE) (72) Изобретатель:

Барбер Дэвид Майкл, Шнаттерер Штефан, Мачеттира Ану Бхеемаиах, Асмус Элизабет, Гатцвайлер Эльмар, Шмутцлер Дирк, Райнгрубер Анна Мария, Болленбах-Валь Биргит, Аметовски Джхи (DE)

(74) Представитель:

Веселицкий М.Б., Кузенкова Н.В., Каксис Р.А., Белоусов Ю.В., Куликов А.В., Кузнецова Е.В., Соколов Р.А., Кузнецова Т.В. (RU)

(57) Настоящее изобретение относится к замещенным 1,2,4-тиадиазолилникотинамидам общей формулы (I), их солям или N-оксидам,

где радикалы в общей формуле (I) соответствуют определениям, приведенным в описании, и к их применению в качестве гербицидов, в частности, для борьбы с широколистными сорняками и/или сорными травами в посевах полезных растений и/или в качестве регуляторов роста растений для воздействия на рост посевов полезных растений.

ЗАМЕЩЕННЫЕ 1,2,4-ТИАДИАЗОЛИЛНИКОТИНАМИДЫ, ИХ СОЛИ ИЛИ N-ОКСИДЫ И ИХ ПРИМЕНЕНИЕ В КАЧЕСТВЕ ГЕРБИЦИДНО АКТИВНЫХ ВЕЩЕСТВ

5

10

15

20

25

30

Изобретение относится к области техники гербицидов и/или регуляторов роста растений. В частности, изобретение в первую очередь относится к замещенным 1,2,4-тиадиазолилникотинамидам и композициям, содержащим указанные замещенные 1,2,4-тиадиазолилникотинамиды.

Кроме того, настоящее изобретение относится к способам получения указанных замещенных 1,2,4-тиадиазолилникотинамидов и к их применению в качестве гербицидов и/или регуляторов роста растений.

Известные к настоящему времени средства защиты растений для избирательной борьбы с вредными растениями в посевах полезных растений или активные соединения для борьбы с нежелательной растительностью при применении иногда имеют недостатки, будь то (а) отсутствие или недостаточная гербицидная активность в отношении особенно вредных растений, (б) что спектр вредных растений, с которыми можно бороться с помощью активного соединения, недостаточно широк, (в) что их селективность в посевах полезных растений слишком низка и/или (г) что они имеют токсикологически неблагоприятный профиль.

Кроме того, некоторые активные соединения, которые можно использовать в качестве регуляторов роста ряда полезных растений, вызывают нежелательное снижение урожайности других полезных растений или несовместимы с сельскохозяйственными растениями, или только в узком диапазоне норм внесения. Кроме того, некоторые из известных активных соединений не могут быть экономично произведены в промышленном масштабе из-за труднодоступности предшественников и реагентов или из-за недостаточной химической стабильности.

В предшествующем уровне техники описано несколько замещенных 1,2,4тиадиазолов, которые проявляют полезные свойства и применения. Патенты US4416683, US4515625, US4636243 и US4801718 относятся к гетероциклическим замещенным N-бензамидам и их использованию в качестве гербицидов для борьбы с нежелательными растениями.

В патенте US4343945 описано, что трихлорметилзамещенные 1,2,4тиадиазолы пригодны в качестве гербицидов, фунгицидов и инсектицидов.

Кроме того, в DE 2154852 описано, что 5-замещенные амино-3-изопропил-1,2,4-тиадиазолы являются эффективными пестицидами.

5

10

15

20

25

30

Помимо этого, DE19601139 относится к получению ацилированных 5амино-1,2,4-тиадиазолов и к их применению в качестве пестицидов.

В нескольких документах (WO 01/36415, WO 01/40206, WO 01/40223 и WO 01/46165) описано, что замещенные 1,2,4-тиадиазолы также подходят для борьбы с различными вредителями.

В WO 2017/005717 и WO 2018/108791 показано, что арил- и гетероарилзамещенные 1,2,4-тиадиазолы очень эффективны для борьбы с нежелательными насекомыми в посевах полезных растений.

Тем не менее, о замещенных 1,2,4-тиадиазолилникотинамидах, их солях или N-оксидах, содержащих орто-алкильные или орто-галогеналкильные заместители, ранее не сообщалось как о гербицидно активных соединениях. Неожиданно было обнаружено, что замещенные 1,2,4-тиадиазолилникотинамиды, их соли или N-оксиды, содержащие орто-алкильные или орто-галогеналкильные заместители, особенно пригодны в качестве гербицидов.

Известные к настоящему времени гербициды для борьбы с вредными растениями в посевах полезных растений или гербициды для борьбы с нежелательной растительностью при применении иногда имеют недостатки, будь то (а) отсутствие или недостаточная гербицидная активность в отношении особо вредных растений, (б) что спектр вредных растений, с которыми можно бороться с помощью активного соединения, недостаточно широк, и/или (в) что селективность гербицидов и их совместимость с сельскохозяйственными растениями слишком низка, что приводит к нежелательному повреждению и/или нежелательному снижению урожайности сельскохозяйственных культур.

Таким образом, все еще существует потребность в альтернативных гербицидах, в частности высокоактивных гербицидах, которые применимы при низких нормах внесения и/или имеют хорошую совместимость с сельскохозяйственными растениями, для избирательного применения в

растительных культурах или использования на несельскохозяйственных землях. Также желательно предложить альтернативные химически активные соединения, которые можно выгодно использовать в качестве гербицидов или регуляторов роста растений.

Поэтому целью настоящего изобретения является создание соединений, обладающих гербицидной активностью, которые высокоэффективны против экономически важных вредных растений даже при относительно низких нормах внесения и которые можно избирательно использовать на одном или нескольких сельскохозяйственных растениях.

В настоящее время обнаружено, что соединения следующей формулы (I), их соли или N-оксиды отвечают указанным целям.

Соответственно, в настоящем изобретении предложены замещенные 1,2,4тиадиазолилникотинамиды общей формулы (I), их соли или N-оксиды,

15

20

25

5

10

в которой

W представляет собой кислород или серу,

 R^1 представляет собой водород, галоген, циано, (C_1-C_3) -алкил, (C_1-C_4) -галогеналкил, (C_1-C_4) -алкокси,

 (C_1-C_4) -галогеналкокси, (C_1-C_4) -алкилтио, (C_1-C_4) -алкилсульфинил, (C_1-C_4) -алкилсульфонил,

 $(C_1$ - $C_4)$ -галогеналкилтио, $(C_1$ - $C_4)$ -галогеналкилсульфинил или $(C_1$ - $C_4)$ -галогеналкилсульфонил,

 R^2 представляет собой (C_1 - C_4)-алкил или (C_1 - C_4)-галогеналкил,

 R^3 представляет собой водород, галоген, циано, $(C_1\text{-}C_4)$ -алкил, $(C_1\text{-}C_4)$ -галогеналкил, $(C_1\text{-}C_4)$ -алкокси или

 (C_1-C_4) -галогеналкокси,

 R^4 представляет собой водород, галоген, циано, (C_1-C_4) -галогеналкил, (C_1-C_4) -алкокси или (C_1-C_4) -галогеналкокси,

 R^5 представляет собой водород, галоген, циано, (C_1-C_4) -алкил, (C_1-C_4) -галогеналкил, (C_3-C_6) -циклоалкил,

 (C_3-C_6) -галогенциклоалкил, (C_1-C_4) -алкокси или (C_1-C_4) -галогеналкокси.

5

10

15

20

25

30

общей формулы (I) могут образовывать Соединения присоединения приемлемой неорганической или органической например, минеральных кислот, например, HCl, HBr, H₂SO₄, H₃PO₄ или HNO₃, или органических кислот, например, карбоновых кислот, таких как муравьиная кислота, уксусная кислота, пропионовая кислота, щавелевая кислота, молочная кислота или салициловая кислота или сульфоновых кислот, например, птолуолсульфоновой кислоты, к основной группе, например, амино, алкиламино, диалкиламино, пиперидино, морфолино или пиридино. В таком случае эти соли будут содержать сопряженное основание кислоты в качестве аниона. Пригодные заместители в депротонированной форме, например, сульфоновые кислоты, в частности сульфонамиды или карбоновые кислоты, способны образовывать внутренние соли с группами, такими как аминогруппы, которые сами являются протонируемыми. Соли также могут быть образованы действием основания на соединения общей формулы (I). Пригодными основаниями являются, например, органические амины, такие как триалкиламины, морфолин, пиперидин и пиридин, и гидроксиды, карбонаты и гидрокарбонаты аммония, щелочных металлов или щелочноземельных металлов, в особенности гидроксид натрия, гидроксид калия, карбонат натрия, карбонат калия, гидрокарбонат натрия и гидрокарбонат калия. Эти соли представляют собой соединения, в которых кислотный водород заменен на пригодный в сельском хозяйстве катион, например, соли металлов, в особенности соли щелочных металлов или соли щелочноземельных металлов, в особенности соли натрия и калия, или же соли аммония, соли с органическими аминами или четвертичные соли аммония, например, с катионами формулы $[NR^aR^bR^cR^d]^+$, в которой от R^a до R^d в каждом случае независимо друг от друга представляют собой органический радикал, в особенности алкил, арил, аралкил или алкиларил. Также пригодны соли (C_1-C_4) алкилсульфония И алкилсульфоксония, такие как соли триалкилсульфония и (С₁-С₄)-триалкилсульфоксония.

Замещенные 1,2,4-тиадиазолилникотинамиды общей формулы (I) в соответствии с изобретением, в зависимости от внешних условий, таких как рН, растворитель и температура, могут присутствовать в различных таутомерных структурах, каждая из которых охватывается общей формулой (I).

Соединения формулы (I), используемые в соответствии с изобретением, и их соли или N-оксиды также в дальнейшем упоминаются как «соединения общей формулы (I)».

Изобретение предпочтительно обеспечивает соединения общей формулы (I), их соли или N-оксиды, в которой

W представляет собой кислород или серу,

 R^1 представляет собой водород, галоген, (C_1-C_3) -алкил, (C_1-C_4) -галогеналкил, (C_1-C_4) -алкокси,

 (C_1-C_4) -галогеналкокси, (C_1-C_4) -алкилтиоили (C_1-C_4) -галогеналкилтио,

 R^2 представляет собой (C_1 - C_4)-алкил или (C_1 - C_4)-галогеналкил,

15 R^3 представляет собой водород, галоген, (C_1-C_4) -алкил или (C_1-C_4) -галогеналкил,

 R^4 представляет собой водород, галоген или (C_1-C_4) -галогеналкил,

 R^5 представляет собой водород, галоген, $(C_1\text{-}C_4)$ -алкил, $(C_3\text{-}C_6)$ -циклоалкил,

 (C_1-C_4) -алкокси или (C_1-C_4) -галогеналкокси.

В частности, изобретение обеспечивает соединения общей формулы (I), их соли или N-оксиды, в которой

W представляет собой кислород или серу, предпочтительно кислород,

 R^1 представляет собой водород, галоген, (C_1-C_3) -алкил, (C_1-C_4) -галогеналкил, (C_1-C_4) -алкокси или

 (C_1-C_4) -алкилтио,

5

10

20

25

30

 R^2 представляет собой (C_1 - C_4)-алкил или (C_1 - C_4)-галогеналкил,

R³ представляет собой водород,

R⁴ представляет собой водород или галоген,

 R^5 представляет собой водород, галоген, (C_1-C_4) -галогеналкил, (C_3-C_6) - циклоалкил, (C_1-C_4) -алкокси,

Более конкретно изобретение обеспечивает соединения общей формулы (I), их соли или N-оксиды, в которой

W представляет собой кислород,

 R^1 представляет собой водород, хлор, бром, метил, этил, трифторметил, трихлорметил, метокси или метилсульфанил,

 ${
m R}^2$ представляет собой метил, этил, $\it uso$ -пропил, дифторметил или трифторметил,

 R^3 представляет собой водород,

5

10

15

20

25

30

 R^4 представляет собой водород, фтор или хлор,

 ${
m R}^5$ представляет собой водород, фтор, хлор, бром, дифторметил, циклопропил или метокси.

В особенности изобретение обеспечивает соединения общей формулы (I), их соли или N-оксиды, в которой

W представляет собой кислород,

R¹ представляет собой водород, хлор, бром, метил, или трифторметил,

R² представляет собой метил, этил, изо-пропил или трифторметил,

R³ представляет собой водород,

 R^4 представляет собой водород, фтор или хлор,

 R^5 представляет собой водород, фтор, хлор, бром, метокси или циклопропил.

Определения радикалов, перечисленные выше, в общих чертах или в пределах областей предпочтения, применимы как к конечным продуктам общей формулы (I), так и, соответственно, к исходным материалам или промежуточным соединениям, необходимым для получения в каждом случае. Эти определения радикалов можно комбинировать друг с другом по желанию, т.е. включая комбинации между данными предпочтительными диапазонами.

Прежде всего по причинам более высокой гербицидной активности, лучшей селективности и/или лучшей производительности соединения вышеупомянутой общей формулы (I) в соответствии с изобретением и/или их соли и N-оксиды или их применение в соответствии с изобретением представляют особый интерес, в которых отдельные радикалы имеют одно из предпочтительных значений, уже указанных или указанных ниже, или, в частности, те, в которых одно или несколько из уже определенных или указанных ниже предпочтительных значений встречаются в комбинации.

Что касается соединений в соответствии с изобретением, термины, использованные выше и ниже, будут пояснены. Они известны специалисту в данной области техники и, в частности, имеют определения, поясняемые ниже:

Если не указано иное, названия химических групп обычно следует понимать так, что присоединение к скелету или остальной части молекулы происходит через структурный элемент, упомянутый последним, то есть, например, в случае (C_2 - C_8)-алкенилокси через атом кислорода, а в случае (C_1 - C_8)-алкокси-(C_1 - C_4)-алкила или (C_1 - C_8)-алкоксикарбонил-(C_1 - C_8)-алкила, в каждом случае, через атом углерода алкильной группы.

5

10

15

20

25

30

В соответствии с изобретением «алкилсульфонил» - отдельно или как часть химической группы - относится к алкилсульфонилу с прямой или разветвленной цепью, предпочтительно имеющему от 1 до 8 или от 1 до 6 атомов углерода, например, (но не ограничиваясь этим) (C_1 - C_6)-алкилсульфонил, такой как метилсульфонил, этилсульфонил, пропилсульфонил, 1-метилэтил-сульфонил, бутилсульфонил, 1-метилпропилсульфонил, 2-метилпропилсульфонил, 1,1диметилэтилсульфонил, пентилсульфонил, 1-метилбутилсульфонил, 2метилбутилсульфонил, 3-метилбутилсульфонил, 1,1-диметил-пропилсульфонил, 1,2-диметилпропилсульфонил, 2,2-диметилпропилсульфонил, 1этилпропилсульфонил, гексилсульфонил, 1-метилпентилсульфонил, 2метилпентилсульфонил, 3-метилпентилсульфонил, 4-метил-пентилсульфонил, 1,1-диметилбутилсульфонил, 1,2-диметилбутилсульфонил, 1,3диметилбутилсульфонил, 2,2-диметилбутилсульфонил, 2,3диметилбутилсульфонил, 3,3-диметилбутилсульфонил, 1-этилбутилсульфонил, 2-этилбутилсульфонил, 1,1,2-триметилпропилсульфонил, 1,2,2триметилпропилсульфонил, 1-этил-1-метил-пропилсульфонил и 1-этил-2метилпропилсульфонил.

В соответствии с изобретением, «алкилтио» - отдельно или как часть химической группы - означает неразветвленный или разветвленный S-алкил, предпочтительно имеющий от 1 до 8 или от 1 до 6 атомов углерода, таких как (C_1-C_{10}) -, (C_1-C_6) - или (C_1-C_4) -алкилтио, например, (но не ограничиваясь этим) (C_1-C_6) -алкилтиотакие как метилтио, этилтио, пропилтио, 1-метилэтилтио, бутилтио, 1-метилпропилтио, 2-метилпропилтио, 1,1-диметилэтилтио, 1-метилбутилтио, 2-метилбутилтио, 3-метилбутилтио, пентилтио, 1,1-1,2-диметилпропил-тио, 2,2-диметилпропилтио, 1диметилпропилтио, 1-метилпентилтио. 2-метилпентилтио, 3этилпропилтио, гексилтио, метилпентилтио, 4-метилпентилтио, 1,1-диметилбутилтио, 1,2-диметилбутилтио, 1,3-диметил-бутилтио, 2,2-диметилбутилтио, 2,3-диметилбутилтио, 3.3диметилбутилтио, 1-этилбутилтио, 2-этилбутилтио, 1,1,2-триметилпропилтио, 1,2,2-триметилпропилтио, 1-этил-1-метилпропилтио и 1-этил-2-метилпропилтио.

5

10

15

20

25

30

В соответствии с изобретением «алкилсульфинил (алкил-S(=O)-)», если не определено иначе в другом месте, означает алкильные радикалы, которые прикрепляются к скелету посредством -S(=O)-, такие как (C_1 - C_{10})-, (C_1 - C_6)- или (C_1-C_4) -алкилсульфинил, например, (но не ограничиваясь этим) (C_1-C_6) алкилсульфинил такие как метилсульфинил, этилсульфинил, пропилсульфинил. 1-метилэтилсульфинил, бутилсульфинил, 1-метилпропилсульфинил, 2метилпропилсульфинил, 1,1-диметилэтилсульфинил, пентилсульфинил, 1метилбутилсульфинил, 2-метилбутилсульфинил, 3-метилбутилсульфинил, 1,1диметилпропилсульфинил, 1,2-диметилпропилсульфинил, 2,2-диметилпропилсульфинил, 1-этилпропилсульфинил, гексилсульфинил, 1метилпентилсульфинил, 2-метилпентилсульфинил, 3-метил-пентилсульфинил, 4метилпентилсульфинил, 1,1-диметилбутилсульфинил, 1,2диметилбутилсульфинил, 1,3-ди-метилбутилсульфинил, 2,2диметилбутилсульфинил, 2,3-диметилбутилсульфинил, 3,3диметилбутилсульфинил, 1-этилбутилсульфинил, 2-этилбутилсульфинил, 1,1,2триметилпропилсульфинил, 1,2,2-триметилпропилсульфинил, 1-этил-1метилпропилсульфинил и 1-этил-2-метилпропилсульфинил.

«Алкокси» означает алкильный радикал, связанный через атом кислорода, например, (но не ограничиваясь этим) (C_1-C_6) -алкокси, такой как метокси, этокси, пропокси, 1-метилэтокси, бутокси, 1-метилпропокси, 2-метилпропокси, 1,1-диметилэтокси, пентокси, 1-метилбутокси, 2-метилбутокси, 3-метилбутокси, 1,2-диметилпропокси, 2,2-диметилпропокси, 1,1-диметилпропокси, этилпропокси, гексокси, 1-метилпентокси, 2-метил-пентокси, 3-метилпентокси, 1,1-диметилбутокси, 4-метилпентокси, 1,2-диметилбутокси, 1,3-диметилбутокси, 2,2-диметилбутокси, 2,3-диметилбутокси, 3,3-диметилбутокси, 1этилбутокси, 2-этилбутокси, 1,1,2-триметилпропокси, 1,2,2-триметилпропокси, 1-этил-1-метилпропокси и 1-этил-2-метил-пропокси. Алкенилокси означает алкенильный радикал, связанный через атом кислорода, и алкинилокси означает алкинильный радикал, связанный через атом кислорода, такой как (C_2-C_{10}) -, (C_2-C_{10}) - C_6)- или (C_2-C_4) -алкенокси и (C_3-C_{10}) -, (C_3-C_6) - или (C_3-C_4) -алкинокси.

Термин «галоген» означает, например, фтор, хлор, бром или йод. Если термин используют для радикала, то «галоген» означает, например, атом фтора, хлора, брома или йода.

В соответствии с изобретением «алкил» означает насыщенный углеводородный радикал с прямой или разветвленной открытой цепью, который необязательно является моно- или полизамещенным, и в последнем случае его называют «замещенным алкилом». Предпочтительными заместителями являются атомы галогена, алкокси, галоалкокси, циано, алкилтио, галогеналкилтио, амино или нитрогруппы, причем особое предпочтение отдают метокси, метилу, фторалкилу, циано, нитро, фтору, хлору, брому или йоду.

5

10

15

20

25

30

Приставка «ди» включает в себя комбинацию одинаковых или разных алкильных радикалов, например, диметил или метил(этил) или этил(метил).

«Галогеналкил», «-алкенил» и «-алкинил» соответственно означают алкил, алкенил и алкинил, частично или полностью замещенный одинаковыми или разными атомами галогена, например, моногалогеналкил такие как CH_2CH_2Cl , CH_2CH_2Br , $CHClCH_3$, CH_2Cl , CH_2F ; пергалогеналкил такие как CCl_3 , $CClF_2$, $CFCl_2$, CF_2CClF_2 , $CF_2CClFCF_3$; полигалогеналкил такие как CH_2CHFCl , CF_2CClFH , CF_2CBrFH , CH_2CF_3 ; термин пергалогеналкил также охватывает термин перфторалкил.

«Галогеналкокси» представляет собой, например, OCF_3 , OCH_2 , OCH_2 F, OCF_2 CF $_3$, OCH_2 CF $_3$ и OCH_2 CH $_2$ CI; это относится соответственно к галогеналкенилу и другим галогензамещенным радикалам.

Выражение « $(C_1$ - C_4)-алкил», приведенное в данном случае при помощи примера, представляет собой короткое обозначение для неразветвленного или разветвленного алкила с одним - 4 атомами углерода согласно диапазону, указанному для атомов углерода, т.е. охватывает радикалы метила, этила, 1-пропила, 2-пропила, 1-бутила, 2-бутила, 2-метилпропила или *трет*-бутила. Общие алкильные радикалы с более широко определенным диапазоном атомов углерода, например, « $(C_1$ - C_6)-алкил», соответственно также охватывают неразветвленные или разветвленные алкильные радикалы с большим числом атомов углерода, т.е. в соответствии с примером также алкильные радикалы с 5 и 6 атомами углерода.

Если не указано конкретно, то предпочтение отдают скелетам с меньшим количеством атомов углерода, например, с от 1 - 6 атомами углерода, или с от 2

до 6 атомами углерода в случае ненасыщенных групп, в случае гидрокарбильных радикалов, таких как алкильные, алкенильные и алкинильные радикалы, в том числе составные радикалы. Алкильные радикалы, в том числе составные радикалы, такие как алкокси, галогеналкил, и т.д., представляют собой, например, метил, этил, μ -пропил или u-пропил, μ -, u-, m- или 2-бутил, пентилы, гексилы, такие как μ -гексил, μ -гексил и 1,3-диметилбутил, гептилы, такие как μ гептил, 1-метилгексил и 1,4-диметилпентил; алкенильные и алкинильные радикалы определены как возможные ненасыщенные радикалы, соответствующие алкильным радикалам, где присутствует по меньшей мере одна двойная связь или тройная связь. Предпочтение отдают радикалам с одной двойной связью или тройной связью.

5

10

15

20

25

30

Термин «циклоалкил» означает карбоциклическую насыщенную кольцевую систему с предпочтительно 3-8 кольцевыми атомами углерода, например, циклопропил, циклобутил, циклопентил или циклогексил, которая необязательно имеет дополнительное замещение, предпочтительно посредством водорода, алкила, алкокси, циано, нитро, алкилтио, галогеналкилтио, галогена, алкенила, галогеналкила, амино, алкиламино, бисалкиламино, алкинила, алкоксикарбонила, гидроксикарбонила, арилалкоксикарбонила, аминокарбонила, алкиламинокарбонила, циклоалкиламинокарбонила. В случае необязательно замещенного циклоалкила, включены циклические системы с заместителями, также включая заместители с двойной связью на циклоалкильном радикале, например, алкилиденовая группа, такая как метилиден. В случае необязательно замещенного циклоалкила, также включены полициклические алифатические бицикло[1.1.0]бутан-1-ил, например, бицикло[1.1.0]бутан-2-ил, системы, бицикло[2.1.0] пентан-1-ил, бицикло[1.1.1] пентан-1-ил, бицикло[2.1.0] пентан-2ил, бицикло[2.1.0] пентан-5-ил, бицикло[2.1.1] гексил, бицикло[2.2.1] гепт-2-ил, бицикло[2.2.2]октан-2-ил, бицикло[3.2.1]октан-2-ил, бицикло[3.2.2]нонан-2-ил, адамантан-1-ил и адамантан-2-ил, а также системы, би(циклопропил)-1-ил, 1,1'-bi(циклопропил)-2-ил, например. Термин «(C_3 - C_7)циклоалкил» представляет собой короткое обозначение для циклоалкила, имеющего от трех до 7 атомов углерода, соответствующее диапазону, заданному для атомов углерода.

В случае замещенного циклоалкила, также включены спироциклические алифатические системы, например спиро[2.2]пент-1-ил, спиро[2.3]гекс-1-ил,

спиро[2.3] гекс-4-ил, 3-спиро[2.3] гекс-5-ил, спиро[3.3] гепт-1-ил, спиро[3.3] гепт-2-ил.

В соответствии с изобретением «галогеналкилтио» - сам по себе или как составная часть химической группы - представляет собой S-галогеналкил с прямой или разветвленной цепью, предпочтительно имеющий от 1 до 8 или имеющий от 1 до 6 атомов углерода, такой как (C_1-C_8) -, (C_1-C_6) - или (C_1-C_4) -галогеналкилтио, например, (но не ограничиваясь ими) трифторметилтио, пентафторэтилтио, дифторметил, 2,2-дифторэт-1-илтио, 2,2,2-дифтореth-1-илтио, 3,3,3-проп-1-илтио.

5

10

15

20

25

30

«Галогенциклоалкил» означает циклоалкил, который частично или полностью замещен одинаковыми или разными атомами галогена, такими как F, Cl и Br, или галогеналкилом, таким как трифторметил или дифторметил, например, 1-фторциклопроп-1-ил, 2-фторциклопроп-1-ил, 2,2-дифторциклопроп-1-ил, 1-трифторметилциклопроп-1-ил, 2-трифторметилциклопроп-1-ил, 1-хлорциклопроп-1-ил, 2-хлорциклопроп-1-ил, 2,2-дихлорциклопроп-1-ил, 3,3-дифторциклобутил.

Если соединения могут образовывать за счет водородного сдвига таутомеры, структура которых формально не охватывается общей формулой (I), эти таутомеры, тем не менее, подпадают под определение соединений в соответствии с изобретением общей формулы (I), за исключением случаев, когда конкретный таутомер находится на рассмотрении. Например, многие карбонильные соединения могут присутствовать как в кето-форме, так и в енольной форме, причем обе формы охватываются определением соединения общей формулы (I).

В зависимости от природы заместителей и способа, которым они присоединены, соединения общей формулы (I) могут присутствовать в виде стереоизомеров. Формула (I) охватывает все возможные стереоизомеры, определенные их особой трехмерной формой, такие как энантиомеры, диастереомеры, Z и Е изомеры. Если, например, присутствует одна или несколько алкенильных групп, то могут встречаться диастереомеры (Z и Е изомеры). Если, например, присутствует один или несколько асимметричных атомов углерода, то могут встречаться энантиомеры и диастереомеры. Стереоизомеры могут быть получены из смесей, полученных при приготовлении обычными способами разделения. Хроматографическое разделение можно

осуществлять или на аналитической шкале, чтобы найти энантиомерный избыток или диастереомерный избыток, или же на препаративной шкале, чтобы произвести образец для испытаний для биологического тестирования. Кроме того, возможно селективное получение стереоизомеров, используя стереоселективные реакции с применением оптически активных исходных веществ и/или вспомогательных веществ. Таким образом, изобретение также относится ко всем стереоизомерам, которые охвачены общей формулой (I), но которые не представлены в их специфической стереоизомерной форме и к их смесям.

5

10

15

20

25

30

Если соединения получены в виде твердых веществ, очистку можно также проводить перекристаллизацией или расщеплением. Если отдельные соединения общей формулы (I) не могут быть получены удовлетворительным образом способами, описанными ниже, их можно получить путем дериватизации других соединений общей формулы (I).

Подходящие методы выделения, методы очистки и методы разделения стереоизомеров соединений общей формулы (I) представляют собой методы, общеизвестные специалисту в данной области техники из аналогичных случаев, например, с помощью физических процессов, таких как кристаллизация, хроматографические методы, в частности, колоночная хроматография и ВЭЖХ (жидкостная хроматография высокого давления), перегонка, необязательно при пониженном давлении, экстракция и другие методы, любые оставшиеся смеси обычно можно разделить хроматографическим разделением, например, на хиральные твердые фазы. Для препаративных количеств или в промышленном масштабе пригодны такие способы, как кристаллизация, диастереомерных солей, которые можно получить из смесей диастереомеров с использованием оптически активных кислот и, при необходимости, при наличии кислотных групп, с использованием оптически активных оснований.

Синтез замещенных 1,2,4-тиадиазолилникотинамидов общей формулы (I):

Замещенные 1,2,4-тиадиазолилникотинамиды общей формулы (I) в соответствии с изобретением могут быть получены известными способами. Используемые и исследованные пути синтеза основаны на коммерчески доступных или легко синтезируемых замещенных 1,2,4-тиадиазолах или их солях (например, гидрохлориде или дигидрохлориде) и замещенных карбоновых кислотах.

В следующих схемах группы R^1 , R^2 , R^3 , R^4 , R^5 и W общей формулы (I) имеют значения, определенные выше, если не даны примерные, но не ограничивающие определения. Первый путь синтеза замещенных 1,2,4тиадиазолилникотинамидов общей формулы (I) протекает через необязательно замещенный аминотиадиазол (II) или его соль и необязательно замещенную карбоновую кислоту (III) (схема 1). С этой целью замещенный аминотиадиазол подвергают взаимодействию с замещенной карбоновой кислотой в присутствии подходящего реагента сочетания (например, тионилхлорида) и подходящего основания (например, 1-метил-1Н-имидазол) с получением целевых 1,2,4тиадиазолилникотинамидов (I) (см. US 2019/0233382). Альтернативно можно использовать соль аминотиадиазола, при этом в реакционной смеси образуется свободный амин. Существует множество реагентов для связывания амидов и оснований, которые можно использовать для проведения этой реакции (см. Chem. Soc. Rev., 2009, 38, 606-631). Другие подходящие реагенты для сочетания амидов включают в себя, помимо прочего, оксалилхлорид, ТЗР (ангидрид пропанфосфоновой кислоты), DIC (1,3-диизопропилкарбодиимид) и НАТИ (1-[бис(диметиламино)метилен]-1Н-1,2,3-триазоло[4,5-b]пиридиний-3-оксидгексафторфосфат) и другие подходящие основания включают в себя, помимо прочего, триэтиламин, DIPEA (N,N-диизопропил-этиламин) и пиридин. На схеме 1 ниже R^1 , R^2 , R^3 , R^4 и R^5 имеют значения, определенные выше и $W = \kappa$ ислород.

$$\mathbb{R}^{1}$$
 \mathbb{N}^{1} \mathbb{R}^{2} \mathbb{R}^{3} \mathbb{R}^{4} $\mathbb{SOCl}_{2}, \mathbb{MeCN}$ \mathbb{R}^{2} \mathbb{R}^{3} \mathbb{R}^{4} \mathbb{R}^{2} \mathbb{R}^{3} \mathbb{R}^{4} \mathbb{R}^{2} \mathbb{R}^{3} \mathbb{R}^{4} \mathbb{R}^{4

Схема 1.

5

10

15

20

25

Синтез замещенных 1,2,4-тиадиазолилникотинамидов общей формулы (I) альтернативно может быть завершен путем прямого амидного сочетания необязательно замещенного хлорангидрида (IV) с необязательно замещенным 1,2,4-тиадиазолом (II) (Схема 2). По этому методу хлорангидрид (IV), предварительно полученный из соответствующей карбоновой кислоты (III) с использованием хлорирующего реагента (например, оксалилхлорида с

каталитическими количествами ДМФА = N,N-диметилформамид), подвергают реакции с 1,2,4-тиадиазолом (II) в присутствии основания (например, триэтиламина) и подходящего растворителя (например, $T\Gamma\Phi$ = тетрагидрофуран) с получением замещенного 1,2,4-тиадиазолилникотинамида (I). Для этого превращения можно использовать широкий спектр реагентов (см. Chem. Soc. Rev., 2009, 38, 606-631), а также использовать подходящий катализатор (например, DMAP = 4-диметиламинопиридин). На схеме 2 ниже R^1 , R^2 , R^3 , R^4 и R^5 имеют значения, определенные выше, и W = кислород.

Схема 2.

5

10

15

20

Синтез замещенных 1,2,4-тиадиазолилникотинамидов общей формулы (I) может быть, кроме того, осуществлен путем прямого амидного сочетания замещенного 1,2,4-тиадиазола (II) с необязательно замещенным сложным эфиром (V) (Схема 3). Для протекания этих реакций необходимы соответствующий реагент (например, триметилалюминий) и подходящий растворитель (например, дихлорметан или толуол) (см. Chem. Commun., 2008, 1100-1102). Это превращение также можно осуществить с использованием множества других реагентов, известных из литературных источников (см. Tetrahedron Lett., 2006, 47, 5767-5769). На схеме 3 ниже, \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 и \mathbb{R}^5 имеют значения, определенные выше, и $\mathbb{W} = \kappa$ кислород.

25 Схема 3.

Синтез замещенных 1,2,4-тиадиазолилникотинамидов общей формулы (I) также можно осуществить путем независимого получения необязательно замещенной карбоновой кислоты и последующего проведения ключевого амидного сочетания с замещенным 1,2,4-тиадиазолом. Следуя этому методу (Схема 4), сложный эфир (VI) обрабатывают металлоорганическим реагентом (например, i-PrMgCl·LiCl) в присутствии подходящей добавки (например, BF₃.OEt₂) и подходящего растворителя (например, ТГФ = тетрагидрофуран) с получением замещенного эфира (VII) (см. J. Am. Chem. Soc., 2013, 135, 4958–4961). Гидролиз сложного эфира (VII) подходящим основанием (например, гидроксидом натрия) затем дает карбоновую кислоту (VIII), которую подвергают взаимодействию с 1,2,4-тиадиазолом (II) с использованием ранее описанных методов (схемы 1, 2 и 3) с получением целевых 1,2,4-тиадиазолилникотинамидов общей формулы (I). На схеме 4 ниже R³, R⁴ и R⁵ имеют значения, определенные выше. Синтез изопропилзамещенной карбоновой кислоты (VIII) показан в качестве примера, а не ограничения.

$$\mathbf{R}^3$$
 оксалилхлорид, ДМФА \mathbf{R}^3 водн. NaOH, MeOH \mathbf{R}^3 \mathbf{R}^4 водн. NaOH, MeOH \mathbf{R}^3 \mathbf{R}^4 оксалилхлорид, ДМФА \mathbf{R}^4 водн. NaOH, MeOH \mathbf{R}^3 \mathbf{R}^4 водн. NaOH, MeOH \mathbf{R}^3 \mathbf{R}^4 оксалилхлорид, ДМФА \mathbf{R}^4 водн. NaOH, MeOH \mathbf{R}^3 \mathbf{R}^4 водн. NaOH, MeOH \mathbf{R}^3 \mathbf{R}^4 оксалилхлорид, ДМФА \mathbf{R}^4 водн. NaOH, MeOH \mathbf{R}^3 \mathbf{R}^4 водн. \mathbf{R}^3 \mathbf{R}^4 водн. NaOH, MeOH \mathbf{R}^3 \mathbf{R}^4 водн. \mathbf{R}^3 \mathbf{R}^4 водн. \mathbf{R}^4 в

Ниже приведены избранные подробные примеры синтеза соединений общей формулы (I) в соответствии с изобретением. Упомянутые номера примеров соответствуют схеме нумерации на схемах 1 - 3 и в таблице 1. Данные 1 Н ЯМР спектроскопии, представленные для химических примеров, описанных в последующих разделах, были получены на приборах Bruker при 600 МГц, 400 МГц или 300 МГц с использованием CDCl $_{3}$ или d_{6} -ДМСО в качестве растворителя с тетраметилсиланом ($\delta=0.00$ част. на млн.) в качестве внутреннего стандарта. Перечисленные сигналы имеют значения, указанные ниже: br= широкий; s= синглет, d= дублет, t= триплет, d= дублет дублетов, dd= дублет дублетов, m= мультиплет, d= квартет, d= квинтет, d= секстет, d= дублет квартетов, dt= дублет триплетов.

Примеры синтеза:

5

10

15

20

№ I-007: 2,4-Бис(дифторметил)-N-(1,2,4-тиадиазол-5-ил)пиридин-3-карбоксамид

К перемешиваемой смеси 2,4-бис(дифторметил)пиридин-3-карбоновой кислоты (150 мг, 0,672 ммоль, 1,0 экв.), гидрохлорида 1,2,4-тиадиазол-5-амина (102 мг, 0,739 ммоль, 1,1 экв.) и 3Å молекулярных сит в MeCN (10 мл) при КТ добавляли 1-метил-1H-имидазол (0,257 мл, 3.23 ммоль, 4,8 экв.). Полученную смесь перемешивали при КТ в течение 20 мин., добавляли тионилхлорид (78 мкл, 1,08 ммоль, 1,6 экв.) и реакционную смесь перемешивали при $70\,^{\circ}$ С в течение 8 ч. Реакционную смесь разбавляли смесью воды и CH_2Cl_2 . Органическую фазу отделяли с использованием картриджа для разделения фаз и затем концентрировали при пониженном давлении. Полученный остаток очищали флэш-хроматографией на колонке с силикагелем, элюируя посредством ν -гептан/EtOAc (90:10 \rightarrow 0:100), чтобы получить I-007 (24 мг, выход 11 %).

№ I-009: N-(3-Хлор-1,2,4-тиадиазол-5-ил)-2-фтор-4-(трифторметил)пиридин-3-карбоксамид

К перемешиваемой смеси 2-фтор-4-(трифторметил)пиридин-3-карбоновой кислоты (68,5 мг, 0,328 ммоль, 1,0 экв.), 3-хлор-1,2,4-тиадиазол-5-амина (48,8 мг, 0,360 ммоль, 1,1 экв.) и 3Å молекулярных сит в МеСN (2 мл) при КТ добавляли 1-метил-1Н-имидазол (0,125 мл, 1,57 ммоль, 4,8 экв.). Полученную смесь перемешивали в течение 10 мин., добавляли тионилхлорид (38 мкл, 0,524 ммоль, 1,6 экв.) и реакционную смесь перемешивали при КТ в течение 24 ч.

Реакционную смесь разбавляли водой (5 мл) и экстрагировали посредством $\mathrm{CH_2Cl_2}$ (5 мл). Органический экстракт концентрировали под сниженным давлением и полученный остаток очищали флэш-хроматографией на колонке с силикагелем, элюируя посредством n-гептан/EtOAc (100:0 \rightarrow 0:100), чтобы получить I-009 (44 мг, выход 41 %) в виде твердого вещества белого цвета.

№ I-016: 2-Фтор-N-(3-метокси-1,2,4-тиадиазол-5-ил)-4-(трифторметил) пиридин-3-карбоксамид

5

10

15

20

25

К перемешиваемой смеси 2-фтор-4-(трифторметил)пиридин-3-карбоновой кислоты (200 мг, 0,956 ммоль, 1,0 экв.), 3-метокси-1,2,4-тиадиазол-5-амина (138 мг, 1,05 ммоль, 1,1 экв.) и 3Å молекулярных сит в MeCN (4 мл) при КТ добавляли 1-метил-1H-имидазол (366 мкл, 4,59 ммоль, 4,8 экв.). Полученную смесь перемешивали при КТ в течение 20 мин., добавляли тионилхлорид (112 мкл, 1,53 ммоль, 1,6 экв.) и реакционную смесь перемешивали при КТ в течение 48 ч. Реакционную смесь разбавляли смесью воды и экстрагировали посредством CH_2Cl_2 . Органический экстракт сушили над безводным Na_2SO_4 , фильтровали и концентрировали под сниженным давлением. Полученный остаток сначала очищали флэш-хроматографией на колонке с силикагелем, элюируя посредством u-гептан/EtOAc (100:0 \rightarrow 0:100) с последующей дополнительной очисткой обращенно-фазовой хроматографией, элюируя посредством воды/MeCN, чтобы получить I-016 (65 мг, выход 21 %).

№ I-020: 2,6-Дихлор-4-метил-N-(1,2,4-тиадиазол-5-ил)пиридин-3-карбоксамид

К перемешиваемой смеси 2,6-дихлор-4-метил-пиридин-3-карбоновой кислоты (150 мг, 0,728 ммоль, 1,0 экв.), гидрохлорида 1,2,4-тиадиазол-5-амина

(110 мг, 0,801 ммоль, 1.1 экв.) и 3Å молекулярных сит в MeCN (3 мл) при КТ добавляли 1-метил-1H-имидазол (279 мкл, 3.50 ммоль, 4.8 экв.). Полученную смесь перемешивали при КТ в течение 20 мин., добавляли тионилхлорид (85 мкл, 1,17 ммоль, 1,6 экв.) и реакционную смесь перемешивали при 80 °С в течение 4 дней. Реакционную смесь разбавляли со смесью вода и CH_2Cl_2 . Органическую фазу отделяли с использованием картриджа для разделения фаз и затем концентрировали при пониженном давлении. Полученный остаток очищали флэш-хроматографией на колонке с силикагелем, элюируя посредством μ -гептан/EtOAc (100:0 \rightarrow 0:100), чтобы получить I-020 (48 мг, выход 23 %).

5

10

15

20

25

№ І-022: 2-Бром-4-метил-N-(1,2,4-тиадиазол-5-ил)пиридин-3-карбоксамид

К перемешиваемой смеси 2-бром-4-метил-пиридин-3-карбоновой кислоты (150 мг, 0,694 ммоль, 1,0 экв.), гидрохлорида 1,2,4-тиадиазол-5-амина (105 мг, 0,764 ммоль, 1,1 экв.) и 3Å молекулярных сит в MeCN (3 мл) при КТ добавляли 1-метил-1Н-имидазол (266 мкл, 3,33 ммоль, 4,8 экв.). Полученную смесь перемешивали при КТ в течение 20 мин., добавляли тионилхлорид (81 мкл, 1,11 ммоль, 1,6 экв.), и реакционную смесь перемешивали при 80 °C в течение 8 ч. Реакционную смесь разбавляли со смесью воды и CH₂Cl₂. Органическую фазу использованием картриджа для разделения отделяли с фаз, затем концентрировали при пониженном давлении. Полученный остаток очищали флэш-хроматографией на колонке с силикагелем, элюируя посредством нгептан/EtOAc (100:0 \rightarrow 50:50), чтобы получить I-022 (45 мг, выход 21 %).

№ VIIa: Метил 2-хлор-4-изопропил-пиридин-3-карбоксилат

К перемешиваемому раствору метил-2-хлорникотината (344 мг, 2,00 ммоль, 1,0 экв.) в ТГФ при 0 °С под аргоном по каплям добавляли $BF_3.OEt_2$ (0,27 мл, 2,20 ммоль, 1,1 экв.). Полученный раствор перемешивали в течение 15 мин. при

0 °C и затем дополнительно охлаждали до -46 °C. По каплям добавляли раствор i-PrMgCl·LiCl (1,85 мл, 2,40 ммоль, 1,2 экв., 1,3 М в ТГФ,) и реакционную смесь перемешивали при -46 °C в течение еще 30 мин. Добавляли хлоранил (986 мг, 4,00 ммоль, 2,0 экв.) при -46 °C и полученной смеси давали нагреться до КТ и перемешивали в течение 2 ч. Реакционную смесь гасили нас. водн. раствором NH₃ (5 мл), фильтровали через тонкую подушку целита, промывая посредством Et_2O (5 мл). Фазы разделяли и водн. фазу экстрагировали посредством Et_2O (3 × 5 мл). Объединенные органические экстракты сушили над безводным Na₂SO₄, фильтровали и концентрировали под сниженным давлением. Полученный остаток очищали флэш-хроматографией на колонке с силикагелем, элюируя посредством *и*-гептан/EtOAc (100:0 \rightarrow 70:30), чтобы получить VIIa (228 мг, 53 %) в виде бледно-розового масла. ¹H ЯМР (400 МГц, CDCl₃): δ_H 8.36 (d, J = 4.0 Гц, 1H), 7.20 (d, J = 4.0 Гц, 1H), 3.97 (s, 3H), 2.92-2.88 (m, 1H), 1.26 (d, J = 8.0 Гц, 6H).

5

10

15

20

25

№ VIIIa: 2-Хлор-4-изопропил-пиридин-3-карбоновая кислота

К перемешиваемому раствору соединения VIIa (228 мг, 1,06 ммоль, 1,0 экв.) в МеОН (5 мл) при КТ добавляли NaOH (3,56 мл, 21,3 ммоль, 20 экв., 6 М водн. раствор). Полученную смесь перемешивали при 50 °C в течение 2 ч. Реакционной смеси давали остыть до КТ и МеОН удаляли под сниженным давлением. Полученную водную фазу подкисляли и экстрагировали посредством EtOAc (5 × 10 мл). Объединенные органические экстракты сушили над безводным Na₂SO₄, фильтровали и концентрировали под сниженным давлением, чтобы получить VIIIa (208 мг, 97 %) в виде бледно-розового твердого вещества. 1 H ЯМР (400 МГц, CDCl₃): $\delta_{\rm H}$ 8.46 (d, J = 4.0 Гц, 1H), 7.29 (d, J = 4.0 Гц, 1H), 3.13-3.10 (m, 1H), 1.32 (d, J = 8.0 Гц, 6H).

№ I-026: 2-Хлор-4-изопропил-N-(1,2,4-тиадиазол-5-ил)пиридин-3-карбоксамид

К перемешиваемой суспензии соединения VIIIa (120 мг, 0,60 ммоль, 1,0 экв.) и 1,2,4-тиадиазол-5-амин гидрохлорида (91 мг, 0,66 ммоль, 1,1 экв.) в МеСN (2 мл) при КТ добавляли 1-метил-1H-имидазол (0,23 мл, 2,88 ммоль, 4,8 экв.). Полученную смесь перемешивали в течение 10 мин., добавляли тионилхлорид (70 мкл, 0,96 ммоль, 1,6 экв.) и реакционную смесь нагревали до $80\,^{\circ}$ С в течение 36 ч. Реакционную смесь разбавляли водой (5 мл), экстрагировали посредством CH_2Cl_2 (5 мл), и органический экстракт концентрировали под сниженным давлением. Полученный остаток очищали флэш-хроматографией на колонке с силикагелем, элюируя посредством *н*-гептан/EtOAc ($100:0 \rightarrow 50:50$), чтобы получить I-026 (59 мг, 34 % выход) в виде твердого вещества белого цвета.

По аналогии с примерами получения, приведенными выше и изложенными в соответствующем месте, и с учетом общих деталей получения замещенных 1,2,4-тиадиазолилникотинамидов получают указанные ниже соединения.

Таблица 1: Примеры предпочтительных соединений общей формулы (I)

20

5

10

15

Пр. №	R ¹	\mathbb{R}^2	\mathbb{R}^3	R ⁴	R ⁵	W
I-001	Н	CF ₃	Н	Н	Н	О
I-002	Н	CF ₃	Н	Н	F	0
I-003	Н	Me	Н	Н	C1	О

Пр. №	R ¹	\mathbb{R}^2	\mathbb{R}^3	R ⁴	\mathbb{R}^5	W
I-004	Н	Et	H	H	C1	O
I-004	Н		Н	Н		
		CF ₃			циклопропил	0
I-006	H	CF ₂ H	Н	C1	Н	0
I-007	H	CF ₂ H	Н	Н	CF ₂ H	О
I-008	Me	CF ₃	H	Н	F	0
I-009	C1	CF ₃	Н	Н	F	О
I-010	Н	CF ₃	Н	Н	OMe	О
I-011	Н	Me	H	Н	H	О
I-012	Me	CF ₃	H	Н	H	0
I-013	CF ₃	CF ₃	H	Н	H	О
I-014	Br	CF ₃	H	Н	H	0
I-015	C1	CF ₃	Н	Н	Н	О
I-016	OMe	CF ₃	Н	Н	F	О
I-017	SMe	CF ₃	H	Н	F	О
I-018	Et	CF ₃	Н	Н	F	0
I-019	CCl ₃	CF ₃	Н	Н	F	О
I-020	Н	Me	Н	C1	C1	0
I-021	Н	CF ₃	Н	Н	C1	О
I-022	Н	Me	H	Н	Br	О
I-023	Н	Me	Н	F	H	О
I-024	Н	CF ₃	Н	C1	Н	О
I-025	Н	i-Pr	Н	Н	F	О
I-026	Н	i-Pr	Н	Н	C1	О
I-027	Н	i-Pr	Н	Н	OMe	О

Спектроскопические данные избранных примеров таблиц:

Спектроскопические данные, перечисленные ниже для выбранных примеров таблиц, оценивали с помощью традиционной интерпретации 1 H-ЯМР или с помощью методов списка пиков ЯМР.

а) Традиционная интерпретация ¹H-ЯМР

№ I-023: 1 H-ЯМР (400 МГц, CDCl₃): δ_{H} 12.85 (br. s, 1H), 8.67-8.54 (m, 1H), 7.98-7.94 (m, 1H), 7.03-6.99 (m, 1H), 2.68 (s, 3H).

№ I-026: ¹H-ЯМР (400 МГц, d₆-ДМСО): $\delta_{\rm H}$ 13.82 (br. s, 1H), 8.59 (s, 1H), 8.53-8.49 (m, 1H), 7.62-7.59 (s, 1H), 2.82-2.72 (m, 1H), 1.21 (d, J = 8.0 Гц, 6H).

б) Метод списка пиков ЯМР

5

10

15

Данные 1 H-ЯМР выбранных примеров записаны в виде списков пиков 1 H-ЯМР. Для каждого пика сигнала указано значение δ в част. на млн. и интенсивность сигнала в круглых скобках. Между парами «значение δ – интенсивность сигнала в качестве разделителей используют точки с запятой.

Таким образом, список пиков примера имеет форму:

5

10

15

20

25

30

 δ_1 (интенсивность₁); δ_2 (интенсивность₂);......; δ_i (интенсивность_i);......; δ_n (интенсивность_n)

Интенсивность резких сигналов коррелирует с высотой сигналов в печатном примере спектра ЯМР в см и показывает реальные соотношения интенсивностей сигналов. Из широких сигналов можно показать несколько пиков или середину сигнала и их относительную интенсивность по сравнению с наиболее интенсивным сигналом в спектре.

Для калибровки химического сдвига спектров ¹Н используют тетраметилсилан и/или химический сдвиг используемого растворителя, особенно в случае спектров, измеренных в ДМСО. Поэтому в списках пиков ЯМР пик тетраметилсилана может встречаться, но не обязательно.

Списки пиков ¹H-ЯМР аналогичны классическим отпечаткам ¹H-ЯМР и поэтому обычно содержат все пики, которые перечислены при классической интерпретации ЯМР.

Кроме того, они могут демонстрировать как классические отпечатки ¹Н-ЯМР сигналов растворителей, стереоизомеры целевых соединений, которые также являются объектом изобретения, и/или пики примесей.

Чтобы показать сигналы соединений в дельта-диапазоне растворителей и/или воды, в наших списках пиков 1 H-ЯМР показаны обычные пики растворителей, например пики ДМСО в d_6 -ДМСО и пик воды, которые обычно имеют в среднем высокую интенсивность.

Пики стереоизомеров целевых соединений и/или пики примесей обычно имеют в среднем более низкую интенсивность, чем пики целевых соединений (например, с чистотой > 90 %).

Такие стереоизомеры и/или примеси могут быть типичными для конкретного процесса получения. Поэтому их пики могут помочь распознать воспроизведение нашего процесса приготовления по «побочным продуктамотпечаткам пальцев».

Эксперт, который рассчитывает пики целевых соединений с помощью известных методов (MestreC, ACD моделирование, а также с эмпирически оцененными ожидаемыми значениями), может при необходимости выделить пики целевых соединений, при необходимости используя дополнительные

фильтры интенсивности. Такое выделение будет аналогично выделению соответствующих пиков при классической интерпретации ¹H-ЯМР.

Более подробную информацию об описании данных ЯМР со списками пиков можно найти в публикации «Citation of NMR Peaklist Data within Patent Applications» номера базы данных раскрытия информации об исследованиях 564025.

5

```
I-001: <sup>1</sup>H-ЯМР (400.0 МГц, CDCl<sub>3</sub>):
\delta= 9.1125 (6.5); 9.0995 (7.7); 9.0924 (13.6); 7.8074 (8.5); 7.7946 (8.4); 7.5987 (16.0);
7.5197 (0.8); 7.2608 (145.5); 6.9968 (0.8); 3.4862 (0.7); 2.0044 (3.1); 1.5923 (0.5);
0.0080(1.8); -0.0002(61.2); -0.0085(2.3)
I-002: <sup>1</sup>H-ЯМР (400.6 МГц, d<sub>6</sub>-ДМСО):
\delta= 14.0617 (1.4); 8.7868 (3.2); 8.7737 (3.3); 8.6267 (16.0); 8.0277 (3.8); 8.0146 (3.7);
3.3275 (3.6); 2.6716 (0.6); 2.5253 (1.4); 2.5207 (1.9); 2.5119 (28.1); 2.5074 (63.2);
2.5027 (89.7); 2.4982 (63.2); 2.4936 (29.1); 2.3298 (0.5); 1.9897 (0.7); 0.0080 (2.0); -
0.0002(81.8); -0.0053(1.4); -0.0061(1.1); -0.0070(1.0); -0.0085(2.6); -0.0109(0.5)
I-003: <sup>1</sup>H-ЯМР (400.0 МГц, CDCl<sub>3</sub>):
\delta= 13.1341 (0.8); 8.5005 (3.6); 8.4878 (3.8); 7.5058 (6.4); 7.2924 (2.3); 7.2908 (2.3);
7.2796 (2.3); 7.2781 (2.3); 7.2617 (18.4); 2.4202 (16.0); 1.5804 (0.6); 0.0079 (0.5); -
0.0002 (18.6); -0.0085 (0.6)
I-004: <sup>1</sup>H-ЯМР (400.0 МГц, CDCl<sub>3</sub>):
\delta= 12.6684 (1.3); 8.5356 (4.8); 8.5227 (5.0); 8.3807 (0.5); 7.5599 (7.2); 7.3231 (4.4);
7.3103 (4.3); 7.2607 (50.8); 3.1835 (3.0); 2.7268 (1.9); 2.7077 (5.9); 2.6887 (6.0);
2.6698 (2.0); 1.5544 (3.2); 1.2717 (7.7); 1.2528 (16.0); 1.2338 (7.7); 1.2124 (0.8); -
0.0002 (51.1); -0.0082 (2.4)
I-005: <sup>1</sup>H-ЯМР (400.0 МГц, CDCl<sub>3</sub>):
\delta= 12.8041 (2.9); 8.8344 (11.1); 8.8219 (11.4); 7.4425 (14.8); 7.4298 (14.6); 7.3573
(24.1); 7.2608 (118.2); 6.9968 (0.8); 5.3003 (7.5); 1.9828 (1.7); 1.9713 (3.7); 1.9631
(4.0); 1.9516 (7.9); 1.9402 (4.5); 1.9316 (4.2); 1.9202 (2.1); 1.5514 (16.0); 1.2542 (4.7);
1.2255 (3.5); 1.2147 (11.7); 1.2078 (13.3); 1.2035 (11.8); 1.1966 (12.4); 1.1876 (4.3);
1.0520 (3.7); 1.0429 (12.4); 1.0355 (10.8); 1.0230 (12.6); 1.0157 (10.4); 1.0050 (2.9);
0.0079(5.0); -0.0002(161.1); -0.0085(4.6); -0.1497(0.7)
I-006: <sup>1</sup>H-ЯМР (400.6 МГц, CDCl<sub>3</sub>):
\delta= 8.9647 (10.0); 8.0809 (16.0); 7.8580 (10.5); 7.5197 (1.0); 7.5106 (3.5); 7.3749 (7.2);
7.2883 (0.5); 7.2741 (0.6); 7.2612 (160.4); 7.2387 (3.6); 7.2328 (1.1); 6.9976 (0.9);
5.3006 (0.5); 4.1563 (1.1); 1.2551 (0.8); 0.0080 (2.8); -0.0002 (103.6); -0.0085 (3.1); -
0.0286 (0.6)
I-007: <sup>1</sup>H-ЯМР (400.0 МГц, CDCl<sub>3</sub>):
\delta= 8.1268 (16.0); 7.2683 (0.7); 7.2638 (1.4); 7.2592 (2.0); 7.2547 (1.4); 7.2502 (0.6)
I-008: {}^{1}H-ЯМР (400.6 МГц, d_{6}-ДМСО):
\delta= 13.8943 (8.3); 8.7747 (13.0); 8.7627 (12.7); 8.0171 (16.0); 8.0040 (15.9); 3.3190
(583.2); 2.6792 (7.7); 2.6746 (15.9); 2.6699 (21.9); 2.6654 (16.2); 2.5463 (12.1); 2.5412
(12.2); 2.5237 (57.8); 2.5190 (80.9); 2.5103 (1110.2); 2.5057 (2566.2); 2.5012 (3438.6);
2.4966 (2394.3); 2.4920 (1069.8); 2.3375 (5.5); 2.3329 (13.0); 2.3282 (19.3); 2.3237
(13.1); 0.1458 (12.9); 0.0403 (4.3); 0.0372 (2.9); 0.0341 (4.6); 0.0277 (4.1); 0.0229
(2.9); 0.0221 (3.2); 0.0174 (3.4); 0.0166 (3.8); 0.0158 (3.8); 0.0126 (4.4); 0.0118 (7.2);
0.0110 (9.8); 0.0079 (114.9); 0.0063 (23.9); 0.0054 (28.0); 0.0046 (39.5); -0.0002
(4097.1); -0.0043 (92.6); -0.0052 (71.5); -0.0060 (61.1); -0.0069 (59.7); -0.0085 (123.3);
```

```
-0.0107 (20.7); -0.0115 (17.4); -0.0124 (15.2); -0.0132 (15.8); -0.0139 (14.1); -0.0147
(10.8); -0.0155 (9.8); -0.0163 (7.7); -0.0171 (7.3); -0.0179 (7.2); -0.0187 (6.3); -0.0195
(5.6); -0.0203 (5.6); -0.0211 (4.9); -0.0219 (3.1); -0.0244 (8.3); -0.0250 (7.9); -0.0259
(7.3); -0.0289 (6.9); -0.0322 (9.0); -0.0361 (2.8); -0.0386 (4.3); -0.1493 (13.3)
I-009: {}^{1}H-ЯМР (400.6 МГц, d_{6}-ДМСО):
\delta= 8.8007 (12.8); 8.7877 (13.3); 8.0403 (16.0); 8.0272 (15.5); 3.3692 (6.5); 2.6799 (1.4);
2.6752 (3.4); 2.6706 (5.0); 2.6659 (3.4); 2.6613 (1.4); 2.5465 (0.8); 2.5414 (0.9); 2.5367
(0.7); 2.5244 (10.6); 2.5197 (15.0); 2.5109 (263.6); 2.5064 (585.7); 2.5018 (829.3);
2.4972 (569.3); 2.4926 (249.2); 2.4593 (0.6); 2.3381 (1.6); 2.3335 (3.6); 2.3288 (5.1);
2.3242 (3.6); 2.3195 (1.7); 1.9889 (1.6); 1.2350 (1.3); 1.1749 (0.8); 0.8584 (1.8); 0.8406
(0.5); 0.1456 (2.3); 0.0391 (0.6); 0.0320 (0.9); 0.0280 (0.8); 0.0080 (21.3); -0.0002
(997.7); -0.0052 (10.4); -0.0060 (8.6); -0.0068 (7.4); -0.0085 (28.8); -0.0116 (3.5); -0.0085
0.0125(3.3); -0.0132(3.2); -0.0140(3.0); -0.0148(2.7); -0.0156(2.5); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2); -0.0164(2.2)
0.0171(1.9); -0.0180(1.6); -0.0196(1.8); -0.0219(1.8); -0.0244(2.3); -0.0268(3.0); -0.0268(3.0); -0.0268(3.0); -0.0268(3.0);
0.0292(1.1); -0.0315(1.3); -0.0332(0.8); -0.0346(0.9); -0.0362(1.1); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9); -0.0385(1.9);
0.0402(0.6); -0.0410(0.6); -0.0489(0.6); -0.0505(0.5); -0.0537(0.7); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0553(0.5); -0.0550(0.5); -0.0550(0.5); -0.0550(0.5); -0.0550(0.5); -0.0550(0.5); -0.0550(0.5); -0.0550(0.5); -0.0550(0.5); -0.0550(0.5); -0.0550(0.5); -0.0550(0.5); -0.0550(0.5); -0.0550(0.5);
0.0569(0.5); -0.0601(0.5); -0.0632(0.5); -0.0695(0.5); -0.0719(0.6); -0.1495(2.6)
I-010: <sup>1</sup>H-ЯМР (400.6 МГц, d<sub>6</sub>-ДМСО):
\delta= 13.7081 (0.7); 8.6394 (1.1); 8.6377 (1.2); 8.6259 (1.2); 8.6243 (1.1); 8.5716 (4.6);
7.5300 (1.8); 7.5165 (1.7); 3.9722 (16.0); 3.3271 (146.0); 2.5247 (0.7); 2.5201 (1.0);
2.5113 (15.9); 2.5068 (35.0); 2.5022 (49.0); 2.4976 (33.6); 2.4930 (14.6); 0.0079 (0.9); -
0.0002 (33.9); -0.0028 (1.1); -0.0085 (0.9)
I-011: <sup>1</sup>H-ЯМР (400.6 МГц, d<sub>6</sub>-ДМСО):
\delta= 13.5852 (1.6); 8.8209 (7.6); 8.6176 (5.8); 8.6050 (5.9); 8.5654 (16.0); 7.4332 (2.7);
7.4315 (4.0); 7.4298 (2.5); 7.4206 (2.6); 7.4189 (3.9); 7.4172 (2.4); 3.3248 (69.0);
2.5418 (0.5); 2.5250 (1.2); 2.5203 (1.6); 2.5116 (20.4); 2.5070 (44.0); 2.5024 (61.4);
2.4978 (41.7); 2.4932 (17.8); 2.4661 (22.8); 1.2588 (0.6); 0.0080 (1.2); 0.0039 (0.6); -
0.0002 (44.4); -0.0085 (1.2)
I-012: {}^{1}H-ЯМР (400.6 МГц, d<sub>6</sub>-ДМСО):
\delta= 13.7451 (4.1); 9.1394 (16.0); 9.0708 (8.7); 9.0580 (8.4); 7.9830 (9.3); 7.9701 (8.6);
5.7574 (11.1); 3.4252 (6.9); 3.3233 (14.2); 2.6716 (1.0); 2.5041 (162.5); 2.3300 (0.9);
2.2107 (0.5); 1.9099 (0.5); 1.2353 (0.6); -0.0002 (33.1)
I-013: <sup>1</sup>H-ЯМР (400.6 МГц, d<sub>6</sub>-ДМСО):
\delta= 9.1997 (16.0); 9.1088 (7.2); 9.1072 (7.5); 9.0959 (7.5); 9.0943 (7.5); 8.0212 (8.8);
8.0082 (8.6); 4.0388 (0.6); 4.0211 (0.6); 3.3808 (0.9); 2.6763 (0.7); 2.6717 (1.0); 2.6671
(0.7); 2.5255 (2.4); 2.5208 (3.4); 2.5120 (54.2); 2.5075 (118.0); 2.5029 (165.1); 2.4983
(112.6); 2.4937 (49.3); 2.3346 (0.7); 2.3299 (1.0); 2.3253 (0.7); 1.9896 (3.1); 1.2352
(1.5); 1.1932 (1.0); 1.1755 (1.9); 1.1577 (0.9); 0.8583 (1.0); 0.1458 (0.6); 0.0128 (0.5);
0.0120(0.6); 0.0112(0.8); 0.0104(0.8); 0.0096(1.0); 0.0080(5.8); 0.0065(1.8); 0.0057
(2.0); 0.0048 (2.3); 0.0040 (3.1); -0.0002 (189.9); -0.0049 (1.4); -0.0058 (1.1); -0.0066
(0.9); -0.0085 (4.7); -0.1492 (0.5)
I-014: <sup>1</sup>H-ЯМР (400.6 МГц, d<sub>6</sub>-ДМСО):
\delta= 14.2768 (0.5); 9.1764 (16.0); 9.0957 (7.6); 9.0943 (7.3); 9.0828 (7.8); 9.0814 (7.4);
8.0069 (8.9); 7.9939 (8.6); 4.0381 (0.9); 4.0204 (0.8); 3.3509 (5.2); 2.6752 (1.3); 2.6706
(1.8); 2.6660 (1.3); 2.6615 (0.5); 2.5244 (4.4); 2.5197 (6.6); 2.5110 (100.9); 2.5064
(217.3); 2.5019 (300.7); 2.4973 (205.6); 2.4927 (90.1); 2.4790 (1.5); 2.4741 (1.5);
2.4697 (1.4); 2.3380 (0.6); 2.3335 (1.4); 2.3289 (1.9); 2.3243 (1.3); 1.9890 (3.9); 1.9089
(1.3); 1.2357 (2.4); 1.1926 (1.3); 1.1748 (2.4); 1.1570 (1.1); 0.8753 (0.8); 0.8583 (3.1);
0.8406 (1.1); 0.1457 (0.8); 0.0102 (0.9); 0.0080 (7.8); 0.0064 (1.9); 0.0055 (2.1); 0.0046
(2.8); -0.0002 (275.0); -0.0051 (4.1); -0.0059 (3.3); -0.0068 (3.0); -0.0085 (8.0); -0.0107
```

```
(1.3); -0.0115 (1.1); -0.0123 (1.0); -0.0131 (0.8); -0.0139 (0.7); -0.0147 (0.6); -0.0155
(0.6); -0.0163 (0.5); -0.0279 (1.0); -0.0338 (0.6); -0.1494 (0.9)
I-015: <sup>1</sup>H-ЯМР (400.6 МГц. d<sub>6</sub>-ДМСО):
\delta= 9.1800 (16.0); 9.1613 (0.7); 9.1504 (1.2); 9.0982 (7.2); 9.0966 (7.4); 9.0853 (7.6);
9.0838 (7.4); 8.0091 (8.8); 7.9961 (8.6); 5.7572 (8.6); 3.3449 (4.6); 2.6755 (1.0); 2.6709
(1.4); 2.6663 (1.0); 2.5416 (1.0); 2.5248 (2.1); 2.5201 (3.7); 2.5113 (77.7); 2.5067
(171.0); 2.5021 (239.5); 2.4976 (164.7); 2.4930 (73.0); 2.4804 (2.5); 2.4756 (2.0);
2.3338 (1.0); 2.3292 (1.5); 2.3246 (1.0); 1.2587 (0.8); 1.2349 (2.9); 0.1458 (0.8); 0.0080
(6.6); -0.0002(263.9); -0.0085(7.7); -0.0141(0.7); -0.0270(1.1); -0.1495(0.8)
I-016: <sup>1</sup>H-ЯМР (400.6 МГц, CDCl<sub>3</sub>):
\delta= 8.6407 (1.5); 8.6280 (1.6); 7.6460 (2.0); 7.6330 (1.9); 7.2623 (4.4); 3.7756 (1.0);
3.6356(16.0); 1.2534(3.6); 0.8791(0.5); -0.0002(5.8); -0.0007(5.8)
I-017: <sup>1</sup>H-ЯМР (400.6 МГц, CDCl<sub>3</sub>):
\delta= 8.6090 (1.3); 8.5959 (1.4); 7.6263 (1.7); 7.6134 (1.7); 7.2611 (14.4); 7.2592 (8.4);
5.3004 (0.8); 5.2985 (0.5); 2.5164 (16.0); 1.6099 (1.1); 1.3037 (1.9); 1.2864 (1.9);
1.2545 (4.8); 0.1220 (2.0); 0.0078 (0.7); 0.0059 (0.5); -0.0002 (20.4); -0.0021 (12.1); -0.0021
0.0085 (0.6)
I-018: <sup>1</sup>H-ЯМР (400.6 МГц, CDCl<sub>3</sub>):
\delta= 8.9825 (0.6); 7.2656 (4.2); 2.4262 (2.5); 2.4075 (7.8); 2.3889 (8.0); 2.3702 (2.7);
1.2548 (1.4); 1.2154 (8.2); 1.1968 (16.0); 1.1781 (7.7); -0.0002 (5.6); -0.0013 (5.2)
I-019: <sup>1</sup>H-ЯМР (400.6 МГц, CDCl<sub>3</sub>):
\delta= 9.9585 (4.3); 8.6782 (12.4); 8.6653 (12.8); 7.7031 (16.0); 7.6902 (15.9); 7.5194 (1.4);
7.2609 (269.5); 7.2333 (0.5); 6.9974 (1.6); 6.0311 (0.9); 5.3005 (13.1); 3.0999 (1.5);
2.7238 (0.6); 2.1759 (1.2); 1.9740 (0.7); 1.6005 (4.6); 1.3654 (1.8); 1.2548 (5.1); 0.8803
(0.6); 0.1457 (1.0); 0.0342 (0.6); 0.0264 (0.6); 0.0198 (0.5); 0.0150 (0.7); 0.0080 (10.0);
0.0056(2.9); 0.0048(2.7); -0.0002(355.7); -0.0085(11.1); -0.0279(0.7); -0.0328(0.6);
-0.1493 (1.1)
I-020: {}^{1}H-ЯМР (400.6 МГц, d<sub>6</sub>-ДМСО):
\delta= 13.8154 (2.0); 8.6014 (16.0); 7.7236 (7.6); 7.7218 (8.2); 3.3214 (7.2); 2.5250 (1.0);
2.5203 (1.3); 2.5115 (19.6); 2.5069 (43.5); 2.5023 (61.0); 2.4977 (42.5); 2.4931 (18.9);
2.3232 (23.5); 2.3217 (24.7); 1.2348 (0.6); 0.0080 (1.2); -0.0002 (45.0); -0.0085 (1.2)
I-021: <sup>1</sup>H-ЯМР (400.0 МГц, d<sub>6</sub>-ДМСО):
\delta= 14.0149 (1.1); 8.9274 (4.0); 8.9145 (4.3); 8.7235 (0.6); 8.7109 (0.6); 8.6243 (16.0);
8.1078 (0.6); 8.0756 (5.5); 8.0625 (5.6); 7.8772 (0.9); 7.8645 (0.8); 6.9372 (0.7); 6.9179
(0.6); 5.7568 (1.6); 3.9688 (0.6); 3.7177 (0.7); 3.4610 (1.5); 3.3297 (3.1); 3.0903 (0.7);
3.0827 (1.6); 3.0728 (1.6); 2.7859 (0.6); 2.6756 (0.7); 2.6712 (1.0); 2.6666 (0.8); 2.5414
(10.0); 2.5246 (2.4); 2.5199 (3.3); 2.5111 (59.8); 2.5066 (132.8); 2.5020 (187.1); 2.4974
(132.8); 2.4929 (60.2); 2.3337 (0.8); 2.3288 (1.2); 1.2590 (0.7); 1.2353 (2.1); 1.1445
(2.3); 1.1071 (2.4); 1.0578 (1.8); 1.0424 (1.8); 0.1460 (0.6); 0.0080 (4.4); -0.0002
(157.8); -0.0085 (4.6); -0.1497 (0.6)
I-022: <sup>1</sup>H-ЯМР (400.6 МГц, d<sub>6</sub>-ДМСО):
\delta= 13.7648 (1.0); 8.5885 (16.0); 8.4144 (6.6); 8.4018 (6.8); 8.3017 (4.5); 8.2892 (4.7);
7.9382 (3.2); 7.8440 (11.1); 7.4991 (4.2); 7.4975 (4.2); 7.4864 (4.0); 7.4848 (4.1);
7.4047 (3.0); 7.4031 (3.1); 7.3922 (2.9); 7.3905 (3.0); 5.7566 (7.3); 4.0382 (0.6); 4.0205
(0.6); 3.3216 (2.8); 2.8484 (0.8); 2.6753 (0.6); 2.6708 (0.8); 2.6662 (0.6); 2.5335 (0.6);
2.5245 (2.3); 2.5199 (3.4); 2.5111 (45.7); 2.5065 (98.9); 2.5019 (136.2); 2.4973 (94.0);
2.4928 (41.0); 2.3335 (1.0); 2.3288 (1.7); 2.3219 (20.8); 2.2951 (25.9); 1.9890 (2.4);
1.9092 (1.8); 1.2355 (0.9); 1.1925 (0.8); 1.1748 (1.5); 1.1571 (0.7); 1.1446 (0.6); 1.1068
(0.5); 0.0080(4.4); -0.0002(145.1); -0.0085(4.0)
I-024: <sup>1</sup>H-ЯМР (400.0 МГц, CDCl<sub>3</sub>):
```

```
\delta= 8.8829 (10.2); 7.8290 (10.6); 7.7789 (16.0); 7.2610 (21.8); 5.3001 (1.1); 0.0080 (1.1); -0.0002 (30.7); -0.0083 (1.1)

I-025: ^{1}H-ЯМР (400.6 МГц, d<sub>6</sub>-ДМСО): \delta= 13.8242 (1.2); 8.5885 (8.8); 8.3669 (2.1); 8.3536 (2.2); 7.5493 (1.5); 7.5457 (1.5); 7.5359 (1.5); 7.5323 (1.4); 3.3203 (10.6); 2.9923 (0.8); 2.9752 (1.1); 2.9581 (0.8); 2.5252 (0.8); 2.5205 (1.0); 2.5118 (12.1); 2.5073 (26.8); 2.5026 (37.3); 2.4980 (26.0); 2.4934 (11.2); 1.2316 (16.0); 1.2145 (15.7); 0.0080 (0.7); -0.0002 (25.8); -0.0085 (0.7)

I-027: ^{1}H-ЯМР (400.6 МГц, d<sub>6</sub>-ДМСО): \delta= 8.5345 (2.2); 8.2602 (0.7); 8.2468 (0.7); 7.1368 (0.7); 7.1231 (0.7); 3.8711 (5.5); 3.3230 (16.0); 2.5112 (3.6); 2.5066 (7.8); 2.5020 (11.1); 2.4974 (7.6); 2.4928 (3.3); 1.1874 (3.4); 1.1703 (3.3); -0.0002 (8.4)
```

Настоящее изобретение, кроме того, обеспечивает применение одного или нескольких соединений общей формулы (I), их солей или N-оксидов, как определено выше, предпочтительно в одном из вариантов осуществления, определенных как предпочтительные или особенно предпочтительные, в частности, одного или нескольких соединений формул (I-001) - (I-027), их солей или N-оксидов, в каждом случае, как определено выше, в качестве гербицида и/или регулятора роста растений, предпочтительно в посевах полезных растений и/или декоративных растений.

5

10

15

20

25

Настоящее изобретение, кроме того, обеспечивает способ борьбы с вредными растениями и/или регулирования роста растений, отличающийся тем, что эффективное количество

- одного или нескольких соединений общей формулы (I), их солей или N-оксидов, как определено выше, предпочтительно в одном из вариантов осуществления, определенных как предпочтительные или особенно предпочтительные, в частности одного или нескольких соединений формул (I-001) (I-027), их солей или N-оксидов, в каждом случае как определено выше, или
- композиции в соответствии с изобретением, как определено ниже, наносят на (вредные) растения, семена (вредных) растений, почву, в которой или на которой растут (вредные) растения или возделываемую площадь.

Настоящее изобретение также предлагает способ борьбы с нежелательными растениями, предпочтительно в посевах полезных растений, отличающийся тем, что эффективное количество

- одного или нескольких соединений общей формулы (I), их солей или N-оксидов, как определено выше, предпочтительно в одном из вариантов

осуществления, определенных как предпочтительные или особенно предпочтительные, в частности одного или нескольких соединений формул (I-001) - (I-027), их солей или N-оксидов, в каждом случае как определено выше, или

- композиции в соответствии с изобретением, как определено ниже,

5

10

15

20

25

30

наносят на нежелательные растения (например, вредные растения, такие как одно- или двудольные сорняки или нежелательные сельскохозяйственные растения), семена нежелательных растений (т.е. семена растений, например, зерна, семена или органы вегетативного размножения, такие как клубни или части побегов с почками), почву, в которой или на которой растут нежелательные растения (например, почва сельскохозяйственных угодий или непахотных земель) или возделываемую площадь (т. е. площадь, на которой будут расти нежелательные растения).

Настоящее изобретение, кроме того, предлагает способы регулирования роста растений, предпочтительно полезных растений, отличающиеся тем, что эффективное количество

- одного или нескольких соединений общей формулы (I), их солей или N-оксидов, как определено выше, предпочтительно в одном из вариантов осуществления, определенных как предпочтительные или особенно предпочтительные, в частности одного или нескольких соединений формул (I-001) (I-027), их солей или N-оксидов, в каждом случае как определено выше, или
 - композиции в соответствии с изобретением, как определено ниже,

наносят на растения, семена растений (т.е. семена растений, например, зерна, семена или органы вегетативного размножения, такие как клубни или части побегов с почками), почву, в которой или на которой растут растения (например, почва сельскохозяйственных угодий или непахотных земель) или возделываемую площадь (т. е. площадь, на которой будут расти растения).

В этом контексте соединения в соответствии с изобретением или композиции в соответствии с изобретением можно применять, например, путем предпосевной обработки (при необходимости также путем внесения в почву), довсходовой и/или послевсходовой обработки. Конкретные примеры некоторых представителей флоры однодольных и двудольных сорняков, с которыми можно бороться с помощью соединений в соответствии с изобретением, являются

следующими, хотя нет намерения ограничивать перечисление конкретными видами.

В соответствии с изобретением в способе борьбы с вредными растениями или для регулирования роста растений предпочтительно используют одно или несколько соединений общей формулы (I), их соли или N-оксиды для борьбы с вредными растениями или для регулирования роста в посевах полезных растений или декоративных растений, при этом в предпочтительном варианте осуществления полезные растения или декоративные растения представляют собой трансгенные растения.

5

10

15

20

25

30

Соединения общей формулы (I) согласно изобретению и/или их соли и N-оксиды пригодны для борьбы со следующими родами однодольных и двудольных вредных растений:

Однодольные вредные растения рода: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum.

Двудольные вредные растения рода: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium.

Когда соединения в соответствии с изобретением наносят на поверхность почвы до прорастания вредных растений (сорных трав и/или широколистных сорняков) (довсходовый метод), то всходы сорных трав или широколистных сорняков не могут полностью появиться или растут до стадии семядоли, а затем перестают расти и в конце концов, по прошествии трех-четырех недель, полностью погибают.

Если активные соединения наносят после всходов на зеленые части растений, то после обработки рост прекращается, а вредные растения остаются на стадии роста на момент применения или через определенное время полностью погибают, так что таким образом очень рано и надолго устраняется конкуренция со стороны сорняков, вредная для сельскохозяйственных растений.

5

10

15

20

25

30

Хотя соединения В соответствии c изобретением проявляют исключительную гербицидную активность против однодольных и двудольных сорняков, сельскохозяйственные растения экономически важных культур, например, двудольные культуры рода Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Miscanthus, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, или однодольные культуры рода Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Secale, Sorghum, тритикале, тритикум, Zea повреждаются лишь в незначительной степени или не повреждаются совсем, в зависимости от структуры соответствующего соединения в соответствии с изобретением и норм его применения. По этим причинам данные соединения весьма пригодны для избирательного контроля нежелательного роста растений сельскохозяйственных культурах, таких как полезные в сельском хозяйстве растения или декоративные растения.

К тому же, соединения в соответствии с изобретением (в зависимости от их И применяемой нормы конкретной структуры внесения) обладают исключительными свойствами регулирования роста сельскохозяйственных собственный Они вмешиваются В метаболизм регулирующим эффектом и, таким образом, могут быть использованы для контролируемого воздействия на компоненты растений и для облегчения сбора урожая, например, вызывая высыхание и задержку роста. Кроме того, они также подходят для общего контроля и подавления нежелательного вегетативного роста, не убивая при этом растения. Ингибирование вегетативного роста играет важную роль для многих одно- и двудольных культур, поскольку это может, например, уменьшить или полностью предотвратить полегание.

Благодаря своим гербицидным и регулирующим рост растений свойствам активные соединения также могут быть использованы для борьбы с вредными растениями в посевах генетически модифицированных растений или растений, модифицированных традиционным мутагенезом. В общем, трансгенные

характеризуются особыми полезными растения свойствами, например, устойчивостью определенным пестицидам, в частности, некоторым гербицидам, устойчивостью к болезням растений или возбудителям болезней растений, таким как определенные насекомые или микроорганизмы, такие как грибы, бактерии или вирусы. Другие специфические характеристики относятся, например, к собранному материалу в отношении количества, качества, сохраняемости, состава и конкретных компонентов. Например, известны трансгенные растения с повышенным содержанием крахмала или измененным качеством крахмала или растения с другим составом жирных кислот в собранном материале.

5

10

15

20

25

30

С точки зрения трансгенных культур предпочтительно использовать соединения в соответствии с изобретением и/или их соли и N-оксиды в экономически важных трансгенных культурах полезных растений и декоративных растений, например зерновых, таких как пшеница, ячмень, рожь, овес, просо, рис и кукуруза или посевы сахарной свеклы, хлопчатника, соевых бобов, масличного рапса, картофеля, томатов, гороха и других овощных культур.

Предпочтительно применять соединения в соответствии с изобретением в качестве гербицидов для посевов полезных растений, которые устойчивы или стали устойчивыми с помощью рекомбинантных средств к фитотоксическому действию гербицидов.

Благодаря своим гербицидным свойствам и свойствам, регулирующим рост растений, активные соединения также можно применять для борьбы с вредными растениями в культурах генетически модифицированных растений, которые известны или которые еще предстоит разработать. В целом, трансгенные растения характеризуются особыми полезными свойствами, устойчивостью к определенным пестицидам, в частности, к определенным гербицидам, устойчивостью к болезням растений или патогенам болезней растений, таким как определенные насекомые или микроорганизмы, такие как грибы, бактерии или вирусы. Другие конкретные характеристики относятся, например, к собранному материалу в отношении количества, качества, возможности хранения, состава и конкретных компонентов. Например, известны трансгенные растения с повышенным содержанием крахмала или измененным качеством крахмала, или растения с другим составом жирных кислот в собранном материале. К другим особым свойствам относят устойчивость или резистентность к факторам абиотического стресса, например, к жаре, холоду, засухе, засолённости и ультрафиолетовому излучению.

Предпочтение отдают применению соединений общей формулы (I) в соответствии с изобретением и/или их солей и N-оксидов в экономически важных трансгенных культурах полезных растений и декоративных растений, например зерновых, таких как пшеница, ячмень, рожь, овес, тритикале, просо, рис, маниока и кукуруза, а также посевах сахарной свеклы, хлопчатника, соевых бобов, масличного рапса, картофеля, томатов, гороха и других овощных культур.

5

10

15

20

25

30

Соединения общей формулы (I) предпочтительно можно использовать в качестве гербицидов для посевов полезных растений, которые устойчивы или стали устойчивыми с помощью рекомбинантных средств к фитотоксическому действию гербицидов.

Обычные способы получения новых растений, свойства которых изменены по сравнению с существующими растениями, заключаются, например, в традиционных методах выращивания и получении мутантов. Альтернативно, новые растения с измененными свойствами можно получить с помощью рекомбинантных методов.

Специалистам данной области известно большое количество молекулярно-биологических методов, с помощью которых можно создавать новые трансгенные растения с измененными свойствами. Для проведения таких рекомбинантных манипуляций в плазмиды могут быть введены молекулы которые обеспечивают мутагенез кислот, или изменения нуклеиновых последовательности с помощью рекомбинации последовательностей ДНК. С помощью стандартных способов можно, например, выполнять обмены основаниями, удалять частичные последовательности, или добавлять природные или синтетические последовательности. Для соединения фрагментов ДНК друг с другом к фрагментам могут быть добавлены адаптеры или линкеры.

Например, получение растительных клеток со сниженной активностью генного продукта может быть достигнуто путем экспрессии по меньшей мере одной соответствующей антисмысловой РНК, смысловой РНК для достижения эффекта косупрессии или путем экспрессии по меньшей мере одного сконструированного соответствующим образом рибозима, который специфически расщепляет транскрипты вышеупомянутого генного продукта.

С этой целью, во-первых, можно использовать молекулы ДНК, которые охватывают всю кодирующую последовательность генного продукта, включая любые фланкирующие последовательности, которые могут присутствовать, а также молекулы ДНК, которые охватывают только части кодирующей последовательности, и в этом случае необходимо, чтобы эти порции были достаточно длинными, чтобы оказывать антисмысловое действие на клетки. Также возможно использовать последовательности ДНК, которые имеют высокую степень гомологии с кодирующими последовательностями генного продукта, но не полностью им идентичны.

5

10

15

20

25

30

При экспрессии молекул нуклеиновых кислот в растениях синтезированный белок может быть локализован в любом желательном компартменте клетки Тем не менее, чтобы локализации достичь конкретном компартменте, возможно, например, соединить кодирующую область с последовательностями ДНК, которые обеспечивают локализацию в конкретном компартменте. Такие последовательности известны специалистам в данной области техники (см., например, Braun и соавт., EMBO J. 11 (1992), 3219-3227). Экспрессия молекул нуклеиновых кислот также может происходить в органеллах клеток растений.

Клетки трансгенных растений могут быть регенерированы в соответствии с известными технологиями, чтобы получить целые растения. В принципе, трансгенные растения могут представлять собой растения любого целевого вида растений, т.е. как однодольных, так и двудольных растений.

Таким образом, можно получить трансгенные растения, имеющие измененные свойства вследствие сверхэкспрессии, супрессии или ингибирования гомологичных (= природных) генов или последовательностей генов, или экспрессии гетерологичных (= чужеродных) генов или последовательностей генов.

Предпочтительно применять соединения (I) в соответствии с изобретением в трансгенных культурах, которые устойчивы к регуляторам роста, таким как например, дикамба или к гербицидам, которые ингибируют основные растительные ферменты, например, ацетолактатсинтазы (ALS), EPSP синтазы, глутаминсинтазы (GS) или гидроксифенилпируват диокисгеназы (HPPD), или к гербицидам из группы сульфонилмочевин, глифосата, глуфосината или бензоилизоксазолов и аналогичных активных соединений.

При применении активных соединений в соответствии с изобретением в трансгенных культурах проявляются не только эффекты в отношении вредных растений, наблюдаемые в других культурах, но также часто эффекты, которые специфичны для применения в соответствующих трансгенных культурах, например, измененный или специально расширенный спектр сорняков, с которым можно вести борьбу, измененные нормы применения, которые могут быть использованы для применения, предпочтительно хорошая совместимость с гербицидами, по отношению к которым трансгенная культура устойчива, а также влияние на рост и урожайность трансгенных культурных растений.

5

10

15

20

25

30

Изобретение также относится к применению соединений общей формулы (I) в соответствии с изобретением и/или их солей и N-оксидов в качестве гербицидов для борьбы с вредными растениями в посевах полезных растений или декоративных растений, необязательно в посевах трансгенных растений.

Предпочтение отдают использованию в зерновых культурах, предпочтительно в кукурузе, пшенице, ячмене, ржи, овсе, просе или рисе, довсходовым или послевсходовым способом.

Предпочтение также отдают использованию на соевых бобах довсходовым или послевсходовым способом.

Применение в соответствии с изобретением для борьбы с вредными растениями или для регулирования роста растений также включает случай, в котором активное соединение общей формулы (I) или его соль образуется из вещества-предшественника только после нанесения на растение, в растение или в почву.

Изобретение также предусматривает применение одного или нескольких соединений общей формулы (I), их солей или N-оксидов или композиции в соответствии с изобретением (как определено ниже) (в способе) для борьбы с вредными растениями или для регулирования роста растений, которое включает нанесение эффективного количества одного или нескольких соединений общей формулы (I), их солей или N-оксидов на растения (вредные растения, при необходимости, вместе с полезными растениями), семена растений, почву, в которой или на которой растут растения, или обрабатываемую площадь.

Изобретение также обеспечивает гербицидную и/или регулирующую рост растений композицию, отличающуюся тем, что композиция содержит:

- (а) одно или несколько соединений общей формулы (I), их соли или N-оксиды, как определено выше, предпочтительно в одном из вариантов осуществления, определенных как предпочтительные или особенно предпочтительные, в частности одно или несколько соединений формул (I-001) (I-027), их соли или N-оксиды, в каждом случае как определено выше, и
- (б) одно или несколько дополнительных веществ, выбранных из групп (i) и/или (ii):

5

10

15

20

25

30

- (i) одно или несколько дополнительных агрохимически активных веществ, предпочтительно выбранных из группы, состоящей из инсектицидов, акарицидов, нематоцидов, дополнительных гербицидов (т.е. тех, которые не соответствуют общей формуле (I), определенной выше), фунгицидов, сафенеров, удобрений и/или дополнительных регуляторов роста,
- (ii) одно или несколько вспомогательных веществ, обычно применяемых в средствах защиты растений.

При этом дополнительные агрохимически активные вещества компонента (i) композиции в соответствии с изобретением предпочтительно выбирают из группы веществ, упомянутых в «The Pesticide Manual», 16-е издание, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012.

Гербицидная или регулирующая рост растений композиция в соответствии с изобретением предпочтительно содержит один, два, три или более вспомогательных веществ (ii), обычных для защиты растений, выбранных из группы, включающей в себя поверхностно-активные вещества, эмульгаторы, диспергаторы, пленкообразователи, загустители, неорганические соли, средства для опудривания, твердые носители при 25 °C и 1013 мбар, предпочтительно адсорбенты, гранулированные инертные материалы, смачивающие средства, антиоксиданты, стабилизаторы, буферные вещества, антивспенивающие средства, воду, органические растворители, предпочтительно органические растворители, смешиваемые с водой в любом соотношении при 25 °C и 1013 мбар.

Соединения общей формулы (I) согласно изобретению можно использовать в виде смачиваемых порошков, эмульгируемых концентратов, распыляемых растворов, продуктов для опудривания или гранул в обычных составах. Таким образом, изобретение также предлагает гербицидные и регулирующие рост

растений композиции, которые содержат соединения общей формулы (I), их соли или N-оксиды.

5

10

15

20

25

30

Соединения общей формулы (I), их соли или N-оксиды могут быть приготовлены различными способами, в зависимости от необходимых биологических и/или физико-химических параметров. Возможные составы включают в себя, например: смачиваемые порошки (WP), растворимые в воде порошки (SP), растворимые в воде концентраты, эмульгируемые концентраты (ЕС), эмульсии (ЕW), такие как эмульсии масло-в-воде и вода-в-масле, растворы или эмульсии для опрыскивания, суспензионные концентраты (SC), дисперсии на масляной или водной основе, смешиваемые с маслом растворы, капсульные суспензии (CS), продукты для опудривания (DP), протравливающие средства, гранулы для разбрасывания и внесения в почву, гранулы (GR) в виде микрогранул, распыляемые гранулы, абсорбционные и адсорбционные гранулы, диспергируемые в воде гранулы (WG), растворимые в воде гранулы (SG), составы ULV, микрокапсулы и воски.

Эти отдельные типы составов и вспомогательные средства для составов, такие как инертные материалы, поверхностно-активные вещества, растворители и дополнительные добавки, известны специалисту в данной области техники и описаны, например, в: Watkins, «Handbook of Insecticide Dust Diluents and Carriers», 2-е изд., Darland Books, Caldwell N.J.; H.v. Olphen, «Introduction to Clay Colloid Chemistry», 2-е изд., J. Wiley & Sons, N.Y.; C. Marsden, «Solvents Guide», 2-е изд., Interscience, N.Y. 1963; McCutcheon's «Detergents and Emulsifiers Annual», MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, «Encyclopedia of Surface Active Agents», Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, «Grenzflächenaktive Äthylenoxidaddukte» [Interface-active Ethylene Adducts], Wiss. Verlagsgesellschaft, Stuttgart 1976; Winnacker-Küchler, «Chemische Technologie» [Химические технологии], том 7, С. Hanser Verlag Munich, 4-е изд. 1986.

Смачиваемые порошки представляют собой однородно диспергируемые в воде препараты, которые, в дополнение к активному соединению, и кроме разбавителя или инертного вещества, также содержат поверхностно-активные вещества ионной и/или неионной природы (смачиваемые средства, диспергируемые средства), например, полиоксиэтилированные алкилфенолы, полиоксэтилированные жирные спирты, полиоксэтилированные жирные амины,

сульфаты простых эфиров жирных спиртов с полигликолями, алкансульфонаты, алкилбензолсульфонаты, лигносульфонат натрия, 2,2'-динафтилметан-6,6'дисульфонат дибутилнафталинсульфонат натрия, натрия или же олеоилметилтаурат натрия. Для получения смачиваемых порошков гербицидно активные соединения мелко размалывают, например, с помощью обычных аппаратов, таких как молотковые мельницы, воздуходувные мельницы и воздухоструйные мельницы, и одновременно или после этого смешивают со вспомогательными веществами для приготовления составов.

5

10

15

20

25

30

Эмульгируемые концентраты получают растворением активного соединения в органическом растворителе, например, таком как бутанол, циклогексанон, диметилформамид, ксилол, или также высококипящих ароматических соединениях или углеводородах, или смесях органических растворителей, с добавлением одного или нескольких ионных неионогенных поверхностно-активных веществ (эмульгаторов). Примеры используемых эмульгаторов могут представлять собой: алкиларилсульфонаты кальция, такие как додецилбензилсульфонат кальция, или неионогенные эмульгаторы, такие как сложные полигликолевые эфиры жирных кислот, простые алкиларилполигликолевые эфиры, простые полигликолевые эфиры жирного спирта, продукты конденсации пропиленоксида/этиленоксида, простые алкиловые полиэфиры, сложные эфиры сорбита, например, сложные эфира сорбита и жирной кислоты, или полиоксиэтиленовые сложные эфиры сорбита, например, полиоксиэтиленовые сложные эфиры сорбита и жирной кислоты.

Продукты для опудривания получают посредством размола активного соединения с тонко распределенными твердыми веществами, например, тальком, природными глинами, такими как каолин, бентонит и пирофиллит, или диатомовая земля.

Суспензионные концентраты могут иметь водную или масляную основу. Они могут быть изготовлены, например, посредством мокрого размола с помощью коммерчески доступных бисерных мельниц с необязательным добавлением поверхностно-активных веществ, которые уже были приведены выше, например, для других типов составов.

Эмульсии, например, эмульсии масло-в-воде (ЕW), могут быть получены, например, с помощью мешалок, коллоидных мельниц и/или статических смесителей с применением водных органических растворителей и при

необходимости поверхностно-активных веществ, которые уже были приведены выше, например, для других типов составов.

Гранулы могут быть получены или распылением активного соединения на адсорбирующий гранулированный инертный материал или нанесением концентратов активного соединения на поверхность носителей, таких как песок, каолиниты или гранулированный инертный материал, при помощи клеящих веществ, например, поливинилового спирта, полиакрилатов натрия или также минеральных масел. Пригодные активные соединения также могут быть гранулированы способом, обычным для изготовления гранул удобрений – при необходимости в смеси с удобрениями.

5

10

15

20

25

30

Диспергируемые в воде гранулы, как правило, изготавливают обычными способами, такими как распылительная сушка, грануляция псевдоожиженным слоем, тарельчатая грануляция, смешивание высокоскоростными смесителями и экструзия без твердого инертного вещества.

Для изготовления гранул тарельчатым гранулированием, гранулированием в псевдоожиженном слое, экструзией и распылением, см., например, способы в «Spray Drying Handbook» 3-е изд. 1979, G. Goodwin Ltd., London, J.E. Browning, «Agglomeration», Chemical and Engineering 1967, сс. и на др. сс.; «Perry's Chemical Engineer's Handbook», 5-е изд., McGraw-Hill, New York 1973, сс. 8-57.

Относительно других подробностей, касающихся составления композиций для защиты растений, см., например, G.C. Klingman, «Weed Control as a Science», John Wiley and Sons, Inc., New York, 1961, сс. 81-96 и J.D. Freyer, S.A. Evans, «Weed Control Handbook», 5-е изд., Blackwell Scientific Publications, Oxford, 1968, сс. 101-103.

Агрохимические препараты, предпочтительно гербицидные или регулирующие рост растений композиции в соответствии с настоящим изобретением предпочтительно содержат общее количество от 0,1 до 99 мас. %, в особенности от 0,1 до 95 мас. %, особенно предпочтительно от 1 до 90 мас. %, в особенности предпочтительно от 2 до 80 мас. % активных соединений общей формулы (I), их солей или N-оксидов.

В смачиваемых порошках концентрация активных соединений составляет, например, приблизительно от 10 до 90 мас. %, остаток до 100 мас. % состоит из стандартных компонентов для составов. В эмульгируемых концентратах концентрация активного соединения может составлять примерно от 1 до 90 % и

предпочтительно от 5 до 80 мас. %. Составы в виде тонких порошков содержат от 1 до 30 мас. % активного соединения, предпочтительно, как правило, от 5 до 20 мас. % активного соединения; растворы для разбрызгивания содержат примерно от 0,05 до 80 предпочтительно от 2 до 50 мас. % активного соединения. В случае диспергируемых в воде гранул содержание активного соединения частично зависит от того, находится ли активное соединение в жидком или твердом виде и какие применяют вспомогательные вещества для грануляции, наполнители и т.п. В диспергируемых в воде гранулах содержание активного соединения находится, например, между 1 и 95 мас. %, предпочтительно между 10 и 80 мас. %

5

10

15

20

25

30

Кроме того, указанные выше составы активных соединений необязательно содержат стандартные промоторы адгезии, смачиваемые средства, диспергаторы, эмульгаторы, средства, улучшающие проникновение, консерванты, антифризы и растворители, наполнители, носители и красители, антивспениватели, ингибиторы испарения и средства, влияющие на значение рН и вязкость.

Примеры вспомогательных веществ в составах описаны в том числе и в «Chemistry and Technology of Agrochemical Formulations», изд. D.A. Knowles, Kluwer Academic Publishers (1998).

Соединения общей формулы (I), их соли или N-оксиды можно использовать как таковые или в виде их препаратов (составов) в сочетании с другими пестицидно активными веществами, например, инсектицидами, акарицидами, нематоцидами, гербицидами, фунгицидами, сафенерами, удобрениями и/или регуляторами роста, например, в форме готового состава или баковой смеси. Комбинированные составы могут быть приготовлены на основе вышеупомянутых составов, принимая во внимание физические свойства и стабильность соединяемых активных соединений.

Активные соединения, которые можно использовать в комбинации с соединениями общей формулы (I) в соответствии с изобретением в смешанных составах или в баковых смесях, представляют собой, например, известные активные вещества, действие которых основано на ингибировании, например, ацетолактатсинтазы, ацетил-СоА карбоксилазы, целлюлозосинтазы, енолпирувилшикимат-3-фосфатсинтазы, глутаминсинтетазы, *п*-гидроксифенилпируватдиоксигеназы, фитоендесатуразы, фотосистемы I,

фотосистемы II, протопорфириногеноксидазы, как описано, например, в Weed Research 26 (1986) 441-445 или «The Pesticide Manual», 16-е издание, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 и в процитированных там литературных источниках.

5

10

15

20

25

30

Особый интерес представляет селективная борьба с вредными растениями в посевах полезных и декоративных растений. Хотя соединения общей формулы (I) в соответствии с изобретением уже продемонстрировали селективность от очень хорошей до адекватной в отношении большого количества культур, в принципе, в отношении некоторых культур и, в частности, также в случае смесей с другими, менее селективными гербицидами, может возникнуть фитотоксичность для сельскохозяйственных растений. В этой связи особый представляют комбинации соединений общей соответствии с изобретением, которые содержат соединения общей формулы (I) или их комбинации с другими гербицидами или пестицидами и сафенерами. Сафенеры, которые используют в антидотически эффективном количестве, уменьшают фитотоксические побочные эффекты применяемых гербицидов/пестицидов, например, на экономически важных культурах, таких как зерновые (пшеница, ячмень, рожь, кукуруза, рис, просо), сахарная свекла, сахарный тростник, рапс, хлопчатник и соевые бобы, предпочтительно зерновые.

Массовые соотношения гербицида (смеси) к сафенеру зависят, как правило, от нормы внесения гербицида и эффективности рассматриваемого сафенера и могут варьироваться в широких пределах, например в диапазоне от 200:1 до 1:200, предпочтительно 100:1. до 1:100, в частности от 20:1 до 1:20. Аналогично соединениям (I) или их смесям сафенеры могут быть составлены с дополнительными гербицидами/пестицидами и предоставлены и использованы в виде готового препарата или баковой смеси с гербицидами.

Для применения гербицидные или гербицидно/саферные составы, имеющиеся в коммерческой форме, при необходимости разбавляют водой обычным способом, например, в случае смачиваемых порошков, эмульгируемых концентратов, дисперсий и диспергируемых в воде гранулятов. Препараты для опудривания, гранулы для внесения в почву или гранулы для распыления и распыляемые растворы перед применением обычно не разбавляют другими инертными веществами.

На норму внесения соединений общей формулы (I), их солей или N-оксидов в определенной степени влияют внешние условия, такие как температура, влажность и т.д. При этом норма внесения может варьироваться в широких пределах. Для применения в качестве гербицида для борьбы с вредными растениями общее количество соединений общей формулы (I), их солей или N-оксидов предпочтительно находится в диапазоне от 0,001 до 10,0 кг/га, предпочтительно в диапазоне от 0,005 до 5 кг/га, более предпочтительно в диапазоне от 0,01 до 1,5 кг/га, особенно предпочтительно в диапазоне от 0,05 до 1 кг/га. Это касается как довсходового, так и послевсходового применения.

5

10

15

20

25

30

Когда соединения общей формулы (I), их соли или N-оксиды используют в качестве регуляторов роста растений, например, в качестве стабилизатора стеблей для сельскохозяйственных растений, подобных упомянутым выше, предпочтительно зерновых растений, такие как пшеница, ячмень, рожь, тритикале, просо, рис или кукуруза, общая норма внесения предпочтительно находится в диапазоне от 0,001 до 2 кг/га, предпочтительно в диапазоне от 0,005 до 1 кг/га, в частности в диапазоне от 10 до 500 г/га. га, особенно в пределах от 20 до 250 г/га. Это касается как довсходового, так и послевсходового применения.

Применение в качестве стабилизатора стеблей можно осуществлять на различных стадиях роста растений. Предпочтительным является, например, применение после фазы обработки почвы, в начале продольного роста.

В качестве альтернативы, применение в качестве регулятора роста растений также возможно путем обработки семян, что включает в себя различные методы протравливания и покрытия семян. Здесь норма применения зависит от конкретных методов и может быть определена в предварительных тестах.

Активные соединения, которые можно использовать в комбинации с соединениями общей формулы (I) в соответствии с изобретением в композициях в соответствии с изобретением (например, в смешанных составах или в баковых смесях) представляют собой, например, известные активные соединения, действие которых основано на ингибировании, например, ацетолактатсинтазы, ацетил-СоА карбоксилазы, целлюлозосинтазы, енолпирувилшикимат-3фосфатсинтазы, глутаминсинтетазы, *п*-гидроксифенилпируватдиоксигеназы, I, II фитоендесатуразы, фотосистемы фотосистемы или протопорфириногеноксидазы, как описано, например, в Weed Research 26 (1986) 441-445 или «The Pesticide Manual», 16-е издание, The British Crop Protection Council and the Royal Soc. of Chemistry, 2012 и процитированных в данном документе литературных источниках.

Известные гербициды или регуляторы роста растений, которые можно комбинировать с соединениями в соответствии с изобретением, представляют собой, например, приведенные ниже, где указанные активные вещества обозначены или своим «общим названием» в соответствии с Международной организацией по стандартизации (ISO), или химическим названием или кодовым номером. Они всегда охватывают все формы применения, такие как, например, кислоты, соли, сложные эфиры, а также все изомерные формы, такие как стереоизомеры и оптические изомеры, даже если они не упоминаются явно.

Примерами таких гербицидных компонентов смеси являются:

5

10

15

20

25

30

ацетохлор, ацифторфен, ацифторфен-метил, ацифторфен-натрий, аклонифен, алахлор, аллидохлор, аллоксидим, аллоксидим-натрий, аметрин, амикарбазон, амидохлор, амидосульфурон, 4-амино-3-хлор-6-(4-хлор-2-фтор-3метилфенил)-5-фторпиридин-2-карбоновая кислота, аминоциклопирахлор, аминоциклопирахлор-калий, аминоциклопирахлор-метил, аминопиралид, аминопиралид-диметиламмоний, аминопиралид-трипромин, амитрол, аммонийсульфамат, анилофос, асулам, асулам-калий, асулам-натрий, атразин, азафенидин, азимсульфурон, бефлубутамид, (S)-(-)-бефлубутамид, бефлубутамид-М, беназолин, беназолин-этил, беназолин-диметиламмоний, беназолин-калий, бенфлуралин, бенфурезат, бенсульфурон, бенсульфуронметил, бенсулид, бентазон, бентазон-натрий, бензобициклон, бензофенап, бициклопирон, бифенокс, биланафос, биланафос-натрий, биспирибак, биспирибак-натрий, бикслохон, бромацил, бромацил-литий, бромацил-натрий, бромбутид, бромфеноксим, бромоксинил, бромоксинил-бутират, -калий, гептаноат и -октаноат, бусоксинон, бутахлор, бутафенацил, бутамифос, бутенахлор, бутралин, бутроксидим, бутилат, кафенстрол, камбендихлор, карбетамид, карфентразон, карфентразон-этил, хлорамбен, хлорамбен-аммоний, хлорамбен-диоламин, хлорамбен-метил, хлорамбен-метиламмоний, хлорамбеннатрий, хлорбромурон, хлорфенак, хлорфенак-аммоний, хлорфенак-натрий, хлорфенпроп, хлорфенпроп-метил, хлорфлуренол, хлорфлуренол-метил, хлоридазон, хлоримурон, хлоримурон-этил, хлорфталим, хлортолурон, хлорсульфурон, хлортал, хлортал-диметил, хлортал-монометил, цинидон,

10

15

20

25

30

цинидон-этил, цинметилин, эксо-(+)-цинметилин, т.е. (1R,2S,4S)-4-изопропил-1метил-2-[(2-метилбензил)окси]-7-оксабицикло[2.2.1]гептан, эксо-(-)цинметилин, т.е. (1R,2S,4S)-4-изопропил-1-метил-2-[(2-метилбензил)окси]-7оксабицикло[2.2.1] гептан, циносульфурон, клацифос, клетодим, клодинафоп, клодинафоп-этил, клодинафоп-пропаргил, кломазон, кломепроп, клопиралид, клопиралид-метил, клопиралид-оламин, клопиралид-калий, клопиралидтрипомин, клорансулам, клорансулам-метил, кумилурон, цианамид, цианазин, циклоат, циклопиранил, циклопириморат, циклосульфамурон, циклоксидим, цигалофоп, цигалофоп-бутил, ципразин, 2,4-D (включая аммоний, бутотил, бутил, холин, диэтиламмоний, -диметиламмоний, -диоламин, -добоксил, додециламмоний, этексил, этил, 2-этилгексил, гептиламмоний, изобутил, изооктил, изопропил, изопропиламмоний, литий, мептил, метил, калий, тетрадециламмоний, триэтиламмоний, триизопропаноламмоний, трипромин и его троламиновая соль), 2,4-DB, 2,4-DB-бутил, -диметиламмоний, изооктил, калий и -натрий, даимурон (димрон), далапон, далапон-кальций, далапонмагний, далапон-натрий, дазомет, дазомет-натрий, н-деканол, 7-деокси-Dседогептулоза, десмедифам, детозил-пиразолат (DTP), дикамба и его соли, например, дикамба-бипроамин, дикамба-N,N-Бис(3-аминопропил)метиламин, дикамба-бутотил, дикамба-холин, дикамба-дигликольамин, дикамбадиметиламмоний, дикамба-диэтаноламин аммоний, дикамба-диэтиламмоний, дикамба-изопропиламмоний, дикамба-метил, дикамба-моноэтаноламин, дикамба-оламин, дикамба-калий, дикамба-натрий, дикамба-триэтаноламин, дихлобенил, 2-(2,4-дихлорбензил)-4,4-диметил-1,2-оксазолидин-3-он, 2-(2,5дихлорбензил)-4,4-диметил-1,2-оксазолидин-3-он, дихлорпроп, дихлорпропбутотил, дихлорпроп-диметиламмоний, дихлорпроп-этексил, дихлорпропэтиламмоний, дихлорпроп-изооктил, дихлорпроп-метил, дихлорпроп-калий, дихлорпроп-натрий, дихлорпроп-Р, дихлорпроп-Р-диметиламмоний, дихлорпроп-Р-этексил, дихлорпроп-Р-калий, дихлорпроп-натрий, диклофоп, диклофоп-метил, диклофоп-Р, диклофоп-Р-метил, диклосулам, дифензокват, дифензокват-метилсульфат, дифлуфеникан, дифлуфензопир, дифлуфензопирнатрий, димефурон, димепиперат, димесульфазет, диметахлор, диметаметрин, диметенамид, диметенамид-Р, диметрасульфурон, динитрамин, динотерб, динотерб-ацетат, дифенамид, дикват, дикват-дибромид, дикват-дихлорид, дитиопир, диурон, DNOC, DNOC-аммоний, DNOC-калий, DNOC-натрий,

эндотал, эндотал-диаммоний, эндотал-дикалий, эндотал-динатрий, эпирифенацил (S-3100), EPTC, эспрокарб, эталфлуралин, этаметсульфурон, этаметсульфурон-метил, этиозин, этофумесат, этоксифен, этоксифен-этил, этоксисульфурон, этобензанид, F-5231, т. е. N-[2-хлор-4-фтор-5-[4-(3-5 фторпропил)-4,5-дигидро-5-оксо-1Н-тетразол-1-ил]-фенил]-этансульфонамид, F-7967, т.е. 3-[7-Хлор-5-фтор-2-(трифторметил)-1Н-бензимидазол-4-ил]-1-метил-6-(трифторметил)пиримидин-2,4(1H,3H)-дион, феноксапроп, феноксапроп-Р, феноксапроп-этил, феноксапроп-Р-этил, феноксасульфон, фенпиразон, фенквинотрион, фентразамид, флампроп, флампроп-изопропил, флампроп-10 метил, флампроп-М-изопропил, флампроп-М-метил, флазасульфурон, флорасулам, флорпирауксифен, флорпирауксифен-бензил, флуазифоп, флуазифоп-бутил, флуазифоп-метил, флуазифоп-Р, флуазифоп-Р-бутил, флукарбазон, флукарбазон-натрий, флуцетосульфурон, флухлоралин, флуфенацет, флуфенпир, флуфенпир-этил, флуметсулам, флумиклорак, 15 флумиклорак-пентил, флумиоксазин, флуометурон, флуренол, флуренол-бутил, диметиламмоний и -метил, фторгликофен, фторгликофен-этил, флупропанат, флупропанат-натрий, флупирсульфурон, флупирсульфурон-метил, флупирсульфурон-метил-натрий, флуридон, флурохлоридон, флуроксипир, флуроксипир-бутометил, флуроксипир-мептил, флуртамон, флутиацет, 20 флутиацет-метил, фомесафен, фомесафен-натрий, форамсульфурон, натриевая соль форамсульфурона, фозамин, фозамин-аммоний, глуфосинат, глуфосинатаммоний, глуфосинат-натрий, L-глуфосинат-аммоний, L-глуфосинат-натрий, глуфосинат-Р-натрий, глуфосинат-Р-аммоний, глифосат, глифосат-аммоний, изопропиламмоний, -диаммоний, -диметиламмоний, -калий, -натрий, 25 полуторный натрий и -тримезий, Н-9201, т.е. О-(2,4-Диметил-6-нитрофенил)-Оэтил-изопропилфосфорамидотиоат, галауксифен, галауксифен-метил, галосафен, галосульфурон, галосульфурон-метил, галоксифоп, галоксифоп-Р, галоксифопэтоксиэтил, галоксифоп-Р-этоксиэтил, галоксифоп-метил, галоксифоп-Р-метил, галоксифоп-натрий, гексазинон, HNPC-A8169, т.е. проп-2-ин-1-ил (2S)-2-{3-[(5-30 *тем*-бутилпиридин-2-ил)окси]фенокси]пропаноат, HW-02, т.е. 1-(диметоксифосфорил)-этил-(2,4-дихлорфенокси)ацетат, гидантоцидин, имазаметабенз, имазаметабенз-метил, имазамокс, имазамокс-аммоний, имазапик, имазапик-аммоний, имазапир, имазапир-изопропиламмоний, имазаквин, имазаквин-аммоний, имазаквин-метил, имазетапир, имазетапир-аммоний,

10

15

20

25

30

имазосульфурон, инданофан, индазифлам, йодосульфурон, йодосульфуронметил, йодосульфурон-метил-натрий, иоксинил, иоксинил-литий, -октаноат, калий и натрий, ипфенкарбазон, изопротурон, изоурон, изоксабен, изоксафлутол, карбутилат, КUH-043, т.е. 3-({[5-(дифторметил)-1-метил-3-(трифторметил)-1Нпиразол-4-ил]метил}сульфонил)-5,5-диметил-4,5-дигидро-1,2-оксазол, кетоспирадокс, кетоспирадокс-калий, лактофен, ланкотрион, ленацил, линурон, МСРА, МСРА-бутотил, -бутил, -диметиламмоний, -диоламин, -2-этилгексил, этил, -изобутил, изооктил, -изопропил, -изопропиламмоний, -метил, оламин, калий, -натрий и -троламин, МСРВ, МСРВ-метил, -этил и -натрий, мекопроп, мекопроп-бутотил, мекопроп-диметиламмоний, мекопроп-диоламин, мекопропэтексил, мекопроп-этадил, мекопроп-изоктил, мекопроп-метил, мекопроп-калий, мекопроп-натрий, и мекопроп-троламин, мекопроп-Р, мекопроп-Р-бутотил, диметиламмоний, -2-этилгексил и -калий, мефенацет, мефлуидид, мефлуидиддиоламин, мефлуидид-калий, мезосульфурон, мезосульфурон-метил, мезосульфурона натриевая соль, мезотрион, метабензтиазурон, метам, метамифоп, метамитрон, метазахлор, метазосульфурон, метабензтиазурон, метиопирсульфурон, метиозолин, метил изотиоцианат, метобромурон, метолахлор, S-метолахлор, метосулам, метоксурон, метрибузин, метсульфурон, метсульфурон-метил, молинат, монолинурон, моносульфурон, моносульфуронметил, MT-5950, т.е. N-[3-хлор-4-(1-метилэтил)-фенил]-2-метилпентанаmid, NGGC-011, напропамид, NC-310, т.е. 4-(2,4-дихлорбензоил)-1-метил-5бензилоксипиразол, NC-656, т.е. 3-[(изопропилсульфонил)метил]-N-(5-метил-1,3,4-оксадиазол-2-ил)-5-(трифторметил)[1,2,4]триазоло[4,3-а]пиридин-8карбоксамид, небурон, никосульфурон, нонановая кислота (пеларгоновая кислота), норфлуразон, олеиновая кислота (кислоты жирного ряда), орбенкарб, ортосульфамурон, оризалин, оксадиаргил, оксадиазон, оксасульфурон, оксазикломефон, оксифлуорфен, паракват, паракват-дихлорид, паракватдиметилсульфат, пебулат, пендиметалин, пенокссулам, пентахлорфенол, пентоксазон, петоксамид, нефтяные масла, фенмедифам, фенмедифам-этил, пиклорам, пиклорам-диметиламмоний, пиклорам-этексил, пиклорам-изоктил, пиклорам-метил, пиклорам-оламин, пиклорам-калий, пиклорам-триэтиламмоний, пиклорам-трипромин, пиклорам-троламин, пиколинафен, пиноксаден, пиперофос, претилахлор, примисульфурон, примисульфурон-метил, продиамин, профоксидим, прометон, прометрин, пропахлор, пропанил, пропаквизафоп,

10

15

20

25

30

пропазин, профам, пропизохлор, пропоксикарбазон, пропоксикарбазон-натрий, пропирисульфурон, пропизамид, просульфокарб, просульфурон, пираклонил, пирафлуфен, пирафлуфен-этил, пирасульфотол, пиразолинат (пиразолат), пиразосульфурон, пиразосульфурон-этил, пиразоксифен, пирибамбенз, пирибамбенз-изопропил, пирибамбенз-пропил, пирибензоксим, пирибутикарб, пиридафол, пиридат, пирифталид, пириминобак, пириминобак-метил, пиримисульфан, пиритиобак, пиритиобак-натрий, пироксасульфон, пироксулам, квинклорак, квинклорак-диметиламмоний, квинклорак-метил, квинмерак, квинокламин, квизалофоп, квизалофоп-этил, квизалофоп-Р, квизалофоп-Р-этил, квизалофоп-Р-тефурил, QYM201, т.е. 1-{2-хлор-3-[(3-циклопропил-5-гидрокси-1-метил-1Н-пиразол-4-ил)карбонил]-6-(трифторметил)фенил}пиперидин-2-он, римсульфурон, сафлуфенацил, сетоксидим, сидурон, симазин, симетрин, SL-261, сулькотрион, сульфентразон, сульфометурон, сульфометурон-метил, сульфосульфурон, SYP-249, т.е. 1-этокси-3-метил-1-оксобут-3-ен-2-ил-5-[2хлор-4-(трифторметил)фенокси]-2-нитробензоат, SYP-300, т.е. 1-[7-фтор-3-оксо-4-(проп-2-ин-1-ил)-3,4-дигидро-2H-1,4-бензоксазин-6-ил]-3-пропил-2тиоксоимидазолидин-4,5-дион, 2,3,6-ТВА, ТСА (трихлоруксусная кислота) и ее соли, например, ТСА-аммоний, ТСА-кальций, ТСА-этил, ТСА-магний, ТСАнатрий, тебутиурон, тефурилтрион, темботрион, тепралоксидим, тербацил, тербукарб, тербуметон, тербутилазин, тербутрин, тетфлупиролимет, такстомин, тенилхлор, тиазопир, тиенкарбазон, тиенкарбазон-метил, тифенсульфурон, тифенсульфурон-метил, тиобенкарб, тиафенацил, толпиралат, топрамезон, тралкоксидим, триафамон, три-аллат, триасульфурон, триазифлам, трибенурон, трибенурон-метил, триклопир, триклопир-бутотил, триклопир-холин, триклопир-этил, триклопир-триэтиламмоний, триэтазин, трифлоксисульфурон, трифлоксисульфурон-натрий, трифлудимоксазин, трифлуралин, трифлусульфурон, трифлусульфурон-метил, тритосульфурон, мочевина сульфат, вернолат, XDE-848, ZJ-0862, т.е. 3,4-дихлор-N-{2-[(4,6-диметоксипиримидин-2ил)окси Тбензил занилин, 3-(2-хлор-4-фтор-5-(3-метил-2,6-диоксо-4трифторметил-3,6-дигидропиримидин-1 (2H)-ил)фенил)-5-метил-4,5дигидроизоксазол-5-карбоновая кислота этиловый эфир, этил-[(3-{2-хлор-4фтор-5-[3-метил-2,6-диоксо-4-(трифторметил)-3,6-дигидропиримидин-1(2H)ил]фенокси}пиридин-2-ил)окси]ацетат, простой 3-хлор-2-[3-(дифторметил)изоксазолил-5-ил]фенил-5-хлорпиримидин-2-иловый эфир, 2-(3,4-

диметоксифенил)-4-[(2-гидрокси-6-оксоциклогекс-1-ен-1-ил)карбонил]-6метилпиридазин-3(2H)-он, $2-({2-[(2-метоксиэтокси)метил]-6-метилпиридин-3$ ил \ карбонил \ циклогексан-1,3-дион, (5-гидрокси-1-метил-1H-пиразол-4ил)(3,3,4-триметил-1,1-диоксидо-2,3-дигидро-1-бензотиофен-5-ил)метанон, 1-5 метил-4-[(3,3,4-триметил-1,1-диоксидо-2,3-дигидро-1-бензотиофен-5ил)карбонил]-1Н-пиразол-5-ил пропан-1-сульфонат, 4-{2-хлор-3-[(3,5-диметил-1Н-пиразол-1-ил)метил]-4-(метилсульфонил)бензоил}-1-метил-1Н-пиразол-5-ил-1,3-диметил-1Н-пиразол-4-карбоксилат; цианометил 4-амино-3-хлор-5-фтор-6-(7-фтор-1Н-индол-6-ил)пиридин-2-карбоксилат, проп-2-ин-1-ил 4-амино-3-хлор-10 5-фтор-6-(7-фтор-1Н-индол-6-ил)пиридин-2-карбоксилат, метил 4-амино-3-хлор-5-фтор-6-(7-фтор-1Н-индол-6-ил)пиридин-2-карбоксилат, 4-амино-3-хлор-5фтор-6-(7-фтор-1Н-индол-6-ил)пиридин-2-карбоновая кислота, бензил 4-амино-3-хлор-5-фтор-6-(7-фтор-1Н-индол-6-ил)пиридин-2-карбоксилат, этил 4-амино-3-хлор-5-фтор-6-(7-фтор-1Н-индол-6-ил)пиридин-2-карбоксилат, метил 4-амино-15 3-хлор-5-фтор-6-(7-фтор-1-изобутирил-1Н-индол-6-ил)пиридин-2-карбоксилат, метил 6-(1-ацетил-7-фтор-1Н-индол-6-ил)-4-амино-3-хлор-5-фторпиридин-2карбоксилат, метил 4-амино-3-хлор-6-[1-(2,2-диметилпропаноил)-7-фтор-1Ниндол-6-ил]-5-фторпиридин-2-карбоксилат, метил 4-амино-3-хлор-5-фтор-6-[7фтор-1-(метоксиацетил)-1Н-индол-6-ил]пиридин-2-карбоксилат, 4-амино-3-хлор-20 5-фтор-6-(7-фтор-1Н-индол-6-ил)пиридин-2-карбоксилат калия, 4-амино-3-хлор-5-фтор-6-(7-фтор-1Н-индол-6-ил)пиридин-2-карбоксилат натрия, бутил 4-амино-3-хлор-5-фтор-6-(7-фтор-1Н-индол-6-ил)пиридин-2-карбоксилат, 4-гидрокси-1метил-3-[4-(трифторметил)пиридин-2-ил]имидазолидин-2-он, 3-(5-трет-бутил-1,2-оксазол-3-ил)-4-гидрокси-1-метилимидазолидин-2-он, 3-[5-хлор-4-25 (трифторметил)пиридин-2-ил]-4-гидрокси-1-метилимидазолидин-2-он, 4гидрокси-1-метокси-5-метил-3-[4-(трифторметил)пиридин-2-ил]имидазолидин-2он, 6-[(2-гидрокси-6-оксоциклогекс-1-ен-1-ил)карбонил]-1,5-диметил-3-(2метилфенил)хиназолин-2,4(1H,3H)-дион, 3-(2,6-диметилфенил)-6-[(2-гидрокси-6-оксоциклогекс-1-ен-1-ил)карбонил]-1-метилхиназолин-2,4(1H,3H)-дион, 2-[2хлор-4-(метилсульфонил)-3-(морфолин-4-илметил)бензоил]-3-30 гидроксициклогекс-2-ен-1-он, соль 1-(2-карбоксиэтил)-4-(пиримидин-2ил)пиридазин-1-иния (с такими анионами, как хлорид, ацетат или трифторацетат), соль 1-(2-карбоксиэтил)-4-(пиридазин-3-ил)пиридазин-1-иния (с такими анионами, как хлорид, ацетат или трифторацетат), соль 4-(пиримидин-2ил)-1-(2-сульфоэтил)пиридазин-1-иния (с такими анионами, как хлорид, ацетат или трифторацетат), соль 4-(пиридазин-3-ил)-1-(2-сульфоэтил)пиридазин-1-иния (с такими анионами, как хлорид, ацетат или трифторацетат), 1-(2-карбоксиэтил)-4-(1,3-тиазол-2-ил)пиридазин-1-иния соль (с такими анионами, как хлорид, ацетат или трифторацетат), 1-(2-карбоксиэтил)-4-(1,3-тиазол-2-ил)пиридазин-1-иния соль (с такими анионами, как хлорид, ацетат или трифторацетат).

5

10

15

20

25

30

Примерами регуляторов роста растений в качестве компонентов для смешивания являются:

абсцизовая кислота, ацибензолар, ацибензолар-S-метил, 1-аминоциклопро-1-илкарбоновая кислота и ее производные, 5-аминолевулиновая кислота, анцимидол, 6-бензиламинопурин, бикинин, брассинолид, брассинолид-этил, катехин, хитоолигосахариды (CO; CO отличаются от LCO тем, что у них отсутствует подвешенная цепь жирной кислоты, характерная для LCO. CO, иногда называемые N-ацетилхитоолигосахаридами, также состоят из остатков GlcNAc, но имеют структуры боковой цепи, которые отличают их от молекул хитина [(C₈H₁₃NO₅)_n, CAS № 1398-61-4] и молекул хитозана [(C₅H₁₁NO₄)_n, CAS <u>№</u> 9012-76-4]), хитиновые соединения, хлормекват хлорид, цикланилид, 3-(Циклопроп-1-енил)пропионовая кислота, даминозид, дазомет, дазомет-натрий, н-деканол, дикегулак, дикегулак-натрий, эндотал, эндоталдикалий, -динатрий, и моно(N,N-диметилалкиламмоний), этефон, флуметралин, флуренол, флуренол-бутил, флуренол-метил, флурпримидол, форхлорфенурон, гибберелловая кислота, инабенфид, индол-3-уксусная кислота (IAA), 4-индол-3изопротиолан, пробеназол, илмасляная кислота, жасмоновая жасмоновая кислота или их производные (например, метиловый эфир жасмоновой кислоты), липохитоолигосахариды (LCO, иногда называемые сигналами симбиотического клубнеобразования (Nod) (или факторами Nod) или факторами Мус, состоят из олигосахаридного остова, состоящего из β-1,4-связанных остатков *N*-ацетил-D-глюкозамина («GlcNAc») с N-связанной жирной ацильной цепью, конденсированной на невосстанавливающем конце. Как понятно в данной области, LCO различаются по количеству остатков GlcNAc в основной цепи, по длине и степени насыщения жирной ацильной цепи, а также по заменам восстанавливающих и невосстанавливающих остатков сахара), линолевой кислоты или ее производных, линоленовая кислота или ее производные, гидразид малеиновой кислоты, хлорид мепиквата, пентаборат

1-метилциклопропен, 3'-метил абсцизовая 2-(1мепиквата, кислота, нафтил)ацетамид, 1-нафтилуксусная кислота, 2-нафтилоксиуксусная кислота, 4-Оксо-4[(2-фенилэтил)амино]масляная нитрофенолятов, смесь кислота, кислота, N-фенилфталаминовая паклобутразол. 4-фенилмасляная кислота, прогексадион, прогексадион-кальций, прогидрожасмон, салициловая кислота, метиловый эфир салициловой кислоты, стриголактон, текназен, тидиазурон, тринексапак, тринексапак-этил, тситодеф, триаконтанол, униконазол, униконазол-Р, 2-фтор-N-(3-метоксифенил)-9H-пурин-6-амин.

5

10

15

20

25

30

Пригодные компоненты для комбинации для соединений общей формулы (I) в соответствии с изобретением также включают в себя, например, следующие сафенеры:

- S1) Соединения из группы производных гетероциклических карбоновых кислот:
- S1^a) Соединения типа дихлорфенилпиразолин-3-карбоновой кислоты (S1^a), предпочтительно соединения, такие как
- 1-(2,4-дихлорфенил)-5-(этоксикарбонил)-5-метил-2-пиразолин-3-карбоновая кислота, этил 1-(2,4-дихлорфенил)-5-(этоксикарбонил)-5-метил-2-пиразолин-3-карбоксилат (S1-1) («мефенпир-диэтил»), и родственные соединения, как описано в WO-A-91/07874;
- (S1^b),**S1**^b) Производные дихлорфенилпиразолекарбоновой кислоты предпочтительно соединения, такие как этил 1-(2,4-дихлорфенил)-5метилпиразол-3-карбоксилат (S1-2),1-(2,4-дихлорфенил)-5этил изопропилпиразол-3-карбоксилат (S1-3),1-(2,4-дихлорфенил)-5-(1,1этил диметилэтил)пиразол-3-карбоксилат (S1-4) и родственные соединения, как описано в ЕР-А-333131 131 и ЕР-А-269806;
- \$1°) Производные 1,5-дифенилпиразол-3-карбоновой кислоты (\$1°), предпочтительно соединения, такие как этил 1-(2,4-дихлорфенил)-5-фенилпиразол-3-карбоксилат (\$1-5), метил 1-(2-хлорфенил)-5-фенилпиразол-3-карбоксилат (\$1-6) и родственные соединения, как описано, например, в EP-A-268554;
- $S1^d$) Соединения типа триазолкарбоновой кислоты ($S1^d$), предпочтительно соединения, такие как фенхлоразол (сложный этиловый эфир), т.е. этил 1-(2,4-дихлорфенил)-5-трихлорметил-1H-1,2,4-триазол-3-карбоксилат (S1-7), и родственные соединения, как описано в EP-A-174562 и EP-A-346620;

- S1^e) Соединения 5-бензил-5-фенил-2-изоксазолин-3-карбоновой или кислоты или типа 5,5-дифенил-2-изоксазолин-3-карбоновой кислоты (S1^e), 5-(2,4-дихлорбензил)-2предпочтительно соединения, такие как этил (S1-8)или изоксазолин-3-карбоксилат этил 5-фенил-2-изоксазолин-3карбоксилат (S1-9) и родственные соединения, как описано в WO-A-91/08202, или 5,5-дифенил-2-изоксазолинкарбоновая кислота (S1-10) или этил 5,5дифенил-2-изоксазолин-3-карбоксилат (S1-11) («изоксадифен-этил») или нпропил 5,5-дифенил-2-изоксазолин-3-карбоксилат (S1-12) этил 5-(4или фторфенил)-5-фенил-2-изоксазолин-3-карбоксилат (S1-13),как описано патентной заявке WO-A-95/07897.
 - S2) Соединения из группы производных 8-хинолинокси (S2):

10

15

20

25

30

- (S2^a),типа 8-хинолиноксиуксусной предпочтительно 1-метилгексил (5-хлор-8-хинолинокси)ацетат («клоквинтоцетмексил») (S2-1), 1,3-диметилбут-1-ил (5-хлор-8-хинолинокси)ацетат (S2-2), 4аллилоксибутил (5-хлор-8-хинолинокси)ацетат (S2-3), 1-аллилоксипроп-2-ил (5хлор-8-хинолинокси)ацетат (S2-4), этил (5-хлор-8-хинолинокси)ацетат (S2-5), метил 5-хлор-8-хинолиноксиацетат (S2-6), аллил (5-хлор-8-хинолинокси)ацетат (S2-7), 2-(2-пропилидениминокси)-1-этил (5-хлор-8-хинолинокси)ацетат (S2-8), 2-оксопроп-1-ил (5-хлор-8-хинолинокси)ацетат (S2-9)И родственные соединения, как описано в ЕР-А-86750, ЕР-А-94349 и ЕР-А-191736 или ЕР-А-0 492 366, и также (5-хлор-8-хинолинокси) уксусная кислота (S2-10), ее гидраты и соли, например, ее соли лития, натрия, калия, кальция, магния, алюминия, железа, аммония, четвертичного аммония, сульфония или фосфония, как описано в WO-A-2002/34048:
- S2^b) Соединения типа (5-хлор-8-хинолинокси)малоновой кислоты (S2^b), предпочтительно соединения, такие как диэтил (5-хлор-8-хинолинокси)малонат, диаллил (5-хлор-8-хинолинокси)малонат, метил этил (5-хлор-8-хинолинокси)малонат и родственные соединения, как описано в EP-A-0 582 198.
- S3) Активные соединения типа дихлорацетамида (S3), которые часто применяют в качестве довсходовых сафенеров (действующих в почве сафенеров), например, «дихлормид» (N,N-диаллил-2,2-дихлорацетамид) (S3-1), «R-29148» (3-дихлорацетил-2,2,5-триметил-1,3-оксазолидин) от Stauffer (S3-2), «R-28725» (3-дихлорацетил-2,2-диметил-1,3-оксазолидин) от Stauffer (S3-3), «беноксакор» (4-дихлорацетил-3,4-дигидро-3-метил-2H-1,4-бензоксазин) (S3-4),

«PPG-1292» (N-аллил-N-[(1,3-диоксолан-2-ил)метил]дихлорацетамид) от PPG Industries (S3-5),«DKA-24» (N-аллил-N-[(аллиламинокарбонил)метил]дихлорацетамид) от Sagro-Chem (S3-6), «AD-67» или «MON 4660» (3-дихлорацетил-1-окса-3-азаспиро[4.5]декан) от Nitrokemia или Monsanto (S3-7), «TI-35» (1-дихлорацетилазепан) от TRI-Chemical RT (S3-8), «Диклонон» (Дициклонон) или «BAS145138» или «LAB145138» (S3-9) ((RS)-1дихлорацетил-3,3,8а-триметилреггидропирроло[1,2-а]пиримидин-6-он) от BASF, «фурилазол» \ll MON 13900» ((RS)-3-дихлорацетил-5-(2-фурил)-2,2или диметилоксазолидин) (S3-10) и его (R) изомер (S3-11).

S4) Соединения из класса ацилсульфонамидов (S4):

 $S4^{a}$) N-Ацилсульфонамиды формулы ($S4^{a}$) и их соли, как описано в WO-А-97/45016,

15 в которой

5

10

20

25

 R_A^{-1} представляет собой (C_1-C_6) -алкил, (C_3-C_6) -циклоалкил, где два последних радикала замещены посредством v_A заместителей из группы галогена, (C_1-C_4) -алкокси, (C_1-C_6) -галогеналкокси и (C_1-C_4) -алкилтио и, в случае циклических радикалов, также посредством (C_1-C_4) -алкила и (C_1-C_4) -галогеналкила;

 $R_{\rm A}{}^2$ представляет собой галоген, (C₁-C₄)-алкил, (C₁-C₄)-алкокси, CF₃; $m_{\rm A}$ представляет собой 1 или 2;

v_A означает 0, 1, 2 или 3;

 $S4^b$) Соединения типа 4-(бензоилсульфамоил)бензамида формулы ($S4^b$) и их соли, как описано в WO-A-99/16744,

$$R_{B}^{2} \stackrel{R_{B}^{1}}{\longrightarrow} O \qquad O \qquad (R_{B}^{3})_{mB} \qquad (S4^{b})$$

в которой

 ${
m R_B}^1, {
m R_B}^2$ независимо представляют собой водород, (C₁-C₆)-алкил, (C₃-C₆)циклоалкил, (C₃-C₆)-алкенил, (C₃-C₆)-алкинил,

 ${R_B}^3$ представляет собой галоген, $(C_1\text{-}C_4)$ -алкил, $(C_1\text{-}C_4)$ -галогеналкил или $(C_1\text{-}C_4)$ -алкокси и

m_B означает 1 или 2,

5

10

15

20

например, те, в которых

 ${
m R_B}^1=$ циклопропил, ${
m R_B}^2=$ водород и $({
m R_B}^3)=$ 2-ОМе («ципросульфамид», S4-1),

 $R_{\rm B}^{\ 1}$ = циклопропил, $R_{\rm B}^{\ 2}$ = водород и $(R_{\rm B}^{\ 3})$ = 5-Cl-2-OMe (S4-2),

 $R_{\rm B}^{\ 1}$ = этил, $R_{\rm B}^{\ 2}$ = водород и $(R_{\rm B}^{\ 3})$ = 2-OMe (S4-3),

 ${
m R_B}^1$ = изопропил, ${
m R_B}^2$ = водород и $({
m R_B}^3)$ = 5-Cl-2-OMe (S4-4) и

 $R_{\rm B}^{\ 1}$ = изопропил, $R_{\rm B}^{\ 2}$ = водород и $(R_{\rm B}^{\ 3})$ = 2-OMe (S4-5);

S4°) Соединения из класса бензоилсульфамоилфенилмочевин формулы (S4°), как описано в EP-A-365484,

в которой

например,

 ${
m R_C}^1,\ {
m R_C}^2$ представляют собой независимо водород, $({
m C_1-C_8})$ -алкил, $({
m C_3-C_8})$ - циклоалкил, $({
m C_3-C_6})$ -алкинил,

 R_{C}^{3} представляет собой галоген, (C_{1} - C_{4})-алкил, (C_{1} - C_{4})-алкокси, С F_{3} и m_{C} представляет собой 1 или 2;

1-[4-(N-2-метоксибензоилсульфамоил)фенил]-3-метилмочевина,

1-[4-(N-2-метоксибензоилсульфамоил)фенил]-3,3-диметилмочевина,

25 1-[4-(N-4,5-диметилбензоилсульфамоил)фенил]-3-метилмочевина;

S4^d) Соединения типа N-фенилсульфонилтерефталамида формулы (S4^d) и его соли, которые известны, например, из CN 101838227,

в которой

5

10

15

20

25

 ${R_{\rm D}}^4$ представляет собой галоген, (C₁-C₄)-алкил, (C₁-C₄)-алкокси, CF₃;

m_D означает 1 или 2;

 R_D^5 представляет собой водород, (C_1-C_6) -алкил, (C_3-C_6) -циклоалкил, (C_2-C_6) -алкенил, (C_2-C_6) -алкинил или (C_5-C_6) -циклоалкенил.

- S5) Активные соединения из класса гидроксиароматических соединений и производных ароматических-алифатических карбоновых кислот (S5), например, этил 3,4,5-триацетоксибензоат, 3,5-диметокси-4-гидроксибензойная кислота, 3,5-дигидроксибензойная кислота, 4-гидроксисалициловая кислота, 4-фторсалициловая кислота, 2-гидроксикоричная кислота, 2,4-дихлоркоричная кислота, как описано в WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001.
- S6) Активные соединения из класса 1,2-дигидрохиноксалин-2-онов (S6), например, 1-метил-3-(2-тиенил)-1,2-дигидрохиноксалин-2-он, 1-метил-3-(2-тиенил)-1,2-дигидрохиноксалин-2-тион, 1-(2-аминоэтил)-3-(2-тиенил)-1,2-дигидрохиноксалин-2-он гидрохлорид, 1-(2-метилсульфониламиноэтил)-3-(2-тиенил)-1,2-дигидрохиноксалин-2-он, как описано в WO-A-2005/112630.
- S7) Соединения из класса производных дифенилметоксиуксусной кислоты (S7), например, метил дифенилметоксиацетат (CAS per. № 41858-19-9) (S7-1), этил дифенилметоксиацетат или дифенилметоксиуксусная кислота, как описано в WO-A-98/38856.
 - S8) Соединения формулы (S8), как описано в WO-A-98/27049,

$$(R_{D}^{1})_{nD}$$
 R_{D}^{2} $(S8)$

в которой символы и индексы определены следующим образом:

 ${
m R_D}^1$ представляет собой галоген, (C₁-C₄)-алкил, (C₁-C₄)-галогеналкил, (C₁-C₄)-алкокси, (C₁-C₄)-галогеналкокси,

 ${R_{\rm D}}^2$ представляет собой водород или (C_1 - C_4)-алкил,

 R_D^3 представляет собой водород, (C_1-C_8) -алкил, (C_2-C_4) -алкенил, (C_2-C_4) -алкинил или арил, где каждый из вышеупомянутых углеродсодержащих радикалов является незамещенным или замещенным одним или несколькими, предпочтительно до 3 одинаковыми или различными радикалами из группы, включающей в себя галоген и алкокси; или их соли,

 n_D представляет собой целое число от 0 до 2.

S9) активные соединения из класса 3-(5-тетразолилкарбонил)-2-хинолонов (S9), например, 1,2-дигидро-4-гидрокси-1-этил-3-(5-тетразолилкарбонил)-2-хинолон (CAS рег. № 219479-18-2), 1,2-дигидро-4-гидрокси-1-метил-3-(5-тетразолилкарбонил)-2-хинолон (CAS рег. № 95855-00-8), как описано в WO-А-199/000020;

S10) Соединения формулы (S10^a) или (S10^b) как описано в WO A-2007/023719 и WO A-2007/023764

$$(R_{E}^{1})_{nE} \xrightarrow{O} Y_{E}^{2} = (R_{E}^{1})_{nE} \xrightarrow{O} Z_{E}^{2} = R_{E}^{3}$$

$$(S10^{a}) \qquad (S10^{b})$$

15 в которой

5

10

20

25

 ${R_E}^1$ представляет собой галоген, $(C_1\hbox{-} C_4)\hbox{-}$ алкил, метокси, нитро, циано, $CF_3,\,OCF_3$

Y_E, Z_E независимо представляют собой О или S,

 n_E представляет собой целое число от 0 до 4,

 ${\rm R_E}^2$ представляет собой (C₁-C₁₆)-алкил, (C₂-C₆)-алкенил, (C₃-C₆)- циклоалкил, арил; бензил, галогенбензил,

 ${R_E}^3$ представляет собой водород или (C_1 - C_6)-алкил.

S11) Активные соединения типа оксиимино соединений (S11), которые известны в качестве средств для протравливания семян, например,

«оксабетринил» ((Z)-1,3-диоксолан-2-илметоксиимино(фенил)ацетонитрил) (S11-1), который известен в качестве сафенера для протравливания семян проса/сорго от повреждения метолахлором,

«флуксофеним» (1-(4-хлорфенил)-2,2,2-трифтор-1-этанон О-(1,3-диоксолан-2-илметил)оксим) (S11-2), который известен в качестве сафенера для протравливания семян проса/сорго от повреждения метолахлором, и

«циометринил» или «СGA-43089» ((Z)-цианометоксиимино (фенил)ацетонитрил) (S11-3), который известен в качестве сафенера для протравливания семян проса/сорго от повреждения метолахлором.

- \$12) Активные соединения из класса изотиохроманонов (\$12), например, метил [(3-оксо-1H-2-бензотиопиран-4(3H)-илиден)метокси]ацетат (CAS рег. № 205121-04-6) (\$12-1) и родственные соединения из WO-A-1998/13361.
 - S13) Одно или несколько соединений из группы (S13):

«нафталевый ангидрид» (ангидрид 1,8-нафталиндикарбоновой кислоты) (S13-1), который известен в качестве сафенера для протравливания семян кукурузы от повреждения тиокарбаматными гербицидами,

«фенклорим» (4,6-дихлор-2-фенилпиримидин) (S13-2), который известен в качестве сафенера для претилахлора в посевном рисе,

«флуразол» (бензил 2-хлор-4-трифторметил-1,3-тиазол-5-карбоксилат) (S13-3), который известен в качестве сафенера для протравливания семян проса/сорго от повреждения алахлором и метолахлором,

«CL 304415» (CAS per. № 31541-57-8)

5

10

15

20

25

30

(4-карбокси-3,4-дигидро-2H-1-бензопиран-4-уксусная кислота) (S13-4) от фирмы American Cyanamid, который известен в качестве сафенера для кукурузы от повреждения имидазолинонами,

«МG 191» (CAS рег. № 96420-72-3) (2-дихлорметил-2-метил-1,3-диоксолан) (S13-5) от Nitrokemia, который известен в качестве сафенера для кукурузы,

«MG 838» (CAS per. № 133993-74-5)

(2-пропенил 1-окса-4-азаспиро[4.5]декан-4-карбодитиоат) (S13-6) от Nitrokemia

«дисульфотон» (О,О-диэтил S-2-этилтиоэтил фосфородитиоат) (S13-7), «диэтолат» (О,О-диэтил О-фенил фосфоротиоат) (S13-8),

«мефенат» (4-хлорфенил метилкарбамат) (S13-9).

\$14) Активные соединения, которые, в дополнение к гербицидному действию против вредных растений, также обладают действием сафенера на культурные растения, такие как рис, например,

«димепиперат» или «МҮ 93» (S-1-метил 1-фенилэтилпиперидин-1-карботиоат), который известен в качестве сафенера для риса от повреждения гербицидом молинат,

«даимурон» или «SK 23» (1-(1-метил-1-фенилэтил)-3-*n*-толилмочевина), который известен в качестве сафенера для риса от повреждения гербицидом имазасульфурон,

«кумилурон» = «JC 940» (3-(2-хлорфенилметил)-1-(1-метил-1-фенилэтил) мочевина, см. JP-A-60087254), который известен в качестве сафенера для риса от повреждения некоторыми гербицидами,

«метоксифенон» или «NK 049» (3,3'-диметил-4-метоксибензофенон), который известен в качестве сафенера для риса от повреждения некоторыми гербицидами,

«CSB» (1-бром-4-(хлорметилсульфонил)бензол) от фирмы Kumiai, (рег. № CAS 54091-06-4), который известен в качестве сафенера от повреждения некоторыми гербицидами в рисе.

S15) Соединения формулы (S15) или их таутомеры

5

10

15

20

25

$$R_{H}^{2}$$
 N_{H}^{2}
 N_{H}^{3}
 N_{H}^{3}
 N_{H}^{3}
 N_{H}^{3}
 N_{H}^{3}
 N_{H}^{3}
 N_{H}^{3}

как описано в WO-A-2008/131861 и WO-A-2008/131860 в которой

 ${R_{\rm H}}^1$ представляет собой ($C_1\text{-}C_6$)-галогеналкильный радикал и

 ${R_{\rm H}}^2$ представляет собой водород или галоген и

 ${R_H}^3,\ {R_H}^4$ каждый независимо представляет собой водород, (C_1 - C_{16})-алкил, (C_2 - C_{16})-алкинил,

где каждый из 3 последних радикалов является незамещенным или замещенным одним или несколькими радикалами из группы, включающей в себя галоген, гидроксил, циано, (C_1-C_4) -алкокси, (C_1-C_4) -галогеналкокси, (C_1-C_4) -алкилтио, (C_1-C_4) -алкиламино, (C_1-C_4) -алкил $[(C_1-C_4)$ -алкил $[(C_1-C_4)$ -галогеналкокси $[(C_1-C_4)$ -алкил $[(C_3-C_6)$ -циклоалкил, который является незамещенным или замещенным, фенил, который является

незамещенным или замещенным, и гетероциклил, который является незамещенным или замещенным,

или (C_3-C_6) -циклоалкил, (C_4-C_6) -циклоалкенил, (C_3-C_6) -циклоалкил, конденсированный на одной стороне кольца с 4 - 6- членным насыщенным или ненасыщенным карбоциклическим кольцом, или (C_4-C_6) -циклоалкенил, конденсированный на одной стороне кольца с 4 - 6-членным насыщенным или ненасыщенным карбоциклическим кольцом,

где каждый из 4 последних радикалов является незамещенным или замещенным одним или несколькими радикалами из группы, включающей в себя галоген, гидроксил, циано, (C_1-C_4) -алкил, (C_1-C_4) -галогеналкил, (C_1-C_4) -алкокси, (C_1-C_4) -галогеналкокси, (C_1-C_4) -алкилтио, (C_1-C_4) -алкиламино, (C_1-C_4) -алкил]амино, (C_1-C_4) -алкокси]карбонил, (C_3-C_4) -галогеналкокси]карбонил, (C_3-C_4) -циклоалкил, который является незамещенным или замещенным, фенил, который является незамещенным или замещенным, и гетероциклил, который является незамещенным или замещенным,

или

5

10

15

20

25

30

 ${\rm R_H}^3$ представляет собой (C₁-C₄)-алкокси, (C₂-C₄)-алкенилокси, (C₂-C₆)-алкинилокси или (C₂-C₄)-галогеналкокси и

 ${R_{\rm H}}^4$ представляет собой водород или (C_1 - C_4)-алкил или

 $R_{\rm H}^3$ и $R_{\rm H}^4$ вместе с непосредственно присоединенным атомом азота представляют собой 4 - 8-членное гетероциклическое кольцо, которое наряду с атомом азота, может также содержать дополнительные кольцевые гетероатомы, предпочтительно до двух дополнительных кольцевых гетероатомов из группы, включающей N, O и S, и которое является незамещенным или замещенным одним или несколькими радикалами из группы, включающей галоген, циано, нитро (C_1 - C_4)-алкил, (C_1 - C_4)-галогеналкил, (C_1 - C_4)-алкилтио.

S16) Активные соединения, которые применяют главным образом в качестве гербицидов, но также они обладают действием сафенеров на культурные растения, например,

(2,4-дихлорфенокси) уксусная кислота (2,4-D),

(4-хлорфенокси) уксусная кислота,

(R,S)-2-(4-хлор-о-толилокси)пропионовая кислота (мекопроп),

4-(2,4-дихлорфенокси) масляная кислота (2,4-DB),

(4-хлор-о-толилокси) уксусная кислота (МСРА),

4-(4-хлор-о-толилокси) масляная кислота,

4-(4-хлорфенокси) масляная кислота,

3,6-дихлор-2-метоксибензойная кислота (дикамба),

1-(этоксикарбонил)этил 3,6-дихлор-2-метоксибензоат (лактидихлор-этил).

Предпочтительные сафенеры в комбинации с соединениями общей формулы (I) в соответствии с изобретением и/или их соли и N-оксиды, в частности, с соединениями формул (I-001) - (I-027), их соли или N-оксиды, представляют собой: клоквинтоцет-мексил, ципросульфамид, фенхлоразол-этил, изоксадифен-этил, мефенпир-диэтил, фенкллорим, кумилурон, S4-1 и S4-5, и особенно предпочтительными сафенерами являются: клоквинтоцет-мексил, ципросульфамид, изоксадифен-этил и мефенпир-диэтил.

Биологические примеры:

5

10

15

30

В примерах и таблицах ниже используют следующие сокращения:

Исследуемые вредные растения:

ABUTH: Abutilon theophrasti

ALOMY: Alopecurus myosuroides

AMARE: Amaranthus retroflexus

DIGSA: Digitaria sanguinalis

20 ECHCG: Echinochloa crus-galli

KCHSC: Kochia scoparia

LOLRI: Lolium rigidum

MATIN: Matricaria inodora

POAAN: Poa annua

25 SETVI: Setaria viridis

STEME: Stellaria media

VERPE: Veronica persica

А. Гербицидное довсходовое действие

Семена одно- и двудольных сорных растений высеивали в пластиковые горшки (двойные посевы по одному виду одно- и одному виду двудольных сорных растений на горшок), в песчаный суглинок и засыпали почвой. Соединения в соответствии с изобретением, приготовленные в виде смачиваемых порошков (WP) или в виде эмульсионных концентратов (EC),

затем наносили на поверхность покрывающей почвы в виде водной суспензии или эмульсии, с добавлением 0,5 % добавки, при норме расхода 600 литров воды на гектар (в пересчете). После обработки горшки помещали в теплицу и содержали в оптимальных условиях роста тестируемых растений. Визуальную оценку повреждения тестируемых растений проводят прибл. через 3 недели по сравнению с необработанными контрольными растениями (гербицидный эффект в процентах (%): 100 % эффект = растения погибли, 0 % эффект = как контрольные растения).

В таблицах A1 - A12 ниже показано воздействие избранных соединений общей формулы (I) в соответствии с таблицей 1 на различные вредные растения и норма внесения, соответствующая 1280 г/га, полученная с помощью экспериментальной процедуры, указанной выше.

Таблица А1

5

10

15

Номер примера	Дозировка [г/га]	ALOMY
I-009	1280	100

Таблица А2

Номер примера	Дозировка [г/га]	ECHCG
I-009	1280	90

Таблица А3

Номер примера	Дозировка [г/га]	KCHSC
I-002	1280	90
I-005	1280	100
I-009	1280	100
I-015	1280	90
I-025	1280	90

Таблица А4

Номер примера	Дозировка [г/га]	LOLRI
I-001	1280	100
I-002	1280	100
I-004	1280	100
I-005	1280	100
I-009	1280	90
I-010	1280	100
I-021	1280	100
I-025	1280	100
I-026	1280	100

Таблица А5

Номер примера	Дозировка [г/га]	MATIN
I-001	1280	100
I-002	1280	100
I-003	1280	100
I-004	1280	90
I-005	1280	100
I-009	1280	100
I-010	1280	100
I-011	1280	90
I-020	1280	90
I-021	1280	100
I-023	1280	100
I-024	1280	90
I-025	1280	100
I-026	1280	100

5 Таблица А6

Номер примера	Дозировка [г/га]	SETVI
I-001	1280	90
I-009	1280	90
I-025	1280	90

Таблица А7

Дозировка [г/га]	STEME
1280	100
1280	100
1280	100
1280	100
1280	100
1280	90
1280	100
1280	90
1280	90
1280	100
1280	100
1280	100
1280	90
1280	90
1280	100
1280	90
	[r/ra] 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280 1280

Таблица А8

Номер примера	Дозировка [г/га]	VERPE
I-002	1280	100
I-003	1280	90
I-009	1280	90
I-021	1280	90

5 Таблица А9

Номер примера	Дозировка [г/га]	POAAN
I-001	1280	100
I-002	1280	100
I-003	1280	100
I-004	1280	90
I-005	1280	100
I-009	1280	90
I-010	1280	100
I-011	1280	100
I-021	1280	100
I-023	1280	100

Таблица А10

Номер примера	Дозировка [г/га]	AMARE
I-001	1280	100
I-002	1280	90
I-003	1280	100
I-004	1280	90
I-005	1280	100
I-008	1280	90
I-009	1280	100
I-011	1280	100
I-013	1280	100
I-020	1280	90
I-021	1280	100
I-023	1280	90
I-025	1280	100
I-026	1280	100

Таблица А11

Номер примера	Дозировка [г/га]	ABUTH
I-025	1280	100

Таблица А12

Номер примера	Дозировка [г/га]	DIGSA
I-005	1280	90

Как показывают результаты, различные соединения общей формулы (I) в соответствии с изобретением обладают очень хорошей гербицидной довсходовой эффективностью против широкого спектра вредных одно- и двудольных растений, таких как Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Digitaria sanguinalis (DIGSA), Echinochloa crus-galli (ECHCG), Kochia scoparia (KCHSC), Lolium rigidum (LOLRI), Matricaria inodora (MATIN), Poa annua (POAAN), Setaria viridis

5

10

(SETVI), Stellaria media (STEME) и Veronica persica (VERPE) при норме внесения 1280 г активного ингредиента на гектар.

В. Гербицидное послевсходовое действие

Семена одно- и двудольных сорных растений высевали в пластиковые горшки (двойные посевы по одному виду одно- и одному виду двудольных сорных растений на горшок) в песчаный суглинок, засыпали почвой, и выращивали в контролируемых условиях роста. Через 2-3 недели после посева тестируемые растения опрыскивали на стадии одного листка. Соединения в соответствии с изобретением, приготовленные в форме смачиваемых порошков (WP) или эмульгируемых концентратов (EC), распыляли на зеленые части растений в виде водной суспензии или эмульсии с добавлением 0,5% добавки, при норме расхода 600 литров воды на гектар (в пересчете). Тестируемые растения помещали в теплицу примерно на 3 недели в оптимальных условиях роста, и затем визуально оценивали действие препаратов в сравнении с необработанным контролем (гербицидное действие в процентах (%): 100 % эффект = растения погибли, 0 % эффект = как контрольные растения).

В таблицах В1-В11 ниже показано воздействие избранных соединений общей формулы (I) в соответствии с таблицей 1 на различные вредные растения при норме внесения, соответствующей 1280 г/га, полученной с помощью экспериментальной процедуры, указанной выше.

Таблица В1

5

10

15

20

Номер примера	Дозировка [г/га]	ABUTH
I-002	1280	90
I-009	1280	90
I-013	1280	100
I-021	1280	100

Таблица В2

Номер примера	Дозировка [г/га]	ALOMY
I-002	1280	100
I-008	1280	90
I-009	1280	100

Таблица В3

Номер примера	Дозировка [г/га]	KCHSC
I-002	1280	100
I-005	1280	90
I-009	1280	100
I-010	1280	100
I-013	1280	100
I-014	1280	90
I-015	1280	90
I-021	1280	100
I-026	1280	90

Таблица В4

Номер примера	Дозировка [г/га]	LOLRI
I-001	1280	90
I-002	1280	100
I-009	1280	90
I-021	1280	90
I-025	1280	90

5 Таблица В5

Номер примера	Дозировка [г/га]	MATIN
I-001	1280	100
I-002	1280	100
I-009	1280	100
I-013	1280	100
I-014	1280	100
I-015	1280	100
I-020	1280	90
I-021	1280	100
I-024	1280	100
I-025	1280	90

Таблица В6

Номер примера	Дозировка [г/га]	SETVI
I-002	1280	90
I-009	1280	90
I-015	1280	90

Таблица В7

Номер примера	Дозировка [г/га]	STEME
I-001	1280	100
I-002	1280	100
I-003	1280	90
I-005	1280	90
I-008	1280	100
I-009	1280	100
I-013	1280	100
I-014	1280	100
I-015	1280	100
I-020	1280	90
I-021	1280	100
I-022	1280	90
I-025	1280	90
I-026	1280	100

5 Таблица В8

Номер примера	Дозировка [г/га]	VERPE
I-002	1280	100
I-003	1280	100
I-004	1280	100
I-005	1280	100
I-008	1280	90
I-009	1280	100
I-010	1280	100
I-013	1280	100
I-014	1280	100
I-015	1280	90
I-020	1280	100
I-021	1280	100
I-024	1280	90

Номер примера	Дозировка [г/га]	VERPE
I-025	1280	90
I-026	1280	90

Таблица В9

Номер примера	Дозировка [г/га]	POAAN
I-001	1280	100
I-002	1280	100
I-004	1280	100
I-005	1280	100
I-009	1280	100
I-010	1280	90
I-021	1280	100

Таблица В10

Номер примера	Дозировка [г/га]	AMARE
I-001	1280	90
I-002	1280	100
I-003	1280	90
I-004	1280	100
I-008	1280	100
I-009	1280	100
I-010	1280	100
I-013	1280	100
I-014	1280	100
I-015	1280	100
I-020	1280	90
I-021	1280	100
I-022	1280	90
I-023	1280	90
I-024	1280	90
I-025	1280	100
I-026	1280	100

Таблица В11

10

15

20

25

Номер примера	Дозировка [г/га]	ECHCG
I-025	1280	90

Как показывают результаты, различные соединения общей формулы (I) в соответствии с изобретением обладают очень хорошей гербицидной послевсходовой эффективностью против широкого спектра вредных одно- и двудольных растений, таких как Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Echinochloa crus-galli (ECHCG), Kochia scoparia (KCHSC), Lolium rigidum (LOLRI), Matricaria inodora (MATIN), Poa annua (POAAN), Setaria viridis (SETVI), Stellaria media (STEME) и Veronica persica (VERPE) при норме внесения 1280 г активного ингредиента на гектар.

С. Гербицидное довсходовое действие

Семена одно- и двудольных сорных растений высевали в пластиковые горшки (двойные посевы по одному виду одно- и одному виду двудольных сорных растений на горшок) в песчаный суглинок, засыпали почвой. Соединения в соответствии с изобретением, приготовленные в виде смачиваемых порошков (WP) или эмульгируемых концентратов (ЕС), наносили на поверхность покрываемой почвы в виде водной суспензии или в виде эмульсии, с добавлением 0,5 % добавки, при норме расхода 600 литров воды на гектар (в пересчете). После обработки горшки помещали в теплицу и выдерживали в оптимальных условиях для роста тестируемых растений. Визуальную оценку повреждения тестируемых растений проводили примерно через 3 недели по сравнению с необработанным контролем (гербицидный эффект в процентах (%): 100 % эффект = растения погибли, 0 % эффект = как контрольные растения).

В таблицах С1 - С7 ниже показано воздействие избранных соединений общей формулы (I) в соответствии с таблицей 1 на различные вредные растения при норме внесения, соответствующей 320 г/га, полученной с помощью экспериментальной процедуры, указанной выше.

Таблица С1

Номер примера	Дозировка [г/га]	KCHSC
I-009	320	90

Таблица С2

Номер примера	Дозировка [г/га]	LOLRI
I-002	320	100
I-021	320	90
I-025	320	90

5 Таблица С3

Номер примера	Дозировка [г/га]	MATIN
I-002	320	90
I-009	320	100
I-021	320	90
I-025	320	100

Таблица С4

Номер примера	Дозировка [г/га]	STEME
I-001	320	100
I-002	320	100
I-005	320	100
I-009	320	100
I-011	320	90
I-020	320	90
I-021	320	90
I-025	320	90
I-026	320	90

Таблица С5

Номер примера	Дозировка [г/га]	VERPE
I-002	320	90

Таблица С6

Номер примера	Дозировка [г/га]	POAAN
I-001	320	100
I-002	320	100
I-005	320	100
I-011	320	90
I-021	320	90

Таблица С7

10

15

20

Номер примера	Дозировка [г/га]	AMARE
I-001	320	100
I-009	320	90
I-025	320	90

Как показывают результаты, различные соединения общей формулы (I) в соответствии с изобретением обладают очень хорошей гербицидной довсходовой эффективностью против широкого спектра вредных одно- и двудольных растений, таких как Amaranthus retroflexus (AMARE), Kochia scoparia (KCHSC), Lolium rigidum (LOLRI), Matricaria inodora (MATIN), Poa annua (POAAN), Stellaria media (STEME) и Veronica persica (VERPE) при норме внесения 320 г активного ингредиента на гектар.

D. Гербицидное послевсходовое действие

Семена одно- и двудольных сорных растений высевали в пластиковые горшки (двойные посевы по одному виду одно- и одному виду двудольных сорных растений на горшок) в песчаный суглинок, засыпали почвой и выращивали в контролируемых условиях роста. Через 2-3 недели после посева тестируемые растения опрыскивали на стадии одного листка. Соединения в соответствии с изобретением, приготовленные в форме смачиваемых порошков (WP) или эмульгируемых концентратов (EC), распыляли на зеленые части растений в виде водной суспензии или эмульсии с добавлением 0,5 % добавки, при норме расхода 600 литров воды на гектар (в пересчете). Тестируемые растения помещали в теплицу примерно на 3 недели в оптимальных условиях роста, и затем визуально оценивали действие препаратов в сравнении с

необработанным контролем (гербицидное действие в процентах (%): 100% эффект = растения погибли, 0 % эффект = как контрольные растения).

В таблицах D1 - D9 ниже показано воздействие избранных соединений общей формулы (I) в соответствии с таблицей 1 на различные вредные растения при норме внесения, соответствующей 320 г/га, полученной с помощью экспериментальной процедуры, указанной выше.

Таблица D1

Номер примера	Дозировка [г/га]	ALOMY
I-002	320	100
I-009	320	90

Таблица D2

Номер примера	Дозировка [г/га]	KCHSC
I-002	320	100
I-009	320	100
I-021	320	90

Таблица D3

Номер примера	Дозировка [г/га]	LOLRI
I-002	320	90

Таблица D4

Номер примера	Дозировка [г/га]	MATIN
I-001	320	90
I-002	320	90
I-009	320	100
I-013	320	100
I-015	320	90
I-021	320	100
I-024	320	90

10

5

Таблица **D**5

Номер примера	Дозировка [г/га]	STEME
I-001	320	100
I-002	320	100
I-005	320	90
I-008	320	90
I-009	320	100
I-014	320	90
I-015	320	100
I-021	320	90
I-025	320	90

Таблица D6

Номер примера	Дозировка [г/га]	VERPE
I-002	320	100
I-003	320	90
I-005	320	100
I-009	320	100
I-010	320	100
I-013	320	100
I-015	320	90
I-021	320	100

5 Таблица D7

Номер примера	Дозировка [г/га]	POAAN
I-001	320	100
I-002	320	100
I-005	320	100
I-009	320	90
I-010	320	90

Таблица D8

Номер примера	Дозировка [г/га]	AMARE
I-003	320	90
I-009	320	100

Номер примера	Дозировка [г/га]	AMARE
I-010	320	100
I-013	320	90
I-021	320	100
I-025	320	90
I-026	320	90

Таблица D9

10

Номер примера	Дозировка [г/га]	ABUTH
I-021	320	90

Как показывают результаты, различные соединения общей формулы (I) в соответствии с изобретением обладают очень хорошей гербицидной послевсходовой эффективностью против широкого спектра вредных одно- и двудольных растений, таких как Abutilon theophrasti (ABUTH), Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Kochia scoparia (KCHSC), Lolium rigidum (LOLRI), Matricaria inodora (MATIN), Poa annua (POAAN), Stellaria media (STEME) и Veronica persica (VERPE) при норме внесения 320 г активного ингредиента на гектар.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Замещенный 1,2,4-тиадиазолилникотинамид общей формулы (I) и/или его соли или N-оксиды

в которой

5

10

15

20

25

W представляет собой кислород или серу,

 R^1 представляет собой водород, галоген, циано, (C_1-C_3) -алкил, (C_1-C_4) -галогеналкил, (C_1-C_4) -алкокси, (C_1-C_4) -алкилсульфинил, (C_1-C_4) -алкилсульфонил,

 (C_1-C_4) -галогеналкилтио, (C_1-C_4) -галогеналкилсульфинил или (C_1-C_4) -галогеналкилсульфонил,

 R^2 представляет собой (C_1 - C_4)-алкил или (C_1 - C_4)-галогеналкил,

 R^3 представляет собой водород, галоген, циано, (C_1-C_4) -алкил, (C_1-C_4) -галогеналкил, (C_1-C_4) -алкокси или (C_1-C_4) -галогеналкокси,

 R^4 представляет собой водород, галоген, циано, (C_1-C_4) -галогеналкил, (C_1-C_4) -алкокси или (C_1-C_4) -галогеналкокси,

 R^5 представляет собой водород, галоген, циано, (C_1-C_4) -алкил, (C_1-C_4) -галогеналкил, (C_3-C_6) -циклоалкил, (C_3-C_6) -галогенциклоалкил, (C_1-C_4) -алкокси или (C_1-C_4) -галогеналкокси.

2. Соединение общей формулы (I) по п. 1 и/или его соли или N-оксиды, отличающееся тем, что

W представляет собой кислород или серу,

 R^1 представляет собой водород, галоген, $(C_1\text{-}C_3)$ -алкил, $(C_1\text{-}C_4)$ -галогеналкил, $(C_1\text{-}C_4)$ -алкокси,

 (C_1-C_4) -галогеналкокси, (C_1-C_4) -алкилтиоили (C_1-C_4) -галогеналкилтио,

- R^2 представляет собой (C_1 - C_4)-алкил или (C_1 - C_4)-галогеналкил,
- R^3 представляет собой водород, галоген, (C_1 - C_4)-алкил или (C_1 - C_4)-галогеналкил,
 - R^4 представляет собой водород, галоген или (C_1 - C_4)-галогеналкил,
- 5 R^5 представляет собой водород, галоген, (C_1-C_4) -алкил, (C_1-C_4) -галогеналкил, (C_3-C_6) -циклоалкил,

 (C_1-C_4) -алкокси или (C_1-C_4) -галогеналкокси.

- 3. Соединение общей формулы (I) по п. 1 и/или его соли или N-оксиды, отличающееся тем, что
 - W представляет собой кислород или серу, предпочтительно кислород,
 - R^1 представляет собой водород, галоген, $(C_1\text{-}C_3)$ -алкил, $(C_1\text{-}C_4)$ -галогеналкил, $(C_1\text{-}C_4)$ -алкокси или

 (C_1-C_4) -алкилтио,

- R^2 представляет собой (C_1 - C_4)-алкил или (C_1 - C_4)-галогеналкил,
 - R³ представляет собой водород,
 - R⁴ представляет собой водород или галоген,
- R^5 представляет собой водород, галоген, $(C_1\text{-}C_4)$ -галогеналкил, $(C_3\text{-}C_6)$ циклоалкил или $(C_1\text{-}C_4)$ -алкокси.

20

15

- 4. Соединение общей формулы (I) по п. 1 и/или его соли или N-оксиды, отличающееся тем, что
 - W представляет собой кислород,
- ${
 m R}^1$ представляет собой водород, хлор, бром, метил, этил, трифторметил, 25 трихлорметил, метокси или метилсульфанил,
 - ${
 m R}^2$ представляет собой метил, этил, изопропил, дифторметил или трифторметил,
 - R³ представляет собой водород,
 - ${\hbox{\bf R}}^4$ представляет собой водород, фтор или хлор,
- R^5 представляет собой водород, фтор, хлор, бром, дифторметил, циклопропил или метокси.

- 5. Соединение общей формулы (I) по п. 1 и/или его соли или N-оксиды, отличающееся тем, что
 - W представляет собой кислород,
 - R^1 представляет собой водород, хлор, бром, метил или трифторметил,
 - R² представляет собой метил, этил, изопропил или трифторметил
 - R^3 представляет собой водород,

10

15

20

25

30

- R^4 представляет собой водород, фтор или хлор,
- ${
 m R}^{5}$ представляет собой водород, фтор, хлор бром, метокси или циклопропил.

6. Применение одного или нескольких соединений общей формулы (I) и/или его солей или N-оксидов по любому из пп. 1 - 5 в качестве гербицидов и/или регуляторов роста растений.

- 7. Гербицидная и/или регулирующая рост растений композиция, отличающаяся тем, что композиция содержит одно или несколько соединений формулы (I) и/или их соли или N-оксиды по любому из пп. 1 5 и одно или несколько дополнительных веществ, выбранных из групп (i) и/или (ii), с
 - (i) одним или несколькими дополнительными агрохимически активными веществами, выбранными из группы, включающей в себя инсектициды, акарициды, нематоциды, другие гербициды, фунгициды, сафенеры, удобрения и/или другие регуляторы роста,
 - (ii) одним или несколькими вспомогательными средствами для составов, используемых в защите растений.

8. Способ борьбы с вредными растениями или регулирования роста растений, отличающийся тем, что эффективное количество

- одного или нескольких соединений формулы (I) и/или их солей или N- оксидов по любому из пп. 1 5, или
 - композиции по п. 7,

наносят на растения, семена растений, почву, в которой или на которой растения растут или возделываемую площадь.